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Abstract: Forest scene 3D reconstruction serves as the fundamental basis for crucial applications such
as forest resource inventory, forestry 3D visualization, and the perceptual capabilities of intelligent
forestry robots in operational environments. However, traditional 3D reconstruction methods like
LiDAR present challenges primarily because of their lack of portability. Additionally, they encounter
complexities related to feature point extraction and matching within multi-view stereo vision sensors.
In this research, we propose a new method that not only reconstructs the forest environment but also
performs a more detailed tree reconstruction in the scene using conditional generative adversarial
networks (CGANs) based on a single RGB image. Firstly, we introduced a depth estimation network
based on a CGAN. This network aims to reconstruct forest scenes from images and has demonstrated
remarkable performance in accurately reconstructing intricate outdoor environments. Subsequently,
we designed a new tree silhouette depth map to represent the tree’s shape as derived from the tree
prediction network. This network aims to accomplish a detailed 3D reconstruction of individual trees
masked by instance segmentation. Our approach underwent validation using the Cityscapes and
Make3D outdoor datasets and exhibited exceptional performance compared with state-of-the-art
methods, such as GCNDepth. It achieved a relative error as low as 8% (with an absolute error of
1.76 cm) in estimating diameter at breast height (DBH). Remarkably, our method outperforms existing
approaches for single-image reconstruction. It stands as a cost-effective and user-friendly alternative
to conventional forest survey methods like LiDAR and SFM techniques. The significance of our
method lies in its contribution to technical support, enabling the efficient and detailed utilization of
3D forest scene reconstruction for various applications.

Keywords: forest scene reconstruction; single image; point cloud; deep learning

1. Introduction

Forests play a crucial role in our ecosystem, providing substantial contributions to
maintaining ecological balance [1]. With the rapid development of artificial intelligence
technologies such as computer vision and deep learning, forest scene 3D reconstruction
has emerged as a significant research topic in forest resource inventory; it can be applied to
forestry management and environmental analysis and has replaced traditional methods
like “per-tree measurements” in forest resource surveys. Diameter at breast height (DBH)
stands out as a fundamental measurement parameter of forest scene reconstruction. The
implementation of automatic and precise measurement techniques for DBH holds the
potential to significantly boost the efficiency of forest scene reconstruction [2].

Many forest scene reconstruction methods take dense point clouds as inputs, which
are generated by LiDAR or photogrammetry [3]. Current acquisition systems such as UAVs
integrate high-resolution cameras and LiDAR and terrestrial laser scanners, which allow
us to capture multiple images from multiple view angles. LiDAR systems [4] constitute a
prevalent technique in the reconstruction of forest scenes, facilitating the rapid and auto-
mated modeling of the three-dimensional structure of trees [5]. Under typical conditions,
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most LiDAR systems emit laser pulses that bounce off an object or surface and are subse-
quently detected upon their return [6]. The LiDAR sensor calculates range measurements
based on the time-in-flight between pulse emission and return [7]. These measurements
enable the precise positioning of scanned objects in three-dimensional space [8], generating
spatially accurate three-dimensional point clouds that faithfully represent the shapes of
the objects [9]. Furthermore, technological developments in miniaturization have led to
the invention of special types of terrestrial laser scanners (TLSs), such as backpack laser
scanning (BLS) and even handheld solid-state LiDAR, which realizes the rapid and contin-
uous acquisition of three-dimensional LiDAR point cloud data in the forest by artificially
carrying LiDAR sensors [10]. Oveland et al. employed TLSs and BLS to capture the DBH
of Norwegian spruce and Scots pine. The outcomes indicated that BLS effectively cap-
tures point cloud information from individual tree trunks, enabling the precise extraction
of DBH [11]. However, there are evident shortcomings for LiDAR-based tasks in forest
scene reconstruction. The success rate of three-dimensional reconstruction, such as DBH
accuracy, is determined by the scanning density and precision of point clouds processed
using three-dimensional laser scanning devices. Furthermore, the processing speed of
LiDAR-based reconstruction has difficulty meeting real-time requirements, and the high
cost of three-dimensional laser scanning devices hinders widespread adoption.

Hence, image-based methods, such as Structure from Motion (SfM) photogrammetry,
offer a relatively cost-effective alternative to LiDAR [12]. Given its advantages in terms
of affordability and operational efficiency, SfM photogrammetry holds promise in the
reconstruction of forest scenes. This technique reconstructs a model by leveraging overlap-
ping images captured from various viewpoints around an object or scene, employing the
dense matching technique known as multi-view stereo (MVS) [13]. For instance, Tan et al.
generated sparse point clouds based on SfM photogrammetry and employed 2D image
segmentation to distinguish between foliage and woody components, determining the
visible branch segments [14]. Guo et al. introduced a refined approach for reconstructing
trees with foliage [15]. They utilized depth images reconstructed from multi-view inputs to
provide guidance in the reconstruction process. However, the aforementioned image-based
methods, all based on multi-images, reveal several limitations in forest scene reconstruction
tasks. In forest environments with similar texture features, the extraction and matching of
features become exceptionally challenging with the use of multiple overlapping images.
Achieving the real-time and accurate reconstruction of forest scenes presents a considerable
challenge under these circumstances.

In response to the bottlenecks associated with the aforementioned methods, many
methods focusing on forest scene reconstruction from single images have begun to emerge.
Forest scene reconstruction from a single RGB image poses a fundamentally ill-posed
problem, but the pursuit of this approach could yield significant benefits given its broad
applicability [16]. Tan et al. introduced a technique for reconstructing trees from individual
images [17]. Subsequently, 2D strokes are employed to direct the synthesis of a 3D tree
through a growth engine. Guénard et al. suggested creating a 3D plant model through
an analysis-by-synthesis approach, combining data from a single image with a priori
knowledge of the plant species [18].

The most similar to our approach is forest scene reconstruction from a single image
with depth estimation. Depth estimation can be widely categorized into supervised and
self-supervised techniques. Within the domain of single-image supervised depth estima-
tion, diverse methodologies have been explored, encompassing end-to-end supervised
learning [19], the fusion of local predictions [20], and non-parametric scene sampling [21].
It is imperative to note that full supervision necessitates the availability of the single image
concomitant with ground truth depth data for each corresponding image. Recent advance-
ments in single-image depth estimation have introduced enforced edge consistency [22] and
the integration of a depth normalization layer as a smoothness term [23], demonstrating a
marked superiority over stereo pair training methodologies. Self-supervised approaches
operate on presumptions regarding material properties and appearance, often enforcing
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brightness constancy between frames. Pivotal contributions in this domain include Lina Liu
et al.’s [24] incorporation of domain separation to address illumination variations between
day and night images, as well as Michael et al.’s [25] application of wavelet decomposition
for the efficient generation of depth maps. Chen et al. predicted depth maps to facilitate
forest scene reconstruction through the utilization of a single image, additionally providing
forecasts for DBH [26]. Nevertheless, the current methods of forest scene 3D reconstruction
from a single image still suffer from critical issues such as low reconstruction accuracy in
the forest scene.

Addressing the practical challenges posed by the complexity of forest scene 3D re-
construction, we present a method that not only reconstructs the forest environment but
also performs a more detailed tree reconstruction in the scene based on a conditional
generative adversarial network (CGAN) using a single image. Given an input image, the
proposed approach initially performs instance segmentation to obtain a tree image mask.
Subsequently, it utilizes a network to derive depth information from the two-dimensional
image, thereby obtaining three-dimensional spatial point cloud information for the trees
depicted in the image. Additionally, a refinement network is introduced to obtain point
cloud information for both the frontal and occluded parts of each tree. The contributions of
our paper are summarized as follows:

• We propose a new method of forest scene 3D reconstruction based on CGANs from
a single image and perform a more detailed reconstruction of the trees in the scene,
which differs from the reconstruction accuracy of the scene.

• We propose an outdoor scene depth estimation network based on the CGAN structure
that exhibits outstanding performance in reconstructing complex outdoor scenes.

• We achieve detailed 3D reconstruction of trees within the forest scene with a tree
silhouette depth map. The maximum absolute error for single-image reconstruction is
reduced to 1.76 cm.

2. Methods

In this section, we delve into the architectural details of the networks used in our
method of tree point cloud reconstruction. Each network plays a crucial role in the overall
pipeline, and their designs are optimized for accuracy and efficiency to address an ill-posed
problem. We propose a method in this paper that uses a deep neural convolution network
to reconstruct tree point clouds from a single image. The framework of this method is
divided into four steps, as illustrated in Figure 1. The central element of the pipeline is a tree
prediction network. This network is responsible for translating the input two-dimensional
image into a three-dimensional tree point cloud. To train the network, we generate a large
amount of synthetic tree point cloud data using a procedural modeling approach and create
a series of single-model rendered images as the training dataset.
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To reconstruct trees from a single image, our method first utilizes an instance seg-
mentation model based on the Mask2Former neural network for image analysis, obtaining
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tree instance image masks. This mask separates tree pixels (including leaves and branch
structures) from other pixels (including the background and other objects). Next, our
method uses the tree image mask obtained with the instance segmentation model along
with the original image as inputs for a depth estimation network to predict point cloud
information for the scene depth of the image. Additionally, we innovatively introduce a
network structure based on Cycle-GAN for the front and back depth point cloud prediction
of tree instances to obtain fine-grained tree point cloud models. Finally, we combine the
scene depth point cloud information with segmentation mask information for fine-grained
tree point clouds based on point cloud information to obtain the final reconstructed point
cloud model. Our proposed method for reconstructing multiple-tree point clouds from a
single image can be summarized in four main steps.

2.1. Instance Segmentation

Our instance segmentation method is responsible for isolating individual tree instances
within the input image. Instance segmentation is a well-studied problem in computer
imaging, and we leverage the advancements made in this area to achieve accurate tree
instance segmentation. We employ a network called Mask2Former [27]. This network is a
model designed for image segmentation, enabling the accurate extraction of tree masks,
i.e., segmenting the input image into multiple pixel-level semantic categories. Compared
with other common semantic segmentation models, Mask2Former adopts a transformer
architecture to achieve image segmentation and demonstrates excellent performance on
multiple image segmentation datasets.

However, training the Mask2Former network requires semantic mask information
with pixel-level precision, which is often challenging to obtain. Therefore, this method
renders tree models to generate synthetic datasets and constructs tree instance segmentation
datasets by adjusting parameters such as lighting intensity, illumination angles, and camera
position angles during image rendering. During the training of the instance segmentation
network, this method applies data augmentation to the input images, including random
variations in image color, brightness, and contrast. Furthermore, this method randomly
applies Gaussian blur and horizontal flipping and crops the images with randomly sized
bounding boxes, with a minimum image size of 512 × 512 pixels.

During the training process, our method utilizes the tree instance segmentation dataset
to train Mask2Former until the network converges. To adapt the network to our specific
task of tree instance segmentation, we finetune it on a large dataset of annotated forest
images. Our custom dataset includes diverse tree species and various lighting conditions.
Fine-tuning ensures that the network learns to segment trees accurately, even in challenging
scenarios. Ultimately, this approach can obtain reliable mask information and separate
plant instances from the images.

2.2. Depth Estimation (CDEN)

In our method, we propose a single-view depth estimation prediction network (CDEN)
based on conditional generative adversarial networks (CGANs) [28] to address the transfor-
mation problem from the two-dimensional pixel image domain to the depth map domain.
As illustrated in Figure 2, the generation network of this method takes the original image
and instance segmentation mask information as network inputs. It processes this input
through a series of modules within the generation network, including a down-sampling
module based on attention mechanisms (SwinBlock), a residual module (ResBlock), and an
up-sampling module (UpBlock). This network outputs a spatial depth representation. The
discriminative network of this method takes the depth map as input and, after multiple
convolution and activation operations, produces a probability value between 0 and 1,
indicating the likelihood that each depth map input exists in the three-dimensional tree
depth map domain. In the end, we convert the depth map into a 3D coarse scene point
cloud using pre-calibrated intrinsic and extrinsic parameter matrices.
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2.2.1. Generation Network

The generation network, as the core of the conditional generative adversarial network,
translates two-dimensional pixel domain images into the depth map domain. The method
employs an encoder–decoder structure to design the generation network. Specifically, Swin
Transformer blocks are used as the down-sampling modules in the generation network’s
encoder. These modules perform down-sampling operations on the input image with a
size of 512 × 512, ultimately achieving a latent tensor that contains information about the
tree in the image. Additionally, residual modules are connected at down-sampling ratios of
4, 16, and 64, corresponding to the respective up-sampling tensors.

To implement the decoder, the method utilizes a series of up-sampling modules, each
consisting of two sets of up-sampling layers and convolution layers. The up-sampling
layers have a scale factor of 2, and all convolution layers use 1 × 1 filters with a stride of
1. Instance normalization is applied after the convolution layers, and Leaky ReLU is used
as the activation function with a slope of 0.2 when the value is less than 0. The channel
numbers for each layer in the decoder are 1024, 256, 64, 16, and 1, respectively. The decoder
employs a Tanh activation function to compress the output into a range of −1 to 1.

2.2.2. Discriminative Network

During training, the discriminative network’s objective is to distinguish between real
depth maps and fake depth maps generated by the generation network. To achieve this, the
method employs four two-dimensional convolution layers to construct the discriminative
network. Batch normalization and Leaky ReLU activation functions are applied after the
convolution layers, with a slope of 0.2 for the activation function when the value is less than
0. All convolution layers use 5 × 5 kernels with a stride of 4 and padding of 2. After the last
convolution layer, a latent tensor of size 2 × 2 and 1024 dimensions is obtained. To map this
latent tensor to a one-dimensional output, a fully connected layer and a Sigmoid activation
function are used. The output of the discriminative network represents the probability of
similarity between the output depth map and the real depth map, measuring the realism of
the depth maps generated by the generation network. This process aims to transform the
pixel image domain into the image depth domain.

2.2.3. Loss Function

Our method utilizes the generative adversarial network loss function to describe
the competitive game between the generation network and the discriminative network.
The generation network aims to generate fake data that resemble real data as closely as
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possible, while the discriminative network tries to classify between real and fake samples.
Specifically, the loss function can be defined as

LCGAN(G, D) = Ex,y[logD(y|x)]− Ex[logD(G(x)|x)] (1)

In this context, x represents the input image, and y corresponds to the correspond-
ing depth map. The loss function comprises two primary components, mirroring the
adversarial nature of the training process. The first component of the loss function per-
tains to the discriminator network, aiming to maximize its accuracy in discriminating
between real data and generated data. This component seeks to enhance the discrimina-
tor’s ability to distinguish between genuine and synthetic data effectively. The second
component of the loss function is associated with a generator network, striving to minimize
the disparity between the generated fake data and the real data. Throughout the training
process, a competitive game unfolds: the generator seeks to minimize the loss function,
while the discriminator endeavors to maximize it. This adversarial interaction between
the generator and discriminator fosters a continuous improvement in their respective
capabilities. Consequently, the gap between the generated synthetic data and real data is
significantly narrowed.

In addition to the generative adversarial network (GAN) loss function, our method
introduces a probability loss function to measure the pixel-level disparity between the
predicted voxel probability values and the ground truth voxel probability values. The
purpose of this loss function is to ensure the credibility of the generated voxel probability
values. Unlike conventional classification problems, this method employs an L1 distance
regression loss to quantify the coherence among tree model voxels. Specifically,

L1(G) = ∑p

∥∥∥∥dp −
∼
dp

∥∥∥∥
1

(2)

We use dp and
∼
dp to represent both the real depth values and the predicted depth

values, which results in a smoother generated depth map with improved continuity.
Taking into account the two aforementioned loss functions, the final loss function, L,

can be expressed as follows:

L = LCGAN(G, D) + λL1(G) (3)

λ is a hyperparameter used to control the weight of the L1 loss function in the overall
loss, with λ set to 10. This loss function allows our method to simultaneously consider the
authenticity and coherence of the generated depth map.

2.3. Tree Prediction Network
2.3.1. Tree Silhouette Depth Map

As shown in Figure 3, we define the nearest and farthest depths of the tree point cloud
corresponding to the pixel at position (x, y) in a single-tree image as z(1,x,y) and z(2,x,y),
respectively. We further define the frontmost depth, R(x,y), and the tree thickness G(x,y) as
the tree silhouette depth map, which serves as the prediction output of the tree prediction
network. The transformation formula can be expressed as follows:{

R(x,y) = z(1,x,y)
G(x,y) = z(2,x,y) − z(1,x,y)

(4)
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2.3.2. Network

In this paper, we employ a tree prediction network designed within the framework
of Cycle-GAN [29] to predict a tree silhouette depth map. This ensures correspondence
between RGB images and the tree silhouette depth map, enhancing the accuracy of pre-
dicting tree point clouds. The network details are illustrated in Figure 4. Cycle-GAN
emphasizes cycle consistency, making the transformation process bidirectional. It converts
images from domain X into domain Y and then back into domain X, imposing constraints
to produce results highly similar to the original images. This approach enhances the quality
and stability of the transformation and exhibits robustness to variations and perturbations
in input images to a certain extent. Finally, we convert the tree silhouette depth map into a
3D refined tree point cloud using pre-calibrated intrinsic and extrinsic parameter matrices.
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Generator Network. For our generator network, we employ a design based on the
U-Net architecture [30]. We take a single image of size 512 × 512 × 4 and its correspond-
ing mask information as inputs to the generator network. Through the utilization of a
Res-net [31] down-sampling module, we perform down-sampling operations, effectively
flattening the generated representation into a 1024 × 4 × 4 latent feature tensor. We con-
sider the tensor’s channel dimension the depth direction for voxel generation within the
model. Following the down-sampling module, we incorporate batch normalization layers
and Leaky ReLU activation layers. The channel dimensions after down-sampling are 16, 32,
64, 128, 256, 512, and 1024. In the decoder part, we employ seven 2D transpose convolution
layers as the generator network’s decoder, with output channel numbers of 512, 256, 128,
64, 32, 16, and 2. The size of the transpose convolution kernel is 4 × 4, with a stride of 2 and
padding of 1. After the first six transpose convolution layers, batch normalization layers
and Leaky ReLU activation layers are applied. The final layer is equipped with a Tanh
activation function, resulting in a 512 × 512 × 2 tree silhouette depth map, which contains
information about the depth of the tree point cloud in both the front and rear aspects.
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Discriminator Network. We employ a series of 2D convolution layers. Following each
2D convolution layer in the discriminator network, batch normalization and Leaky ReLU
are applied as the activation function, with a slope of 0.2 for activations less than 0. All
convolution layers utilize 4 × 4 convolution kernels, a stride of 2, and padding of 1. The
output channel numbers are 256, 128, 64, and 32, and the last convolution layer yields a
512 × 32 × 32 tensor. To map this latent tensor to a one-dimensional output, our method
employs a single fully connected layer and a Sigmoid activation function. The output of the
discriminator network is utilized to measure the authenticity of the tree silhouette depth
map generated by the generator network, facilitating the transformation between the image
domain and the depth domain.

2.3.3. Loss Function

In this paper, we employ Cycle-GAN loss to measure the pixel-level disparity between
the output tree silhouette depth map and the real image, aiming to enhance the quality and
stability of the transformation. This is specifically expressed as

LossGAN = Ey[logDY(y)] + Ex[log(1 − DY(G(x)))]
+Ex[logDX(x)] + Ey[log(1 − DX(F(y)))]

Losscycle = Ex[∥F(G(x))− x∥1] + Ey[∥G(F(y))− y∥1]
Lossidentity = Ex[∥F(x)− x∥1] + Ey[∥G(y)− y∥1]

(5)

In this context, where x represents the input image, y represents the tree silhouette
depth map, and D and G represent the generator networks for the input image and tree
silhouette depth map, we employ the same generator network structure in this study. The
LossGAN ensures the co-evolution of the generator network and discriminator network,
thereby enabling the generator network to produce more realistic images. The Losscycle
ensures that the generator’s output images differ in style but not in content from the input
images. The role of Lossidentity is primarily to preserve the hue. Therefore, the final loss
function is expressed as follows:

Loss = LossGAN + Losscycle + Lossidentity (6)

3. Experiment and Results
3.1. Implementation
3.1.1. Dataset

For the instance segmentation task, the majority of our training data consisted of
manually annotated forest scene datasets. Additionally, we utilized rendered tree models to
generate synthetic datasets, adjusting image rendering parameters such as lighting intensity,
illumination angles, and camera positions to construct the tree instance segmentation
dataset. During the training of the instance segmentation network, our approach employed
data augmentation techniques on input images, including random variations in color,
brightness, and contrast. Furthermore, we applied random Gaussian blur and horizontal
flips and performed random-sized bounding box cropping on images, ensuring a minimum
image size of 512 × 512 pixels.

For the training of the depth estimation network, we aimed to achieve robust perfor-
mance on outdoor datasets. Therefore, we leveraged publicly available outdoor datasets
such as Cityscapes [32] and Make3D [33]. Additionally, we collected RGB-D images from
two distinct forest sampling sites in Beijing and Shandong. RGB images were used as in-
puts, while depth maps served as outputs. These sampling sites featured both pure forests
and mixed forests, with varying vegetation growth conditions and tree trunk diameter
distributions, ensuring dataset diversity.

For the training of the tree prediction network, we generated synthetic datasets using
rendered tree models, adjusting image rendering parameters such as lighting intensity,
illumination angles, and camera positions to construct the tree silhouette depth map
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dataset. During the training of the instance segmentation network, data augmentation
operations were applied to the input images. Moreover, we utilized densely captured 3D
point cloud data, transforming it into two-dimensional tree silhouette depth maps through
computer graphic coordinate transformations. Additionally, we rendered corresponding
two-dimensional color images as inputs. Furthermore, we performed data augmentation
on input images, including random variations in color, brightness, and contrast.

3.1.2. Training Details

The experiments in this paper were conducted using the Pytorch deep learning frame-
work, and the training and inference were performed on the NVIDIA RTX 3090 GPU. The
training of the instance segmentation model, depth estimation network, and tree prediction
network utilized randomly selected training, testing, and validation sets in an 8:2:1 ratio,
with image dimensions set at 512 × 512 pixels.

In the case of depth estimation, the generator network employed the Adam optimizer
with a learning rate of 0.001, and the hyperparameters β1 and β2 were set to 0.9 and 0.999,
respectively. The discriminator network used the SGD optimizer with a learning rate of
0.001, and the momentum hyperparameter was set to 0.99. A batch size of eight was
employed, and after 1000 epochs of training on the dataset, the learning rate was reduced
to 1 × 10−5. The model converged after 2000 epochs, and the training process took a total
of 30 h. The tree prediction network used the Adam optimizer with a learning rate of
0.001, and the hyperparameters β1 and β2 were set to 0.9 and 0.999, respectively. After
2000 epochs, the model converged, and the training process took a total of 20 h.

3.2. Evaluation Metrics
3.2.1. Depth Estimation Metrics

In order to assess the performance of single-image depth estimation networks, we
employ standard evaluation metrics. Among these, absolute error (AbsRel) measures the
absolute difference between predicted depth values and actual depth values, providing
an overall accuracy assessment of depth estimation. Root mean square error (RMSE)
calculates the square of the average difference between predicted and actual depth values
and then takes the square root, offering a measure of the overall error in depth estimation.
Square relative error (SqRel) first computes the relative error between predicted and true
depth values and then squares these errors, emphasizing the impact of larger errors. Root
mean square logarithmic error (RMSE-Log) first computes the square of the average of the
logarithmic differences between the predicted and actual depth values and then takes the
square root. This metric is commonly used to account for errors in smaller depth values in
depth estimation.

As shown in Table 1, d and d∗ represent the predicted and ground truth depth values,
while D represents the set comprising all the predicted depth values for an image. These
metrics are common choices for evaluating the performance of depth estimation algorithms
because they provide crucial insights into the accuracy and quality of depth predictions.
While AbsRel and SqRel focus on absolute and relative errors, RMSE and RMSE-Log offer
more comprehensive error information.

Table 1. Depth estimation metrics.

Metric Formula

AbsRel 1
|D|∑d∈D |d∗ − d|/d∗

RMSE
√

1
|D|∑d∈D∥d∗ − d∥2

SqRel 1
|D|∑d∈D ∥d∗ − d∥2/d∗

RMSE-Log
√

1
|D|∑d∈D∥logd∗ − logd∥2
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3.2.2. Forest Scene Reconstruction Metric

Constrained by hardware devices such as LiDAR, this study does not provide a
direct assessment of the accuracy of the three-dimensional reconstruction results for forest
scenes. However, the reliability of the three-dimensional reconstruction can be indirectly
demonstrated by estimating the diameter at breast height (DBH) of standing trees within
the three-dimensional scene. In this study, it is stipulated that the DBH of standing trees is
measured using a DBH tape at a height of 1.3 m above the ground. The measured diameter,
divided by π, is considered the true DBH value.

3.3. Reconstruction Results

The results of our forest scene reconstruction based on a single image are illustrated in
Figure 5. The left side presents the reconstructed input image, while the right side displays
the point cloud reconstruction effects. It is evident that the point cloud reconstruction
exhibits good robustness, particularly in situations with varying intensities of image illumi-
nation. This section provides a detailed exposition of the experimental process, followed
by comparisons and ablation studies after defining evaluation metrics.
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3.4. Comparison Study
3.4.1. Depth Estimation Comparison

The Make3D dataset comprises outdoor scene images captured using a custom 3D
scanner. Because of early hardware limitations, the resolution of the images in this dataset
is 2272 × 1704, while the corresponding depth maps have a resolution of 55 × 305. The
depth information in this dataset is unreliable at long distances, necessitating the use of a
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mask to filter out pixels with depth values greater than 70 m. The final training set was
augmented to approximately 12,000 image pairs through offline data augmentation.

To train neural network models on the Make3D dataset, the predicted depth maps
were first up-sampled to 512 × 512. The output results were then resized to the original
image size. As shown in Figure 6, from left to right, we have the input single image, from
Chen et al. [26], and our method. Our network’s predictions enable a clearer distinction
between trees in outdoor scenes compared with existing methods, and it exhibits better
robustness in predicting under varying lighting conditions. As presented in Table 2, we
conducted quantitative comparisons between our prediction method and currently effective
methods. We resized the network output depth maps to match the size of the Make3D
depth map ground truth using bilinear interpolation. From the table of evaluation metrics,
it is evident that our approach outperforms other competitive methods in both global and
local depth estimation.
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Table 2. Depth estimation examples based on the Make3D dataset.

Method AbsRel RMSE SqRel log10

GCNDepth [34] 0.424 6.757 3.075 0.107
SharinGAN [35] 0.377 8.388 4.901 0.225
Monodepth2 [36] 0.322 7.417 3.589 0.201
Chen et al. [26] 0.257 6.74 4.129 0.083

Ours 0.246 6.152 3.015 0.056

Furthermore, we conducted quantitative experiments using the Cityscapes dataset,
comparing our depth estimation method with state-of-the-art depth estimation methods,
as shown in Table 3. It is clear that, relative to other recent methods, our proposed depth
estimation method demonstrates distinct advantages and exhibits strong generalization
capabilities for measuring depth in outdoor environments.

Table 3. Depth estimation examples based on the Cityscapes dataset.

Method AbsRel RMSE SqRel log10

Laina et al. [37] 0.257 7.273 4.238 0.448
Xu et al. [38] 0.246 7.117 4.06 0.428

Zhang et al. [39] 0.234 7.104 3.776 0.416
Ours 0.221 6.918 3.451 0.403

3.4.2. Forest Scene Reconstruction Comparison

To validate the reconstruction effectiveness of our forest scene three-dimensional recon-
struction method, we collected several color images from eight suburban parks, encompass-
ing images of trees with different species and varying levels of leaf sparsity. Subsequently,
we employed our single-view-based forest scene three-dimensional reconstruction method
to reconstruct these images. The relevant results are presented in Figure 7, where, from left
to right, we have the color input image, the depth prediction and reconstruction results
using the method by Chen et al. [40], and the predicted depth map and three-dimensional
reconstruction results obtained using our method. Our method is capable of performing
three-dimensional reconstruction from single-view images without relying on depth in-
formation or additional perspective images. Moreover, it yields favorable reconstruction
results in various complex environments while preserving the integrity of the input image
information. The time taken for our method to perform three-dimensional reconstruction
for each image is approximately 2.98 s.

Note that current forest scene reconstructions lack actual data as reference points.
Tree diameter at breast height (DBH) is a directly measurable parameter closely linked
to the actual shape and size of trees. Hence, if the reconstructed scene aligns well with
the real environment, the information obtained from tree DBH measurements should
correspond or closely match the features of the reconstructed trees. By comparing this data,
the accuracy and reliability of the reconstruction process can be indirectly validated. We
selected two forest sampling sites for different tree species located in Beijing and Shandong
as our experimental locations. These sites encompass both pure forests and mixed forests,
with varying vegetation growth conditions and tree diameter distributions, ensuring the
diversity of our study locations. In each group of images, a single standing tree image
was marked with a red rope at a height of 1.3 m above the ground. Approximately 5 to
6 standing tree images in each image set underwent multiple diameter measurements,
captured from three different angles. As shown in Table 4, a total of 36 standing tree
images from these two experimental locations were randomly tested in this experiment,
yielding an average reconstruction error of 1.25 cm and a relative error of 7.49% in the best
reconstruction results. We compared our method with state-of-the-art tree reconstruction
methods based on computer vision, where that of Chen et al. [40] closely resembles our
method based on a single image. Gao et al. [41] rely on multi-view SFM (Structure from
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Motion). This indirectly validates the reliability of the three-dimensional reconstruction
approach presented in this paper.
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Table 4. The results of DBH reconstruction for standing trees.

Location Mean DBH Method Min MAE (cm) Max MAE (cm) Mean MAE (cm) Relative MAE

Beijing 20.1 cm
Chen et al. [40] 0.61 4.89 2.65 13.18%
Gao et al. [41] 0.36 4.95 1.84 9.15%

Ours 0.42 4.05 1.76 8.75%

Shandong 16.7 cm
Chen et al. [40] 0.49 3.75 2.36 14.12%
Gao et al. [41] 0.29 3.64 1.48 8.86%

Ours 0.33 3.56 1.25 7.49%

3.5. Ablation Study

We evaluate the enhancement effect of the tree prediction network in our pipeline on
the single-image tree three-dimensional reconstruction task through ablation experiments.
In this experiment, the quantitative evaluation metric used is the Mean Absolute Error
(MAE) between the estimated DBH values after point cloud reconstruction and the actual
measured ground truth values. The MAE loss is employed to assess the accuracy of the
model’s predicted DBH values compared with the true DBH values. The experimental
data for ground truth are derived from the forest sampling site in Beijing, as previously
mentioned, and mathematical model parameters for estimating DBH are obtained using
random sample consensus (RANSAC). As shown in Table 5, in the experiment, the tree pre-
diction network predicts the tree silhouette depth map, which contains depth information
for both the front and back sides of tree trunks. This results in more accurate final point
cloud data reconstruction.
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Table 5. Comparative network ablation experiments.

Network Mean MAE
(cm) Relative MAE

Depth Estimation 2.17 10.72%
Depth Estimation + Tree Prediction Network 1.76 8.75%

4. Conclusions

Our method presents a breakthrough in addressing the core objectives outlined in
this study. The primary aim was to devise a portable and detailed 3D reconstruction
technique for forest scenes, overcoming the limitations of traditional methods like LiDAR
and addressing challenges related to feature extraction within multi-view stereo vision
sensors. Our method successfully achieves these objectives by not only reconstructing
entire forest environments but also providing intricate reconstructions of individual trees
from a single RGB image. The introduction of a CGAN-based depth estimation network
demonstrates exceptional performance, accurately capturing the complexity of outdoor
environments. Moreover, the innovative tree silhouette depth map derived from our
tree prediction network enables detailed 3D reconstructions of trees, effectively utilizing
instance segmentation. Our method showcases remarkable performance with a relative
error as low as 8% (absolute error: 1.76 cm) in estimating DBH. Our method not only fulfills
but exceeds the set objectives, offering a transformative solution for detailed 3D forest
scene reconstruction. Its implications extend beyond mere technological advancements,
emphasizing its pivotal role in enabling efficient and comprehensive forest ecosystem
analysis and management.

In future work, we intend to continue optimizing this method. We plan to extract
richer information from two-dimensional images, such as tree branch orientation and crown
color information, to further enhance the representation capabilities of single-image-based
three-dimensional point cloud reconstruction. Additionally, we will simulate additional
tree species information, expand the training dataset, and consider the reconstruction of
more trees to better meet the requirements of practical applications.
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