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Abstract: Urban green spaces (UGS) play a crucial role in the urban environmental system by aiding
in mitigating the urban heat island effect, promoting sustainable urban development, and ensuring
the physical and mental well-being of residents. The utilization of remote sensing imagery enables
the real-time surveying and mapping of UGS. By analyzing the spatial distribution and spectral
information of a UGS, it can be found that the UGS constitutes a kind of low-rank feature. Thus,
the accuracy of the UGS segmentation model is not heavily dependent on the depth of neural
networks. On the contrary, emphasizing the preservation of more surface texture features and
color information contributes significantly to enhancing the model’s segmentation accuracy. In this
paper, we proposed a UGS segmentation model, which was specifically designed according to the
unique characteristics of a UGS, named the Green Space Reverse Pixel Shuffle Network (GSRPnet).
GSRPnet is a straightforward but effective model, which uses an improved RPS-ResNet as the feature
extraction backbone network to enhance its ability to extract UGS features. Experiments conducted
on GaoFen-2 remote sensing imagery and the Wuhan Dense Labeling Dataset (WHDLD) demonstrate
that, in comparison with other methods, GSRPnet achieves superior results in terms of precision,
F1-score, intersection over union, and overall accuracy. It demonstrates smoother edge performance
in UGS border regions and excels at identifying discrete small-scale UGS. Meanwhile, the ablation
experiments validated the correctness of the hypotheses and methods we proposed in this paper.
Additionally, GSRPnet’s parameters are merely 17.999 M, and this effectively demonstrates that the
improvement in accuracy of GSRPnet is not only determined by an increase in model parameters.

Keywords: urban green space; high-resolution remote sensing imagery; deep learning; semantic
segmentation

1. Introduction

According to United Nations projections, the world’s population is expected to in-
crease by 2.25 billion, reaching a total of 9.15 billion by the year 2050 [1]. Such rapid
population growth imposes significant ecological pressures on cities [2], highlighting is-
sues such as the urban heat island (UHI) effect [3] and various pollution problems in the
process of urbanization. Urban green spaces (UGS) represent a crucial component of urban
ecosystems, comprising the vegetative entities within urban areas [4]. UGS play a pivotal
role in the sustainable development of cities [5]. On one hand, UGS contribute significantly
to enhancing the urban ecological environment [6] and addressing environmental issues
like air pollution [7] and noise pollution [8]. On the other hand, UGS can improve the
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physical and mental well-being of residents [9], reduce stress and anxiety [10], and promote
a healthier lifestyle [11].

However, the environmental pollution and land issues resulting from urban expan-
sion and construction pose a significant threat to the urban ecosystem [12]. Therefore,
for the sustainable and healthy development of cities and the advancement of the United
Nations Sustainable Development Goal No. 11 [13], the rapid and accurate acquisition of
UGS information has become increasingly critical. In the past decade, local government
authorities conducted surveys and mapping of green spaces using field investigations. Nev-
ertheless, these traditional survey methods were time-consuming, resource-intensive, and
often provided incomplete and untimely information, and some small-scale and scattered
green spaces were also neglected. This hindered the development and implementation
of relevant policies aimed at sustainability. Innovative approaches for UGS survey and
statistics methods are still in need of further research.

With the rapid advancement of earth-observing technology, the data acquisition ca-
pability of remote sensing has significantly improved, marking the dawn of a new era in
multi-platform, multi-angle, multi-sensor, all-weather, and all-time earth observation [14].
Developing a method for the accurate and rapid extraction of UGS information using
multispectral or hyperspectral remote sensing imagery is a critical issue. Gandhi et al. [15]
proposed a satellite image vegetation change detection method based on the Normalized
Difference Vegetation Index (NDVI), utilizing Landsat TM remote sensing data and NDVI
and DEM data for multisource vegetation classification. Zhou et al. [16] introduced a city
forest type discrimination method based on Linear Spectral Mixture Analysis (LSMA) and
Support Vector Machine (SVM), which used LSMA to extract three different vegetation
endmembers, including broadleaf forest, coniferous forest, and low vegetation, and their
abundances. Zhang et al. [17] generated a fine classification system for the 2015 Global
30 m Land Cover Classification (GLC_FCS30-2015) using Landsat image time series and
high-quality training data from the Global Spatial Temporal Spectra Library (GSPECLib)
on the Google Earth Engine computing platform. Nevertheless, UGS are characterized by
fragmentation and complex backgrounds [18]; thus, there are numerous small-scale UGS,
such as roadside trees and independent trees. Small-scale UGS are frequently overlooked
because the spatial resolution of multispectral or hyperspectral remote sensing imagery is
often limited compared with nature imagery, and small-scale UGS cannot be found even in
low-spatial resolution remote sensing imagery. The aforementioned factors will lead to a
significant discrepancy between extracted UGS and ground truth. Hence, it is crucial to
improve the accuracy of identifying fragmented and scattered UGS.

High-spatial resolution remote sensing imagery plays a pivotal role in addressing
the aforementioned challenge. Its spatial resolutions are a few meters or even less than
1 m, offering detailed texture and spectral information of ground objects. This enables a
comprehensive understanding of urban environments, supporting decisions for sustainable
urban development. However, even with high spatial resolution, remote sensing imagery
still lags behind natural imagery in terms of resolution and quality because of the influence
of factors like satellite altitude, satellite optical system performance, and manufacturing
costs, resulting in the widespread existence of mixed pixels. The edge contours and surface
texture information of ground objects are eroded. On the other hand, a UGS encompasses
various types of plants with different spectral information, and the spectral information
varies greatly between plant species. Consequently, the model needs to store a more
extensive range of information to effectively capture the diversity in UGS. At the same
time, high-spatial resolution remote sensing imagery contains various objects with similar
spectral information, such as UGS, farmlands, forests, and some plant-rich water bodies, for
which spectral distinguishment is challenging. These characteristics make the boundary of
the spectrum of ground objects in the feature space more “steep” and thus, it is difficult to
accurately extract UGS information using threshold methods or shallow learning methods.

With the development of deep learning, image segmentation methods based on deep
neural networks have found wide applications in tasks such as pedestrian detection [19],
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lane recognition [20], and object identification [21]. They have become vital solutions for
urban planning, environmental monitoring, ecological research, and more. Furthermore,
these methods offer new possibilities for extracting UGS from high-spatial resolution
remote sensing imagery because deep learning models can easily extract complex features
without manual design and substantial prior knowledge and can learn nonlinear mapping
relationship between inputs and outputs [22]. Consequently, Xu et al. [23] proposed a deep
learning classification method for UGS, utilizing phenological characteristics as constraints.
This approach takes full advantage of the spectral and spatial information provided by
high-resolution remote sensing imagery from different periods. Vegetation phenological
features are introduced as auxiliary bands into deep learning networks for training and
classification. Wang et al. [21] introduced a multi-level UGS segment architecture based
on DeepLab V3+, aimed at extracting urban green space information from high-resolution
remote sensing imagery. Shi et al. [24] presented a general deep learning (DL) framework
for large-scale urban green space mapping and generated fine-grained UGS maps (UGS-
1 m) for 31 major cities in mainland China. Liu et al. [25] introduced a novel hybrid
approach, the Multi-Scale Feature Fusion and Transformer Network (MFFTNet), as a fresh
deep learning method for extracting urban green spaces from GF-2 high-resolution remote
sensing satellites. However, the task of extracting UGS is fundamentally different from
natural image semantic segmentation tasks [19–21]. To begin with, UGS exhibit highly
irregular and unpredictable edges compared with objects like people, cars, and buildings,
resulting in irregular shapes in remote sensing imagery. Additionally, UGS span a wide
range of spatial scales, encompassing large areas like parks, as well as small isolated
green spaces such as individual trees and garden plots. Moreover, there are similarities
in surface texture features among different UGS. Due to these factors, directly applying
natural image semantic segmentation models to the task of UGS segmentation will lead to a
performance decline.

To address the aforementioned issues, following a thorough investigation and analysis
of UGS, in this paper we proposed an end-to-end UGS segmentation model, named the
Green Space Reverse Pixel Shuffle Network (GSRPnet), for extracting UGS from GF-2
remote sensing imagery. The main work presented in this paper can be summarized as
follows: (1) To minimize the loss of UGS information during the model down-sampling
process, and in line with the characteristics of UGS (a low-rank feature, analysis in later
section), an enhanced UGS feature extraction backbone network called RPS-ResNet was
proposed. RPS-ResNet replaces the large kernel convolutional layer and the max-pooling
layer in the origin ResNet-50 with a reverse Pixel Shuffle approach, which is proposed
in this paper. Specifically, the last residual convolutional layer in the origin ResNet-50
was also removed to reduce the model’s parameters without compromising accuracy.
(2) Instead of using cross entropy or binary cross entropy for segmentation tasks, Focal Loss
and the Dice coefficient are combined for GSRPnet training, and the effects of these two
losses on the segmentation accuracy of a UGS under different weights are discussed. (3) To
validate the correctness and effectiveness of the ideas and modules proposed in this paper,
ablation studies were conducted. In addition, five segmentation models were introduced
to illustrate the superiority of GSRPnet.

2. Materials and Methods
2.1. Data Sources

The UGS segmentation task can be seen as a pixel-level image segmentation task. In
this paper, the Green Space 2018 dataset (GS2018) and the Wuhan Dense Labeling Dataset
(WHDLD) [26] were utilized for both the training of GSRPnet and the validation of accuracy,
alongside other deep neural networks for comparison [27–31].
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2.1.1. Green Space 2018 Dataset

Deep neural networks typically require a substantial number of paired images for
training and testing. However, the currently available publicly accessible data are insuffi-
cient to achieve the requirements. To this end, this paper curated a dataset suitable for the
training and accuracy verification of deep neural segment networks, named Green Space
2018 Dataset (GS2018). To provide better coverage of the distribution of UGS in various
cities across China, GS2018 was created using Gaofen-2 remote sensing imagery, with a
spatial resolution of nearly 1 m, from the main urban areas of six cities in the summer of
2018. These cities include Peking, Shanghai, Guangzhou, Shenzhen, Nanjing, and Wuhan.
The global urban boundaries (GUBs) [32] were used to define the main urban areas of
these cities. Among these, Peking, Shanghai, Guangzhou, and Shenzhen are the most
economically developed cities in China, and studying these four cities helps analyze the
impact of economic development on UGS. Nanjing and Wuhan are significant cities in the
Yangtze River Basin and were chosen as representative subjects. The relative geographical
locations of these six cities are shown in Figure 1.
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Figure 1. Relative geographical location of the study area.

GS2018 is a high-precision UGSs semantic segmentation dataset with a unified stan-
dard. In GS2018, UGS are categorized based on their functionality into five types: park
green spaces, protected green spaces, plaza green spaces, subsidiary green spaces, and
ecological green spaces. GS2018 was created using the object-oriented method. The original
remote sensing images and the annotation binary label images were uniformly divided
into small patches with no overlapping areas. GS2018 comprises a total of 9536 pairs of
remote sensing images and binary label images, all with a resolution of 256 × 256 pixels.
Among these, 7136 pairs were allocated for the training set, 2000 pairs for the test set, and
400 pairs for the validation set. Some examples of the GS2018 dataset are presented in
Figure 2, where the highlighted white areas represent UGS.
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Figure 2. Example of the GS2018 dataset.

2.1.2. Wuhan Dense Labeling Dataset

The Wuhan Dense Labeling Dataset (WHDLD) [26] was produced using the Gaofen-
2 remote sensing image of Wuhan, which contained 4940 RGB images with a size of
256 × 256 and a spatial resolution of 2 m. The WHDLD classifies features into six categories,
i.e., building, road, pavement, vegetation, bare soil, and water. In order to fit the green space
segmentation task, buildings, roads, pavements, bare soil, and water are considered as the
background, and vegetation as the target. Some examples of the WHDLD are presented in
Figure 3, where the highlighted white areas represent UGS.
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2.2. Method
2.2.1. Reverse Pixel Shuffle

Traditional down-sampling methods commonly use convolution operations, com-
pressing pixels within the convolution kernel’s range according to specific rules. However,
these traditional down-sampling methods will lead to information loss. This becomes
more severe, particularly when the segmentation task focuses on fragmented and scattered
green spaces. To address the negative impact of the model’s initial down-sampling on
UGS segmentation, we propose the reverse Pixel Shuffle (RPS) down-sampling method. In
contrast to traditional down-sampling methods, RPS transforms the relationships between
adjacent pixels into relationships between layers, thus minimizing image information loss
while reducing image size. Figure 4 illustrates the principle and process of the RPS method.
More specifically, it groups pixels in sets of four, from left to right and top to bottom,
combining pixels at the same position within each set into a separate layer, thus halving
the image resolution.
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2.2.2. RPS-ResNet

Neural networks face constraints on their depth due to the issues of gradient vanishing
and exploding, hindering model convergence. These problems can be effectively addressed
with weight initialization and intermediate normalization layers. However, even with
these solutions, the issue of degradation persists as the model becomes deeper. To tackle
the degradation problem in deep neural networks, a solution was proposed by [33] in the
form of residual networks. The structure of a residual convolutional layer is illustrated in
Figure 5.
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Instead of directly fitting the mapping of the underlying layers, the model aims to fit
the residual relative to the input. The residual predict process can be represented as (1):

Xt+1 = Xt + F(Xt) (1)

where Xt+1 and Xt are the output and input of the residual network, and F represents the
residual network, respectively.

ResNet [33] has been widely used in various tasks [34–36]. To better adapt ResNet to
the green space segmentation task, we offer targeted optimizations to ResNet-50 based on
the characteristics of UGS. The enhanced backbone network is referred to as Reverse Pixel
Shuffle ResNet (RPS-ResNet).

The network configuration of ResNet-50 is depicted in Figure 6a. Firstly, we replace
the large kernel convolution and max-pooling layers used for down-sampling with the
proposed RPS. This transformation converts relationships between adjacent pixels into rela-
tionships between layers, mitigating the impact of mixed pixels in remote sensing imagery
on the accuracy of UGS segmentation. Additionally, we simplified the network structure by
removing the final residual convolution layer, Conv5, to accelerate the convergence speed
and improve the accuracy of UGS segmentation in RPS-ResNet. Specifically, the network
input of RPS-ResNet first undergoes a layer of Reverse Pixel Shuffle, down-sampling the
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feature map by a factor of two. Subsequently, it passes through a 3 × 3 convolutional layer
and a Silu activation function to expand the feature map dimensions. It is noteworthy
that this differs from the original ResNet-50, which uses large kernel convolutions and
max-pooling layers, performing two times down-sampling operations in total. RPS-ResNet
only reduces the resolution of the input by half. RPS-ResNet’s R2–R4 are designed to be
residual convolutional layers similar to ResNet-50’s Conv2–Conv4. The specific network
configuration of RPS-ResNet is illustrated in Figure 6b.
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2.2.3. GSRPnet Network Structure

In this paper, we proposed a deep neural network for UGS segmentation, named the
Green Space Reverse Pixel Shuffle Network (GSRPnet). To expedite the model fitting speed
and improve the accuracy of the UGS segmentation task, GSRPnet utilize the proposed RPS-
ResNet as the feature extraction backbone. GSRPnet concatenates the feature map output
by each residual convolutional layer to connect contextual information and high–low level
features, enhancing the accuracy of UGS recognition. As shown in Figure 7, GSRPnet’s
network structure is straightforward, yet subsequent experiments indicate its effectiveness.
GSRPnet can be divided into three components: the down-sampling module, the feature
extraction module, and the feature compression filtering module.
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In the down-sampling module, the input remote sensing images undergo a half-
resolution reduction using RPS to conserve computational resources, along with a con-
volutional layer to expand the feature map dimension. In the feature extraction module,
features are extracted through R2, R3, and R4, and the resulting feature maps (designated
as F2, F3, and F4) have their resolution increased to half of the original resolution using
bilinear interpolation. Subsequently, these feature maps are concatenated along the channel
dimension to form a global feature block named the Feature Concatenated Block. In the
feature compression filtering module, the global feature block undergoes compression and
filtering of green space features through an MLP layer. Finally, the Pixel Shuffle method [37]
is used to raise the feature map resolution to the target space, obtaining the binary image
of a UGS.

2.2.4. Loss Function

In this paper, following previous works [24–26], we combined Focal Loss with the Dice
coefficient to selectively enhance segmentation accuracy. Focal Loss, introduced by [38]
and designed to address the issue of imbalanced positive and negative samples in dense
object detection tasks, is defined as follows:

FL(pt) = −αt(1 − pt)
µ log(pt) (2)

pt =

{
p y = 1

1 − p otherwise
(3)

where p represents the probability value of a model’s output pixel being classified as green
space, while αt and µ are weighting factors and focusing parameters. These are used to
adjust imbalances between samples, and αt ∈ [0, 1], µ > 0.

The Dice coefficient is a function that measures the similarity between two sets, with
values ranging from 0 to 1. The Dice coefficient is defined as (4):

Dice =
2 × |X ∩ Y|
|X|+ |Y| (4)

where | | and ∩ represent the summation and intersection operators, and X and Y represent
the model’s output and the ground truth labels, respectively.

During the training process, the total loss of GSRPnet can be expressed as (5):

Ltotal = λ × FL(Pt) + γ × Dice (5)

where γ and λ are hyperparameters that control the respective weights of the two different
losses in the overall loss.

3. Experiment
3.1. Accuracy Is Not Heavily Reliant on the Depth of the Neural Networks

By analyzing the spatial distribution and spectral information of a UGS, it can be
found that the UGS constitutes a kind of low-rank feature. This implies that the accurate
determination of whether a location is green space can be achieved with just one or a few
surrounding pixels. Excessive down-sampling (which means a larger receptive field) does
not significantly enhance the accuracy of UGS segmentation task. On the other hand, using
conventional methods (convolution, filtering) for down-sampling during the model’s input
phase leads to a loss of UGS information. To validate this hypothesis, experiments were
conducted, as described in this section.

As shown in Table 1, we used ResNet-50 as the backbone for Model-1 and consider it as
the baseline. The other four models are modifications built on Model-1. In comparison with
Model-1, which utilizes the complete ResNet-50 as the feature extraction backbone, Model-2
removes the last residual convolutional layer (Conv5) only. This adjustment achieves nearly
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identical accuracy as Model-1 while reducing device requirements and computational
resources. This indicates that the feature maps with a larger receptive field output by
the residual convolutional layer Conv5 in Model-1 do not contribute to the accuracy
improvement in the UGS segmentation task. To further investigate the characteristics of
UGS, we built Model-3 based on Model-2 by removing the max-pooling layer. Compared
with Model-2, Model-3, with one fewer down-sampling operation, has larger-sized feature
map output by the residual convolutional layers Conv2-4. Although the receptive field
is smaller, Model-3 exhibits further improvement in the IoU and OA accuracy evaluation
metrics. This suggests that, compared with models with deeper network structures, a wider
model can achieve better results in UGS segmentation tasks.

Table 1. Ablation study for the urban green space segmentation model’s structure on the GS2018 vali-
dation dataset. The best and second-best results are highlighted in bold and underlined, respectively.

Model Conv1 Max Pooling Conv2 Conv3 Conv4 Conv5 IoU ↑
(%)

OA ↑
(%)

Params ↓
(M)

FLOPs ↓
(G)

Model-1
√ √ √ √ √ √

84.090 93.221 51.406 339.666
Model-2

√ √ √ √ √
84.067 93.382 18.008 179.203

Model-3
√ √ √ √

84.274 93.463 18.008 216.042
Model-4 Reverse Pixel Shuffle

√ √ √
86.702 94.393 17.999 215.751

The number of FLOPs were tested using an open-source package for a single image with a resolution of 256 × 256.
The ↑ and ↓ indicate the larger the better and the smaller the better, respectively.

To minimize the loss of UGS information caused by down-sampling during the model’s
input stage, we proposed a reverse Pixel Shuffle (RPS) method. RPS is applied to Model-4.
Compared with the other models, Model-4 achieves the best results with IoU and OA
accuracy evaluation metrics of 86.702% and 94.393%, respectively.

3.2. Effectiveness of RPS-ResNet

In Section 2.2.2, we introduced RPS-ResNet, a ResNet-50 improvement designed
based on the distribution characteristics of UGS. To investigate the effectiveness of RPS-
ResNet, we conducted the following ablation study on the GS2018 dataset. GSPRnet and
GSRSnet represent models using RPS-ResNet and ResNet-50 as the feature extraction
backbone, respectively. Both models were trained and validated under identical conditions.
Figure 8 illustrates the performance curves of the two models. GSPRnet exhibits significant
advantages over GSRSnet both in the initial and highest performance. Moreover, GSPRnet’s
IoU accuracy improvement curve is smoother, indicating a more stable training process,
with less fluctuation in IoU metrics during training. This suggests that the enhanced
RPS-ResNet outperforms the original ResNet-50 in UGS segmentation tasks.
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3.3. The Weight for Two Losses

GSPRnet, which is proposed in this paper, uses the combination of Focal Loss and
the Dice coefficient as the overall loss function. In order to illustrate the influence of the
weights of Focal Loss and the Dice coefficient in the overall loss on the model performance,
we conducted an ablation study.

Firstly, keeping the weight γ of the Dice coefficient fixed at 1, we varied the weight λ
of Focal Loss from 1, increasing by 0.1 each time, to explore the impact of the Focal Loss’s
proportion in the total loss on the experimental results. As shown in Figure 9a, the model’s
IoU initially experiences a continuous decline until λ reaches around 1.5, after which it
gradually increases. When λ reaches 2, the training IoU reaches a maximum value, but the
further increase in λ leads to a subsequent decline. When λ reaches 2.5, the training IoU is
even lower than initial level.
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Figure 9. Ablation study for different loss weight settings on the GS2018 validation dataset. (a) The
change trend in the training IoU with the increase in the Focal Loss weight. (b) The change trend in
the training IoU with the increase in the Dice coefficient weight.

For the Dice coefficient, we fixed the weight λ of Focal Loss at 2, which achieved
the best results in experiment, while the weight γ of the Dice coefficient started from
0.5, increasing by 0.1 each time. Figure 9b illustrates the variation trend in the training IoU
with the increase in the weight γ, with the best result being achieved when γ is 1.

The experimental results indicate that the model achieves the best performance when
the weights of the hyperparameters λ and γ are set to 2 and 1, respectively.

3.4. The Effect of Different Loss Functions on the Urban Green Space Segmentation Task

Traditional segmentation models often utilize cross entropy or binary cross entropy
as the loss function. In contrast to nature image segmentation tasks [16–18], the UGS
segmentation task exhibits a relatively balanced proportion between the foreground (UGS)
and background (non-UGS). In some specific areas (such as forest parks), the foreground
may even outnumber the background. Simultaneously, the spatial distribution of a UGS is
fragmented and scattered, with isolated green spaces (such as individual trees) appearing
frequently. In such cases, cross entropy performs poorly, especially in the boundary regions
of a UGS.

In the previous section’s experiments, we only discussed the use of hybrid loss (the
combination of Focal Loss and the Dice coefficient). In this section, we explore the impact of
different loss functions on UGS segmentation task accuracy. Keeping the other conditions
consistent, we train the model using cross entropy, binary cross entropy, and hybrid
loss, respectively.

Figure 10 illustrates the variation trend in the IoU as the epoch increases when using
different loss functions. In comparison with models using cross entropy or binary cross
entropy, the model using hybrid loss achieves the highest IoU metric at the beginning of
the training and exhibits the highest accuracy improvement rate over the next 20 epochs.
On the other hand, models using cross entropy or binary cross entropy loss experience
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significant fluctuations in the IoU metric during the first 60 epochs, whereas the model
using hybrid loss demonstrates a smoother IoU improvement. Furthermore, over the
entire training period of 200 epochs, the model using hybrid loss maintains a performance
advantage in the IoU compared with models using the other two loss functions.
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As shown in Table 2, the model using hybrid loss achieved the highest values of
93.665%, 86.702%, and 94.393% for precision (Pre), intersection over union (IoU), and
overall accuracy (OA), respectively. Notably, the model using hybrid loss reached its peak
accuracy at the 136th epoch, while the other models attained their best accuracy after the
150th epoch. This indicates that the model using hybrid loss exhibits a faster convergence
speed. The results above suggest that the use of hybrid loss can more effectively guide
model training, enabling a model to store more features of a UGS and enhancing the
performance of the model.

Table 2. The UGS semantic segmentation model obtained the best accuracy and epoch on the
validation set with different loss functions. The best and second-best results are highlighted in bold
and underlined, respectively.

Loss Type Pre ↑
(%)

IoU ↑
(%)

OA ↑
(%) Best Epoch ↓

Cross entropy 92.845 86.178 94.113 160
Binary cross entropy 93.408 86.145 94.145 154

2 × Focal + Dice 93.665 86.702 94.393 136
The ↑ and ↓ indicate the larger the better and the smaller the better, respectively.

4. Results

In this section, GSRPnet was compared with other five segmentation models, including
U-net [27], PSPnet [28], Segnet [29], DeeepLab V3+ [30], and Separable Graph Convolutional
Network (SGCN-Net) [31]. A comparison of these models is listed in Table 3.
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Table 3. A comparison of the models used in this paper.

Model Description

U-net [27] Unet’s distinctive U-shaped structure incorporates contracting and
expansive pathways, enabling the model to capture contextual information.

PSPnet [28] PSPnet utilizes a pyramid pooling module to capture contextual
information at multiple scales.

Segnet [29] Segnet uses an encoder–decoder structure with a skip architecture to
capture and reconstruct spatial information effectively.

DeepLab V3+ [30] DeepLab V3+ incorporates atrous convolution [39] and a feature pyramid
to capture fine details and context in images.

SGCNnet [31] SGCNNet applies graph convolutional networks to segmentation tasks to
capture contextual information of channel and spatial features.

4.1. Training Details

GSPRnet was implemented using Python 3.7 on the PyTorch 1.12.1 framework, was
trained and tested in an environment consisting of Ubuntu 20.04.5 LTS, CUDA 11.3, and
CUDNN 8.3.2, and utilized an RTX 2080Ti GPU with 11 GB VRAM. The model was trained
with a learning rate initialized at 1 × 10−3, and the Adam optimizer [40] was used to
update the model parameters, with momentum values β1 and β2 set to 0.9 and 0.999,
respectively. To enhance the data during the model training process, random horizontal
and vertical flips were applied. The model was trained for a total of 200 epochs, with a
linear decrease in the learning rate at the 100th epoch. The batch size was set to 10. Based
on the experimental results in Section 3.3, the loss weight hyperparameters λ and γ were
set to 2 and 1, respectively.

4.2. Evaluation Metrics

UGS segmentation can be regarded as a binary classification instance segmentation
task. Following the practices outlined in [41–43], we used five metrics to evaluate model
performance, including precision (Pre), the F1-score (F1), intersection over union (IoU),
overall accuracy (OA), and the number of model parameters (Params). These metrics are
defined as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FP
(7)

F1 = 2 × precision × recall
precision + recall

(8)

IoU =
TP

FP + TP + FN
(9)

OA =
TP + TN

FP + TP + FN + TN
(10)

where TP, FP, TN, and FN represent True Positive, False Positive, True Negative, and
False Negative, respectively. Params describes the total number of trainable parameters in
the model.

4.3. Comparison Experiment of the GS2018 Dataset

In this section, we describe experiments conducted on the GS2018 dataset. As shown
in Table 4, compared with other models, GSRPnet achieved the best Pre, F1-score, IoU,
and OA, with values of 89.328%, 89.427%, 81.344%, and 92.256%, respectively. Overall,
when compared with the worst-performing Segnet, our model exhibited remarkable im-
provements in Pre (5.069%), F1-score (4.207%), IoU (6.576%), and OA (3.188%). Moreover,
compared with the second-best-performing SGCNnet, GSRPnet still demonstrated improve-
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ments of 1.306% in Pre, 0.431% in the F1-score, 0.725% in IoU, and 0.4% in OA. Particularly
noteworthy is the minimal cost of increased model parameters for GSRPnet compared with
the U-net model, with a slight increase of 3.21 M. Simultaneously, considering GSRPnet’s
model parameters compared with the other four comparison models, it has great advan-
tages, even falling below one-third of DeepLab V3+. These results quantitatively reflect the
effectiveness of GSRPnet in UGS segmentation tasks and demonstrate that the improved
performance of the GSRPnet model is achieved not only through an increase in parameters.

Table 4. Quantitative comparison of the results on the GS2018 test dataset. The best and second-best
results are highlighted in bold and underlined, respectively.

Model Pre ↑
(%)

F1-Score ↑
(%)

IoU ↑
(%)

OA ↑
(%)

Params ↓
(M)

U-net 88.449 88.770 80.273 91.749 14.789
PSPnet 86.884 87.965 79.096 91.166 52.495
Segnet 84.259 85.220 74.768 89.068 29.444

DeepLab V3+ 85.977 86.250 76.380 89.995 59.339
SGCNnet 88.022 88.996 80.619 91.856 43.908
GSRPnet 89.328 89.427 81.344 92.256 17.999

The ↑ and ↓ indicate the larger the better and the smaller the better, respectively.

Figure 11 illustrates the visualized UGS segmentation results of a typical UGS across
all comparison models. These areas include urban outskirts, squares, parks with associated
water bodies, areas around railways, airport surroundings, and transportation hubs. Be-
cause of the special encoder–decoder and skip-connected structure, the U-net model retains
more low-rank features; thus, the UGS edges of the recognition results are smoother. How-
ever, in the case of a scattered UGS, the recognition accuracy of U-net is reduced. PSPnet
provides relatively accurate segmentation of the UGS, but errors in recognition occur when
small non-UGS patches appear within the UGS. SegNet and DeepLab V3+ exhibit a jagged
pattern in regions where the UGS and non-UGS intersect each other. In particular, the two
models do not perform well when UGS are in a strip-like pattern. Overall, DeepLab V3+
outperforms Segnet. SGCNnet produces UGS segmentation results with smooth edges,
which aligns better with ground truth. However, it does not perform well in areas where
a UGS and non-UGS are in contact. The proposed GSRPnet in this paper demonstrates
a smoother edge performance compared with the other models, accurately identifying
discrete small UGS, especially in areas where UGS and non-UGS are interspersed with each
other, and the output results closely resemble the ground truth.

4.4. Comparison Experiment of the WHDLD

In order to further verify the robustness and generalization of GSRPnet and the
correctness of our proposed hypothesis, we conducted experiments on the WHDLD. In this
section, we follow the methods of [26], who randomly selected 80% of the WHDLD as the
training set and 20% as the testing set. We set the learning rate, number of epochs, and
batch size to 0.001, 120, and 10, respectively.

As shown in Table 5, the advantage of GSRPnet is further expanded. Compared
with SGCNnet, which achieved the second-best result, GSRPnet achieved 0.116%, 1.458%,
1.989%, and 0.791% improvements in Pre, the F1-score, IoU, and OA, respectively, and the
number of model parameters is less than half of that of SGCNnet. Compared with the other
four models, GSRPnet exhibits varying degrees of improvement in all indicators.
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Table 5. Quantitative comparison results on the WHDLD test dataset. The best and second-best
results are highlighted in bold and underlined, respectively.

Model Pre ↑
(%)

F1-Score ↑
(%)

IoU ↑
(%)

OA ↑
(%)

Params ↓
(M)

U-net 85.845 84.491 74.801 89.213 14.789
PSPnet 84.087 83.438 73.391 88.412 52.495
Segnet 85.258 81.948 71.445 87.802 29.444

DeepLab V3+ 83.348 83.835 72.736 87.152 58.036
SGCNnet 87.664 84.567 75.003 89.582 43.908
GSRPnet 87.830 86.025 76.992 90.373 17.999

The ↑ and ↓ indicate the larger the better and the smaller the better, respectively.

Figure 12 shows the visualized results of UGS segmentation for all models on the
WHDLD testing set. Similar to the results of GS2018, when faced with scattered UGS, U-net
still struggles to discern effectively, and there is a phenomenon of misclassification. PSPnet
is insensitive to continuous strip-like UGS. Segnet is the least effective model, and it cannot
distinguish well when the spectral information of adjacent objects is similar. DeepLab V3+
shows a serious misclassification when dividing scattered UGS, particularly in residential
areas. SGCNnet does not produce fine UGS well in the area of interleaving UGS and
non-UGS. The GSRPnet proposed in this paper still shows the best results on the WHDLD,
which is the closest to the ground truth, and further proves the advanced ability of GSRPnet
in the UGS segmentation task.
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5. Discussion

Benefiting from the high-spatial resolution and relatively short revisit period of remote
sensing imagery, extracting UGS information from such imagery proves to be a quick
and effective approach. Furthermore, with the development of deep learning technology,
semantic deep segmentation neural networks can achieve higher accuracy compared
with traditional methods. However, the exiting deep segmentation neural networks still
encounter challenges when applied directly to the UGS segmentation task. After studying
the characteristics of UGS, we found that a UGS is a kind of low-rank features. Because
of the characteristics of low-level features, the detection of a UGS is not highly dependent
on the model’s ability to understand semantic features, which means that the recognition
ability of UGS surface texture and color features is more important. In order to further
research on the UGS segmentation task with deep learning technology, we proposed an
end-to-end UGS segmentation model named GSRPnet. In comparison with five other
segmentation models [27–31], GSRPnet exhibits several advantages as follows:

1. In addressing the challenges posed by small-scale and fragmented UGS, GSRPnet out-
performs the other five models. For instance, in scenarios where roads and buildings
are surrounded by trees or other types of UGS (Figure 11, sixth row and Figure 12,
second row), GSRPnet excels in clearly distinguishing their outlines without inter-
ruptions or omissions. In contrast, Segnet [29] and DeepLab V3+ [30] struggle to
discern surface objects distinctly and may even misclassify non-UGSs as UGS. This
discrepancy arises from the fact that these models use regular down-sampling meth-
ods (such as convolution, resampling, etc.) at the model input stage to conserve
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computational resources. However, these regular down-sampling methods result in
the loss of texture information of the input images. GSRPnet utilizes the reverse Pixel
Shuffle method to reduce image size and minimize the loss of UGS information.

2. In GSRPnet, multi-scale feature maps (as shown in Figure 7, F2-F4) are concatenated
to offer multi-level UGS feature information for the MLP layer. This strategy of
concatenating feature maps ensures the provision of multiple and different levels
of UGS information for subsequent MLP layer decisions. The key advantage of
this strategy is that GSRPnet becomes more responsive to both non-UGS and UGS
boundaries. This strategy’s effectiveness is also evident in other comparative models
using similar approaches, such as the Unet [27] model with a skip-connection strategy,
which also exhibits clear boundaries. However, the concatenation strategy in GSPRnet
is more effective.

3. From the experiments on both the GS2018 dataset and WHDLD, as shown in
Tables 4 and 5, GSRPnet achieved the best results in all the four precision mea-
surement metrics. Specifically, GSRPnet achieved Pre, F1-score, IoU, and OA values
of 89.328%, 89.427%, 81.344%, and 92.256% and 87.830%, 86.025%, 76.992%, and
90.373% for the GS2018 dataset and WHDLD, respectively. In addition, the number
of model parameters (Params) is also a key indicator for measuring the effectiveness
of a model. Generally, increasing the depth of the network or increasing the number
of model parameters using other means can improve the recognition accuracy of a
model. However, this improvement comes at the cost of increased computational
resources. In comparison with the other four models, GSPRnet utilizes the second
fewest Params (only slightly higher than Unet by 3.21 million), yet it achieves the best
results. This clearly demonstrates that GSRPnet aims not only to enhance accuracy by
indiscriminately increasing the number of network parameters. It substantiates the
effectiveness of GSRPnet, emphasizing that its accuracy improvement is not solely
reliant on blindly expanding the number of network parameters.

In general, this paper thoroughly demonstrates the potential of extracting UGS at a
high spatial resolution using GSRPnet and provides a feasible scheme for UGS detection.
However, GSRPnet still has room for further improvement. In future work, we will aim to
delve deeper into enhancing the precision of the UGS segmentation task.

6. Conclusions

In this paper, we demonstrate that a UGS is a low-rank feature. This implies that
the accurate determination of whether a location is UGS can be achieved with just one
or a few pixels around it, and the segmentation accuracy is not highly dependent on
the depth of the model. Excessive down-sampling, which means a large receptive field,
does not contribute significantly to accuracy. In contrast, preserving more texture and
spectral features aids in enhancing the model’s accuracy. Therefore, we propose a novel
UGS segmentation network, named GSRPnet, which, with a small number of parameters,
improves the accuracy of UGS segmentation. The feature extraction backbone network
used in GSRPnet, i.e., RPS-ResNet, is an enhancement of ResNet-50. Particularly, it replaces
the original down-sampling convolutional layers and max-pooling layers with the reverse
Pixel Shuffle method, transforming relationships between adjacent pixels into relationships
between layers. This minimizes the loss of UGS feature information caused by the down-
sampling process. Experimental results on GaoFen-2 remote sensing imagery show that,
with a parameter count of only 17.999 M, GSRPnet outperforms U-net, PSPnet, Segnet,
DeepLab V3+, and SGCN-Net in terms of precision, the F1-score, IoU, and OA. This strongly
validates the correctness of our proposed approach.

Author Contributions: M.J. and H.S. conceived of and designed the experiments. Y.L. provided the
original remote sensing data. M.J. and X.Z. made the dataset and wrote this paper. H.S. and Y.L.
revised this paper and gave some appropriate suggestions. All authors have read and agreed to the
published version of the manuscript.



Forests 2024, 15, 197 17 of 18

Funding: This research was funded by the National Key R&D Program of China (2022YFF0711600)
and the Special Science and Technology Innovation Program for Carbon Peak and Carbon Neutraliza-
tion of Jiangsu Province (Grant No. BE2022612).

Data Availability Statement: The GaoFen-2 satellite data and the WHDLD data used in this study
can be accessed from [24,26], respectively.

Acknowledgments: The authors acknowledge the data support from Yangtze River Delta Science
Data Center, National Earth System Science Data Center, and the National Science & Technology
Infrastructure of China (http://geodata.nnu.edu.cn/, accessed on 30 September 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [CrossRef]
2. Zhong, J.; Li, Z.; Sun, Z.; Tian, Y.; Yang, F. The Spatial Equilibrium Analysis of Urban Green Space and Human Activity in

Chengdu, China. J. Clean. Prod. 2020, 259, 120754. [CrossRef]
3. Kumar, K.S.; Bhaskar, P.U.; Padmakumari, K. Estimation of land surface temperature to study urban heat island effect using

Landsat ETM+ image. Int. J. Eng. Sci. Technol. 2012, 4, 771–778.
4. Kuang, W.; Dou, Y. Investigating the Patterns and Dynamics of Urban Green Space in China’s 70 Major Cities Using Satellite

Remote Sensing. Remote Sens. 2020, 12, 1929. [CrossRef]
5. Chen, J.; Kinoshita, T.; Li, H.; Luo, S.; Su, D.; Yang, X.; Hu, Y. Toward Green Equity: An Extensive Study on Urban Form and

Green Space Equity for Shrinking Cities. Sustain. Cities Soc. 2023, 90, 104395. [CrossRef]
6. Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities

‘Just Green Enough’. Landsc. Urban Plan. 2014, 125, 234–244. [CrossRef]
7. Chen, M.; Dai, F.; Yang, B.; Zhu, S. Effects of Urban Green Space Morphological Pattern on Variation of PM2.5 Concentration in

the Neighborhoods of Five Chinese Megacities. Build. Environ. 2019, 158, 1–15. [CrossRef]
8. Margaritis, E.; Kang, J. Relationship between Green Space-Related Morphology and Noise Pollution. Ecol. Indic. 2017, 72, 921–933.

[CrossRef]
9. Dadvand, P.; Nieuwenhuijsen, M. Green Space and Health. In Integrating Human Health into Urban and Transport Planning:

A Framework; Nieuwenhuijsen, M., Khreis, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 409–423.
ISBN 978-3-319-74983-9.

10. Bertram, C.; Rehdanz, K. The Role of Urban Green Space for Human Well-Being. Ecol. Econ. 2015, 120, 139–152. [CrossRef]
11. Hills, A.P.; Farpour-Lambert, N.J.; Byrne, N.M. Precision Medicine and Healthy Living: The Importance of the Built Environment.

Prog. Cardiovasc. Dis. 2019, 62, 34–38. [CrossRef]
12. Su, Y.; Huang, G.; Chen, X.; Chen, S.; Li, Z. Research progress in the eco-environmental effects of urban green spaces. Acta Ecol.

Sin. 2011, 31, 7287–7300.
13. Kellison, T. An Overview of Sustainable Development Goal 11. In The Routledge Handbook of Sport and Sustainable Development;

Routledge: London, UK, 2022; pp. 261–275.
14. Men, G.; He, G.; Wang, G. Concatenated Residual Attention UNet for Semantic Segmentation of Urban Green Space. Forests 2021,

12, 1441. [CrossRef]
15. Gandhi, G.M.; Parthiban, S.; Thummalu, N.; Christy, A. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis—A

Case Study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [CrossRef]
16. Zhou, X.; Li, L.; Chen, L.; Liu, Y.; Cui, Y.; Zhang, Y.; Zhang, T. Discriminating Urban Forest Types from Sentinel-2A Image Data

through Linear Spectral Mixture Analysis: A Case Study of Xuzhou, East China. Forests 2019, 10, 478. [CrossRef]
17. Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at

30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [CrossRef]
18. Ardila, J.P.; Bijker, W.; Tolpekin, V.A.; Stein, A. Context-Sensitive Extraction of Tree Crown Objects in Urban Areas Using VHR

Satellite Images. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 57–69. [CrossRef]
19. Chu, X.; Zheng, A.; Zhang, X.; Sun, J. Detection in Crowded Scenes: One Proposal, Multiple Predictions. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.
20. Qin, Z.; Wang, H.; Li, X. Ultra Fast Structure-Aware Deep Lane Detection. In Proceedings of the Computer Vision—ECCV 2020;

Glasgow, UK, 23–28 August 2020, Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Springer International Publishing: Cham,
Switzerland, 2020; pp. 276–291.

21. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC,
Canada, 18–22 June 2023; pp. 7464–7475.

22. Wang, Z.; Ma, Y.; Zhang, Y. Review of Pixel-Level Remote Sensing Image Fusion Based on Deep Learning. Inf. Fusion 2023, 90,
36–58. [CrossRef]

http://geodata.nnu.edu.cn/
https://doi.org/10.22004/ag.econ.288998
https://doi.org/10.1016/j.jclepro.2020.120754
https://doi.org/10.3390/rs12121929
https://doi.org/10.1016/j.scs.2023.104395
https://doi.org/10.1016/j.landurbplan.2014.01.017
https://doi.org/10.1016/j.buildenv.2019.04.058
https://doi.org/10.1016/j.ecolind.2016.09.032
https://doi.org/10.1016/j.ecolecon.2015.10.013
https://doi.org/10.1016/j.pcad.2018.12.013
https://doi.org/10.3390/f12111441
https://doi.org/10.1016/j.procs.2015.07.415
https://doi.org/10.3390/f10060478
https://doi.org/10.5194/essd-13-2753-2021
https://doi.org/10.1016/j.jag.2011.06.005
https://doi.org/10.1016/j.inffus.2022.09.008


Forests 2024, 15, 197 18 of 18

23. Xu, Z.; Zhou, Y.; Wang, S.; Wang, L.; Li, F.; Wang, S.; Wang, Z. A Novel Intelligent Classification Method for Urban Green Space
Based on High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 3845. [CrossRef]

24. Shi, Q.; Liu, M.; Marinoni, A.; Liu, X. UGS-1m: Fine-Grained Urban Green Space Mapping of 31 Major Cities in China Based on
the Deep Learning Framework. Earth Syst. Sci. Data 2023, 15, 555–577. [CrossRef]

25. Liu, W.; Yue, A.; Shi, W.; Ji, J.; Deng, R. An Automatic Extraction Architecture of Urban Green Space Based on DeepLabv3plus
Semantic Segmentation Model. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing
(ICIVC), Xiamen, China, 5–7 July 2019; pp. 311–315.

26. Shao, Z.; Zhou, W.; Deng, X.; Zhang, M.; Cheng, Q. Multilabel Remote Sensing Image Retrieval Based on Fully Convolutional
Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 318–328. [CrossRef]

27. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Munich, Germany, 5–9 October 2015, Navab, N.,
Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

28. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

29. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmen-
tation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

30. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

31. Zhou, G.; Chen, W.; Gui, Q.; Li, X.; Wang, L. Split Depth-Wise Separable Graph-Convolution Network for Road Extraction in
Complex Environments from High-Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]

32. Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping Global Urban Boundaries from
the Global Artificial Impervious Area (GAIA) Data. Environ. Res. Lett. 2020, 15, 094044. [CrossRef]

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28.

35. Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. In Advances in Neural Information Processing Systems;
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33,
pp. 6840–6851.

36. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587.

37. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

38. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

39. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef] [PubMed]

40. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980.
41. Guo, R.; Niu, D.; Qu, L.; Li, Z. SOTR: Segmenting Objects with Transformers. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 7157–7166.
42. Ziwen, C.; Patnaik, K.; Zhai, S.; Wan, A.; Ren, Z.; Schwing, A.G.; Colburn, A.; Fuxin, L. AutoFocusFormer: Image Segmentation

off the Grid. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC,
Canada, 18–22 June 2023; pp. 18227–18236.

43. Dong, J.; Zhang, D.; Cong, Y.; Cong, W.; Ding, H.; Dai, D. Federated Incremental Semantic Segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023;
pp. 3934–3943.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12223845
https://doi.org/10.5194/essd-15-555-2023
https://doi.org/10.1109/JSTARS.2019.2961634
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TGRS.2021.3128033
https://doi.org/10.1088/1748-9326/ab9be3
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186

	Introduction 
	Materials and Methods 
	Data Sources 
	Green Space 2018 Dataset 
	Wuhan Dense Labeling Dataset 

	Method 
	Reverse Pixel Shuffle 
	RPS-ResNet 
	GSRPnet Network Structure 
	Loss Function 


	Experiment 
	Accuracy Is Not Heavily Reliant on the Depth of the Neural Networks 
	Effectiveness of RPS-ResNet 
	The Weight for Two Losses 
	The Effect of Different Loss Functions on the Urban Green Space Segmentation Task 

	Results 
	Training Details 
	Evaluation Metrics 
	Comparison Experiment of the GS2018 Dataset 
	Comparison Experiment of the WHDLD 

	Discussion 
	Conclusions 
	References

