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Abstract: Utilizing UAV remote sensing technology to acquire information on forest pests is a crucial
technical method for determining the health of forest trees. Achieving efficient and precise pest
identification has been a major research focus in this field. In this study, Dendrolimus superans (Butler)
was used as the research object to acquire UAV multispectral, LiDAR, and ground-measured data
for extracting sensitive features using ANOVA and constructing a severity-recognizing model with
the help of random forest (RF) and support vector machine (SVM) models. Sixteen sensitive feature
sets (including multispectral vegetation indices and LiDAR features) were selected for training
the recognizing model, of which the normalized differential greenness index (NDGI) and 25%
height percentile were the most sensitive and could be used as important features for recognizing
larch caterpillar infestations. The model results show that the highest accuracy is SVMVI+LIDAR

(OA = 95.8%), followed by SVMVI, and the worst accuracy is RFLIDAR. For identifying healthy,
mild, and severely infested canopies, the SVMVI+LIDAR model achieved 90%–100% for both PA
and UA. The optimal model chosen to map the spatial distribution of severity at the single-plant
scale in the experimental area demonstrated that the severity intensified with decreasing elevation,
especially from 748–758 m. This study demonstrates a high-precision identification method of larch
caterpillar infestation severity and provides an efficient and accurate data reference for intelligent
forest management.

Keywords: UAV multispectral; airborne LiDAR; Dendrolimus superans (Butler); machine learning;
pest severity

1. Introduction

The Larch Caterpillar (Dendrolimus superans (Butler)) belongs to the Lepidoptera, the
family of leaf moths, and is widely distributed in Inner Mongolia, the three northeastern
provinces of China, and the northern region of Xinjiang [1]. The insect is a two-year
generation of pests that nibble on needles and leaves; the outbreak will eat all the needles
and leaves so that the branches and trunks appear to look like after a fire, and when it
is serious, it will lead to a part of the forest area to die [2], mainly harming the larch, the
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pine, red pine and so on [3]. The Great Khingan forest area is a key carbon storage base in
China [4] and is known as the “Green Great Wall of the Northern Border” [5]. The main
tree species are larch, pine, birch, etc., of which larch forests are one of the top communities
in the region, with larch accounting for about 86.1% of the forest area [6]. It was reported
that in 2022, the insects occurred in approximately 8.9 hectares of the forested area of Great
Khingan, Inner Mongolia, with an overall increasing trend. Of this total, 3.0967 hectares
had mild infestations, 3.3007 hectares were moderately infested, and 2.5027 hectares were
severely infested [7]. Therefore, there is an urgent need to utilize advanced technical means
to take effective preventive and control measures for the larch caterpillar risk areas and
provide technical support to green development.

Monitoring forest pests and diseases is usually based on traditional ground surveys,
which can accurately quantify the physiological and biochemical components as well
as the severity of infestation on a single tree, but this method has the disadvantages
of being time-consuming, costly, and difficult to conduct at the scale of forests [8]. In
recent years, with the booming development of UAV remote sensing technology, this
approach has provided a time-sensitive [8], low-cost, and efficient method for forest pest
monitoring and prediction, and remote sensing data with different spatial and temporal
resolutions can be acquired even in large or complex forest areas [9,10]. To date, UAV
hyperspectral and multispectral data are still the main data sources in forest pest monitoring
and prevention [11], and the methods developed for constructing monitoring models with
the aid of machine learning and deep learning are gradually maturing. Hyperspectral
data are divided into imaging and non-imaging spectra, and their common characteristics
are the large number of bands, the large amount of data in a certain spectral range to
obtain continuous reflectance information, and the flexibility to use spectral information to
integrate more spectral features, which can be applied to various types of pest research,
such as via differential spectral reflectance (DSR), modified spectral indices (MSIs), and
the continuous spectral index obtained from the continuous wavelet transform of DSR.
Continuous wavelet coefficient of differential spectral reflectance (DSR-CWC) obtained by
wavelet transform to monitor the leaf loss rate and estimation of population density under
Erannis jacobsoni Djak (EDJ) damage showed that DSR-CWC had a significant sensitivity
to the leaf loss rate, while DSR and MSI could adequately capture the reflectance features
that were sensitive to population density [12,13]. In the early monitoring of pine wilt
caused by pine nematodes, an accuracy of 88.11% was achieved by raw hyperspectral data
combined with the 3D-ResCNN model [14]. Hyperspectral data are characterized by high
cost, large data volume, and high hardware requirements in processing due to its hundreds
of spectral bands. In contrast, multispectral data typically consist of 3 to 10 bands, making
it advantageous due to its low cost, small data volume, simple processing, and quick
access to useful spectral features. As a result, it is widely used in forestry pest monitoring.
For example, different researchers used UAV multispectral data to monitor the extent of
forest damage caused by different insect infestations (Ips typographus, L.) and different
diseases (Areca yellow leaf disease). By calculating vegetation indices and texture features
and constructing a backpropagation neural network (BPNN), Detection Tree, naive Bayes,
support vector machine (SVM), and K-nearest neighbor (KNN) classification models. The
final monitoring accuracy ranged from 86.30% to 90% [15,16]. Additionally, to classify pine
wilt severity, a combination of unmanned aerial multispectral (MSI) and thermal infrared
band (TIR) data using machine learning models (RF, SVM, 2D/3D-CNN) yielded that MSI
was more effective for monitoring the healthy yellow and grey phases and that MSI and
TIR performed the best for all infection phases (OA: 94.26%) [17]. Remote sensing images
mainly refer to optical images from aerial images (multispectral and hyperspectral imaging
data, etc.) and satellite images (Sentinel, Landsat, etc.), and, thus, can only provide a large
amount of reflectance information in the horizontal direction of the forest trees, whereas
light detection and ranging (LiDAR) can penetrate the canopy to provide the vertical
structural characteristics of forests, and the combination of the two can adequately extract
the three-dimensional structural information and spectral characteristics of the forests
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and increase the accuracy of the monitoring of forest pests and diseases. For example,
different researchers applied airborne LiDAR, airborne hyperspectral LiDAR (AHSL), and
hyperspectral (HI) data to monitor forest pests (pine shoot beetle (PSB)) and diseases, where
3D radiative transfer models were used to extract canopy shading, calculate vegetation
indices and LiDAR features to monitor stress with the help of the random forest algorithm.
The potential of AHSL in predicting pest and disease stress was found to be in the range
of 65.95%–89.45% overall accuracy, whereas, for PSB stress, LiDAR (R2 = 0.69) accuracy
was higher than HI (R2 = 0.67) [18,19]. Dash J.P. et al. used manned aircraft and unmanned
aerial vehicles to collect multispectral and LIDAR data to monitor invasive alien trees
through random forest and generalized classification and regression models and found that
all four classifiers and data combinations had Kappa values greater than 0.96 [20]. Most of
the research in fusing UAV LiDAR and multispectral data are used for biomass estimation,
tree height extraction, index inversion, tree species classification, etc., with fewer studies
related to pest identification [21–24].

In summary, the red, red-edge, and near-infrared bands of UAV multispectral data
are more sensitive to vegetation health and can quickly extract sensitive features to reveal
the severity of larch caterpillar infestation [25–27]. UAV LiDAR is good for measuring
forest structural characteristics and has a strong correspondence with the vertical profile
of trees [28], so its combination with multispectral data will be advantageous to obtaining
the canopy reflectance in the horizontal direction of a single plant, and the structural
information in the vertical direction and the identification accuracy can be improved. Based
on this, this study will use UAV multispectral LiDAR data and ground survey data as data
sources, combined with a machine learning model to recognize healthy, mild, and severe
larch caterpillar infestations to solve the following problems:

1. Reveal the most sensitive feature sets (multispectral vegetation index and LiDAR
features) of larch caterpillar infestations;

2. Construct a high-precision model for effectively recognizing the severity of larch
caterpillar infestation;

3. Map the distribution of the severity of larch caterpillar pests on a single-plant scale in
the experimental area and characterize their spatial distribution according to topo-
graphic features.

2. Materials and Methods
2.1. Study Area

The experimental area is located in a typical larch area approximately 4.62 km northeast
of Wuerqihan Town, Yakeshi City, Hulunbeier, Inner Mongolia (Figure 1). The geographic
coordinates of the center are 121◦26′42′′ E, 49◦36′39.6′′ N. It is rectangular in shape, with a
length of approximately 922.691 m, a width of approximately 361.452 m, and an area of
approximately 331,641 m2. The region belongs to the cold temperate semihumid forest area
and is a continental monsoon climate forest, with its main tree species being larch.
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2.2. Data Acquisition
2.2.1. Ground Survey Data

Ground survey data collection was conducted on 19 July 2021, using an A10 handheld
GPS to obtain the geographic location of the larch; the device’s positioning technology
was provided by BDS + GPS + GLONASS; the first positioning time was 30 s; AGNSS
positioning time was 5 s; the data updating rate was 1Hz, and a single-point positioning
was 5 m. A tape measure was used to measure the east–west and north–south crowns and
diameter at breast height (DBH). The leaf loss rate (LLR) was used to classify the severity of
larch infestation. It refers to the ratio of the amount of canopy foliage loss per unit area to
the amount of all foliage [13], which was calculated by selecting a typical standard branch
in the east, south, west, and north directions of the sample tree at the upper, upper middle,
middle, lower middle, and lower canopy levels, respectively, recording the number of
injured needles and healthy needles and, finally, taking the average of the foliage loss rate of
all the branches as the LLR of the current sample tree. A total of 356 samples were selected,
of which 127 were healthy, 125 were mild, and 104 were severe. As seen in Figure 1c, the
healthy forest trees have a green canopy with dense needles; the leaf loss rate is in the range
of 0%–5%, and the point cloud density is higher from the LiDAR profiles; the canopy color
of the mildly damaged forest trees ranges from green to yellow; the needles are sparse;
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the leaf loss rate is in the range of 6%–15%, and the point cloud density is higher in the
upper canopy than the lower; the canopy color of the severely damaged forest is grey; the
branches are mostly exposed, and the leaf loss rate is in the range of 16%–100%, and from
the LiDAR profile, the forest as a whole has only branches and only a few needles.

2.2.2. UAV Multispectral Data

On the morning of 20 July 2021, a DJI Phantom 4 Pro V2.0 quadcopter drone (DJI,
Shenzhen, China) (Figure 2a) equipped with a MicaSense RedEdge-Multispectral camera
(MicaSense, Raleigh, NC, USA) (Figure 2b) was used to acquire data through five bands:
blue (434–466 nm); green (544–576 nm); red (634–666 nm); red-edge (714–7746 nm); and
near-infrared (824–856 nm). The remote control specified the range; the altitude was set to
150 m; the heading overlap rate and the side overlap rate were set to 79% and 66%, and
then the flight path was automatically generated, its resolution reaching 10 cm.
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Figure 2. (a) DJI Phantom 4 Pro V2.0 quadcopter drone; (b) MicaSense RedEdge-Multispectral camera.

2.2.3. UAV LiDAR Data

On the afternoon of 22 July 2021, the point cloud data were collected using a Zhonghai
Da six-rotor UAV Long-120 (Zhonghai DA, Guangzhou, China) (Figure 3a) equipped with
an ARS-1000 L long-range LiDAR measurement system (Zhonghai DA, Guangzhou, China)
(Figure 3b), and the main parameters are shown in Table 1. The UAV flew at an altitude
of 200 m during the collection of the data, with flight speeds ranging from 6 to 10 m/s, a
bypass overlap rate of 60%, and a heading overlap rate of 70%. The dispersion fraction of
the LiDAR sensor beam was 0.5 rmad; the acquired data footprint diameter was between
0.1 m and 0.2 m, and the density of the point cloud was 70 points/m2.

Table 1. Core parameters for LiDAR data acquisition.

Project Performance Parameters

System Performance Absolute precision ±5 cm
Weight 4.5 kg

Laser Sweep Unit

Laser Safety Levels Level 1
Maximum field of view ±330◦

Angular resolution 0.001◦

Data update rate 200 Hz
Maximum transmitting point frequency 750 KHz

Multi-echo function 15 times
Maximum range 1350 m@60%
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2.3. Research Methods
2.3.1. Multispectral Vegetation Index Calculation

As the larch trees succumbed to insect pest stress, the internal biochemical components
of the needles changed with increasing severity so that the canopy reflectance had obviously
different responses [2]. Thus, the spectral information on each band could reflect the
vegetation condition of different severities, so this study used the multispectral vegetation
index as an indicator of insect pest identification. The area of interest was mapped by
manual visual interpretation of the test area through ArcGIS10.7 software; 20 vegetation
indices were calculated with the help of ENVI5.3 software using blue, green, red, red-edge,
and near-infrared bands (see Table 2), and the average canopy reflectance of each sample
tree was extracted as the value of the vegetation index for that tree.

Table 2. Vegetation indices and the basis of their calculation formulas.

Number Vegetation Index Formulation References
1 Anthocyanin Reflectance Index (ARI) 1/B2 − 1/B4 Gitelson A A2009 [29]
2 Green Modified Simple Ratio (GMSR) (B5/B2 − 1)/(B5/B2 + 1)0.5 Knyazikhin Y1998 [30]

3 Green Normalized Difference Vegetation
Index (GNDVI) (B5 − B2)/(B5 + B2) Gitelson A A1996 [31]

4 Green Ratio Vegetation Index (GRVI) B5/B2 Gitelson A A2002 [32]

5 Modifies Nonlinear vegetation index
(MNLI) 1.5(B50.5 − B3)/(B50.5 + B3 + 0.5) Peng G2003 [33]

6 Modified Simple Ratio (MSR) (B5/B3 − 1)/(B5/B3) 0.5 + 1) Philip N1982 [34]

7 Modified Simple Ratio–red edge
(MSRreg) (B5/B4 − 1)/(B5/B4 + 1)0.5 Chen J M1996 [35]

8 Normalized Difference Green Index
(NDGI) (B2 − B3)/(B2 + B3) Mirik M2012 [36]

9 Normalized Difference Salinity Index*
(NDSI*) (B3 − B4)/(B3 + B4) Richardson A D2002 [37]

10 Normalized Difference Salinity
Index-Red Edge (NDSIreg) (B4 − B5)/(B4 + B5) Rondeaux C1996 [38]

11 Normalized Difference Vegetation Index
(NDVI) (B5 − B3)/(B5 + B3) Rouse J W1974 [39]

12 Normalized Difference Vegetation Index*
(NDVI*) (B4 − B3)/(B4 + B3) Gitelson A 1994 [40]
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Table 2. Cont.

Number Vegetation Index Formulation References

13 Normalized Difference Vegetation
Index-Red Edge (NDVIreg) (B5 − B4)/(B5 + B4) Ortiz S M2013 [41]

14 Optimize Soil-adjusted Vegetation Index
(OSAVI) (B5 − B3)/(B5 + B3 + 0.16) Rondeaux C1996 [38]

15 Optimize Soil-adjusted Vegetation
Index-Red Edge (OSAVIreg) (B5 − B4)/(B5 + B4 + 0.16) Rondeaux C1996 [38]

16 Ratio Vegetation Index (RVI) B5/B3 Jordan C F1969 [42]
17 Ratio Vegetation Index* (RVI*) B4/B3 Major D J1990 [43]

18 Ratio Vegetation Index-Red Edge
(RVIreg) B5/B4 Yang Ning 2020 [44]

19 Renormalized Difference Vegetation
Index-Red Edge (RDVIreg) (B5 − B4)/(B5 + B4)0.5 Broge N H2001 [45]

20 Wide Dynamic Range Vegetation Index
(WDRVI) (0.1B5 − B3)/(0.1B5 + B3) Gitelson A A2004 [46]

2.3.2. LiDAR Feature Calculation

In this study, LiDAR360 6.0 (China Green Valley) software was used to process the
acquired LiDAR point cloud data via resampling, denoising, ground point classification,
and normalizing the data according to the ground points. An irregular triangular mesh
interpolation was used to generate a digital elevation model (DEM) and a digital surface
model (DSM) with a 1 m resolution, and then the difference between the DEM and the
DSM was used to obtain a canopy height model (CHM). The CHM was used for the
segmentation of the canopy, and all the segmented trees were used to map the spatial
distribution of the severity of the larch caterpillar infestation in the experimental area. The
accumulated interquartile height (elev_AIH) and height percentile (elev_Percentile) were
obtained as another indicator of larch caterpillar infestation identification by calculating the
forest parameters based on a 1 m × 1 m grid with LiDAR360 software. The accumulated
interquartile height refers to the cumulative height of all normalized LiDAR point clouds
within a given statistical unit sorted by height and the cumulative height of the points
calculated. The cumulative height where X% of the points in each statistical unit are located
is the cumulative height percentile of the statistical unit, which contains 15 intervals in
LiDAR360, i.e., 1%, 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, and
99%. The height percentile is the height of a statistical cell in which all normalized LiDAR
point clouds within it are sorted by height, and then the height at which X% of the points
within each statistical cell are located is calculated, which is the height percentile for that
statistical cell, and the height percentile for the statistic likewise contains 15 intervals, i.e.,
1%, 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, and 99% (shown
in Figure 4).
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2.3.3. Sensitive Feature Selection Method

Selection of multispectral vegetation indices and LiDAR-sensitive features is the most
critical step before modeling, and using too many variables increases the computational
time and complexity of the model and affects the model results, thus not always producing
the best accuracy [47]. Therefore, in this study, the F test in ANOVA was utilized to reveal
multispectral and LiDAR features sensitive to different severity levels caused by larch
caterpillars. This method is a commonly used hypothesis test in ANOVA, where a threshold
is used to compare whether there is a significant difference between between-group and
within-group variations, with a larger F value indicating greater sensitivity [2].

2.3.4. Recognition Model

Based on sensitive multispectral and LiDAR features, MATLAB2022b software was
used to implement Random Forest (RF) and Support Vector Machine (SVM) algorithms to
construct identification models of larch caterpillar infestation with different severity.

The RF model is an integrated learning algorithm proposed by Leo Breiman and Adele
Cutler, which is composed of multiple decision trees and a subset of training samples. In
the training process of each of the multiple decision trees, a random subset of features and
a subset of training samples are used to increase the model’s generalization performance
and resistance to noise [2]. Two important input parameters of this model are the number
of classification trees (ntree) and the number of input variables for each split during tree
construction (mtry), where ntree is set to 500, and mtry is set to 2 [41]. The SVM model
is a learning method based on the criterion of minimizing structural risk, which has a
better generalization ability than some traditional learning methods [48]. In MATLAB,
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the RBF kernel function is used to solve the multi-classification problem, in which two
important parameters, penalty factor (C) and Gamma coefficient (G), are found via the
cross-validation method [49]. These two models have been widely used in remote sensing
identification of forest pests and diseases and can effectively identify the distribution, scope,
and development trend of forest pests and diseases.

2.3.5. Evaluation of Model Accuracy

To validate the accuracy of random forest and support vector machine models for
monitoring larch caterpillar infestations at different severity levels, 285 out of 356 measured
sample trees were used as the training set (80%), and 71 trees were used as the validation
set (20%). In this paper, the overall accuracy (OA), kappa coefficient, overall recall (Rmacro),
overall F1 score (F1macro), producer accuracy (PA), and user accuracy (UA) were selected to
evaluate the accuracy of the predicted and actual results. OA was the ratio of the number
of correctly categorized samples to the overall number of samples (see Equation (1)). The
kappa coefficient is an index that combines user accuracy and producer accuracy, which
can test the consistency between categorization results and field results, and if the kappa
coefficient is larger, it indicates better consistency and vice versa (see Equation (2)). Rmacro
and F1macro are indicators that extend the Recall and F1 scores and are extended into
multicategory evaluation indices, which are then added and averaged. The same weight
is given to each category, and Rmacro (see Equation (3)) and F1macro (see Equation (4)) are
finally obtained; their values range from 0 to 1, with 1 indicating that the model is stable.
Producer accuracy (PA) is the fraction of correctly categorized samples divided by the true
situation, which can evaluate the model’s ability to recognize each category, while user
accuracy (UA) reflects the ratio of the number of correctly categorized samples of a category
in the model’s recognition results to the total sample tree of that category appearing in
the recognition results, and these two metrics can be used to evaluate the accuracy and
reliability of the recognition results.

OA =
TP + TN

(TP + TN + FP + FN)
(1)

where OA is the overall accuracy; TP and TN are the numbers of sample trees correctly
classified by the model, and FP and FN are the numbers of sample trees misclassified.

K =
Po + Pe
1 − Pe

(2)

where K is the kappa coefficient; Po is the overall classification result, and Pe is the
consistency error.

Rmacro =
1
n

n

∑
i=1

Ri (3)

where Rmacro is the total recall, and Ri is the recall of class i.

F1macro =
1
n

n

∑
i=1

F1i (4)

where F1macro is the overall F1 score, and F1i is the F1 score for category i.
The accuracy of all models was finally compared, and the identification model with

the highest integrated accuracy was selected for mapping the spatial distribution of larch
caterpillar infestation severities in the experimental area.

3. Results
3.1. Sensitivity Analysis of Multispectral Vegetation Indices and LiDAR Features

To select vegetation indices and LiDAR features that are sensitive to the severity of larch
caterpillar infestation, the F variance values were calculated for 20 vegetation indices and 30 Li-
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DAR features. For the multispectral vegetation indices, with F > 10.65 (α = 10−5), the sensitivity
of ARI, MNLI, MSRreg, NDGI, NDSIreg, NDVIreg, OSAVI, OSAVIreg, RVIreg, and RDVIreg
was strong, as seen in Figure 5a, with the largest F value of 88.79 for NDGI, and the worst
sensitivity was GNDVI, reaching only 1.19. For LiDAR features, when F > 3.84 (α = 10−2),
as seen in Figure 5b, the sensitivities of AIH_1st, pre_30th, _25th, pre_20th, pre_10th, and
pre_1st, with the largest F value of 6.07 for pre_25th and the worst sensitivity being AIH_75th,
reaching only 0.29. Therefore, the 10 multispectral vegetation indices and 6 LiDAR features
mentioned above were finally selected as the input variables to construct the recognition
model for different severity levels of larch caterpillar infestation.
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3.2. Larch Caterpillar Infestation Severity Recognition Model Results

To select the best-performing model for recognizing the severity of larch caterpillar
infestation, six models were constructed by applying 10 sensitive vegetation indices and
6 sensitive LiDAR features, namely, random forest and support vector machine models
based on 10 vegetation indices only (RFVI and SVMVI); random forest and support vector
machine models based on 6 LiDAR features only (RFLIDAR and SVMLIDAR); random forest
and support vector machine models based on 16 vegetation indices and LiDAR features
(RFVI+LIDAR and SVMVI+LIDAR); and after confounding the six models, the confusion ma-
trices for the six models were created, as shown in Figures 6–8, where the green diagonal
line denotes the number of correctly classified cases for the model, while the remaining red
portion of the map is the number of incorrectly classified cases; the last row denotes the
producer accuracy (PA), and the last column indicates the user accuracy (UA).

Figure 6 shows the confusion matrix results for RFVI and SVMVI based on only
10 multispectral features, with RFVI having an OA of 77.5%, while SVMVI has a better
OA than RF at 90.1%. In producer accuracy, RFVI has the highest severe infestation accuracy
(95.2%), and SVMVI has the highest mild infestation accuracy (100%), whereas in user
accuracy, RFVI has the highest healthy tree accuracy (90.9%), and SVMVI has the highest
severe infestation accuracy (100%). In the RFVI model, for the healthy canopy, six trees
were misclassified as mild, and four trees were misclassified as severe; for mild infestation,
two trees were misclassified as healthy, and three trees were misclassified as severe; for
severe infestation, one tree was misclassified as mild. In the SVMVI model, for a healthy
canopy, one tree was misclassified as mild; for mild infestation, misclassification did not
occur; for severe infestation, four trees were misclassified as healthy, and two trees were
misclassified as mild infestation. From Table 3, we know that the Kappa coefficient, Rmacro,
and F1macro values of SVMVI are higher than those of RFVI, which are 0.8610, 0.9161, and
0.8947, respectively.
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Figure 7 shows the results of the confusion matrices for RFLIDAR and SVMLIDAR based
on only six LiDAR features, with SVMLIDAR reaching 62% OA while RFLIDAR reaches only
45.1% OA. The producer accuracy was again the highest for mild infestation (RFLIDAR: 55%,
SVMLIDAR: 80%), and the user accuracy was also the highest for healthy trees (RFLIDAR:
59.1%, SVMLIDAR: 70%). In the RFLIDAR model, 5 healthy trees were misclassified as mild
infested, and 12 trees were misclassified as severely infested; 3 mildly infested trees were
misclassified as severely infested, and 6 trees were misclassified as severely infested; 6
severely infested trees were misclassified as healthy, and 7 trees were misclassified as
mildly infested. In the SVMLIDAR model, for healthy trees, 6 trees were misclassified as
mildly infested, and 10 trees were misclassified as severely infested; for mild infestation, 1
tree was misclassified as healthy, and 3 trees were misclassified as severely infested; for
severe infestation, 5 trees were misclassified as healthy, and 2 trees were misclassified as
mildly infested. As seen in Table 3, the Kappa coefficient, Rmacro, and F1macro accuracies of
SVMLIDAR are higher than those of RFVI, which are 0.5509, 0.6284, and 0.6235, respectively.
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Table 3. Evaluation of the accuracy of classification models for different degrees of forest tree damage.

Indicator
Model RFVI SVMVI RFLIDAR SVMLIDAR RFVI+LIDAR SVMVI+LIDAR

OA 0.7746 0.9014 0.4510 0.6200 0.7606 0.9577

Kappa 0.7150 0.8610 0.3748 0.5509 0.7012 0.9384

Rmacro 0.7772 0.9161 0.4590 0.6284 0.7658 0.9595

F1macro 0.7723 0.8947 0.4507 0.6235 0.7601 0.9594

Figure 8 represents the confusion matrix results of RFVI+LIDAR and SVMVI+LIDAR fusing
16 vegetation indices and LiDAR features, where SVMVI+LIDAR showed the highest overall
accuracy (OA = 95.8%) and the other three evaluation metrics were higher than 0.9, as seen
in Table 3; RFVI+LIDAR had an OA of 76.1%, and the Kappa coefficient, Rmacro, and F1macro
reached 0.7012, 0.7658, and 0.7601, respectively. In producer accuracy, RFVI+LIDAR has the
highest accuracy in mild infestations (85%), and SVMVI+LIDAR has the highest accuracy in
severe infestations (100%). For user accuracy, RFVI+LIDAR has the highest accuracy in severe
infestations (90.9%), and SVMVI+LIDAR has the highest accuracy in mild infestations (100%).
In the RFVI+LIDAR model, four healthy trees are misclassified as mildly infested; six trees
are misclassified as severely infested; two mild trees are misclassified as healthy; one tree is
misclassified as severely infested, and four severe trees are misclassified as mildly infested.
In the SVMVI+LIDAR model, two healthy trees were misclassified as severely infested; one
mildly infested tree was misclassified as healthy, and no misclassification occurred for
severely infested trees.

In summary, the combined accuracy of SVMVI+LIDAR was the highest, reaching OA:
0.9577, Kappa: 0.9384, Rmacro: 0.9595, and F1macro: 0.9594. Although the accuracy of the
SVM model based on the vegetation index alone also reached more than 90%, the overall
accuracy of the SVMVI+LIDAR model increased by 5.63% with the addition of the LiDAR
feature, indicating that combining the vegetation index and LiDAR feature to monitor the
severity of larch caterpillar infestation would yield results closer to reality; RFLIDAR had
the lowest combined accuracy of OA: 0.4510, Kappa: 0.3748, Rmacro: 0.4590, and F1macro:
0.4507, suggesting that the use of LiDAR AIH and height percentile alone for monitoring
the severity of larch caterpillar infestations could not achieve a reliable accuracy. For the
SVM model, the accuracies of all scoring metrics, whether based on the vegetation index,
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LiDAR features, or a combination of the two, were higher than those of the RF model,
which showed that the SVM model had a strong ability to generalize because the combined
accuracy was high due to the 10-fold cross-validation method applied to the training and
validation sets when using this model. For the RF model with three input variables, the
RFVI had the highest integrated accuracy of OA: 0.7746, kappa: 0.7150, Rmacro: 0.7772,
and F1macro: 0.7723, which indicated that the random forest model was more suitable for
monitoring larch caterpillar infestations based on the multispectral vegetation index. In
summary, SVMVI+LIDAR, which possesses the best-integrated accuracy, was finally selected
for mapping the spatial distribution of pine caterpillar infestation severity in the study area
segmented by the LiDAR CHM.

3.3. Distribution of Larch Caterpillar Infestation Severity Based on the Single-Plant Scale

To map the spatial distribution of larch caterpillar infestation severity in the test area,
7879 trees were obtained from single-tree segmentation by the LiDAR canopy height (CHM)
model in this study. The sensitive multispectral vegetation index and LiDAR features were
calculated for the acquired single trees and then input into the identification model with the
highest accuracy (SVMVI+LIDAR). As previous research indicated that insect infestation is
related to topographic features [50], elevation information was extracted from the DEM data
of the experimental area at the monoculture scale. As seen in Figure 9a, the identification
model classified 5560 healthy, 2145 mildly infested, and 174 severely infested trees, which
shows that this experimental area is dominated by a healthy canopy, concentrated in the
northeast, accounting for 70.6% of the total trees; mildly infested stands accounted for
27.2% of the total trees, mainly located in the southwest, and severely infested stands
accounted for only 2.2% of the total trees, most of which were distributed in the southwest,
while a few were found throughout the northeast. As shown in Figure 9b, the terrain in
the north-central part of the experimental area was high, and the terrain became flatter as
it continued southward, with the lowest elevation of 715.90 m and the highest elevation
of 799.34 m. As seen in Figure 9c, the mildly and severely infested canopies were mainly
concentrated in the areas with elevations of 748–758 m and 737–747 m. In conclusion, the
severity of larch caterpillar infestation in this test area increases with decreasing elevation,
and timely control should be carried out at low elevations to avoid seriously affecting
healthy crowns in high elevations.
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4. Discussion
4.1. Multispectral Vegetation Indices and Sensitivity of LiDAR Features

Larch trees under pine caterpillar infestation stress undergo significant changes in their
exterior color and internal biochemical components, thus allowing for the identification of dif-
ferent levels of severity using multispectral vegetation indices and LiDAR features. Vegetation
indices are calculated by different combinations of visible and near-infrared wavelengths [51]
and have different canopy reflectances in each wavelength when the forest is attacked, so it
is especially critical to extract vegetation indices that are sensitive to different severities [52].
In this paper, F values were calculated for 20 indices, and 10 sensitive vegetation indices
were obtained by thresholding, with the most sensitive NDGI index being the normalized
differential greenness index integrated through the green and red bands, which was initially
defined for the measurement of structural properties of vegetation, correlated with greenness
measurements [53], and used to test for different vigorous vegetation forms [54]. When larch
trees are stressed by larch caterpillars, the color of the canopy changes from green to grey, and
thus, the green reflectance of the spectrum is weakened, whereas in the red band, with the
increase in the leaf loss rate (LLR), the chlorophyll and water content of the needles decreases,
leading to an increase in reflectance. Therefore, this index has a strong correlation with insect
pest stress, and it can be used as an important multispectral vegetation index for monitor-
ing larch caterpillars. The six (MSRreg, NDSIreg, NDVIreg, OSAVIreg, RVIreg, RDVIreg)
subindices in the sensitivity index were derived by replacing the red band calculated by the
original MSR, NDSI, NDVI, OSAVI, RVI, and RDVI with the red edge band [55], where the
reflectance of the red band increases with decrease in leaf area; the near-infrared (NIR) band
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has a strong reflective characteristic on the cellular tissues, and as the severity of damage
to the cellular tissues of the larch needles increases the reflectivity decreases. The OSAVI
and MNLI are vegetation indices integrated by combining the green and red-edge bands.
Among them, OSAVI is an optimization of the SAVI index, establishing 0.16 as the optimal soil
adjustment factor, which minimizes the variation with soil background and is more sensitive
to vegetation health [55]. Similarly, the MNLI [33], a vegetation index obtained by modifying
the original nonlinear vegetation index (NLI) with soil factors, is strongly correlated with the
leaf area index (LAI). The decrease in LAI due to needle consumption by larch caterpillars
is more sensitive to vegetation health [56]. ARI, an anthocyanin reflectance index calculated
as the difference between the green and red-edge band inversions, is particularly sensitive
to anthocyanin in needles and leaves. Increasing severity changes the color of needles as
chlorophyll converts to anthocyanin, so the accumulation of anthocyanin leads to enhanced
reflectance [57]. Figure 10a shows the normalized values of the sensitive multispectral vegeta-
tion indices at different severities, where the normalized values of the indices ARI, MSRreg,
NDVIreg, OSAVIreg, and RVIreg decrease significantly with increasing severity, thus making
it easier to distinguish between different severities. The MNLI and OSAVI indices had increas-
ing and then decreasing normalized values on mildly damaged canopies, while the RDVIreg
indices all had smaller normalized values than the others. The least sensitive index is the
green normalized difference vegetation index (GNDVI), calculated from the NIR and green
bands. From many studies, it has been found that the GNDVI is mostly used for estimating
crop biomass and chlorophyll based on UAV multispectral imagery as well as identifying
low-nitrogen stress and monitoring aquatic organisms [58–60] and is, therefore, less sensitive
in terms of forest pest and disease stress monitoring.
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Lidar features are less sensitive to health status due to the difficulty of measuring
changes in biochemical components within the stand but can be good for monitoring
stand growth structure in the vertical direction. In studies of tree species identification
and estimation of parameters such as tree height and volume, 80%–90% of the height
variables can represent the dominant height of the trees in the sample plot and become
the main determinants of species identification as well as estimation of parameters [61].
On the contrary, the LiDAR-sensitive features extracted in this study mainly described the
appearance of the lower and middle layers of the trees (pre_30th, pre_25th, precentile_20th,
pre_10th, pre_1st, and AIH_1st), which was explained by the fact that the larvae of the
larch caterpillar overwintered under the dead branches and leaves, and then infested the
larch from the bottom up in the second year, threatening first the branches in the lower
and middle layers of the forest [62], so the sensitive characteristics coincide with the most
obvious parts of the infested forest. Figure 10b shows the normalized values of the sensitive
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LiDAR features at different severities, and it was found that all six sensitive features showed
a trend of decreasing normalized values with increasing severity, with insignificant changes
compared to the multispectral vegetation index. From the normalized mean values, the
AIH1 and Pre-1 features could not effectively differentiate between healthy and mildly
damaged canopies, while Pre-20, Pre-25, and Pre-30 were poor at identifying mildly and
severely damaged canopies. The severity of infection with the invasive Phytophthora
ramorum in larch has also been categorized by the metrics of canopy cover, skewness, and
height variables from airborne LiDAR (ALS) point clouds, and it has been demonstrated
that ALS can be used to characterize individual canopies of moderately and severely
infected trees [63]. In the next study, more vegetation indices combined with near-infrared
and red-edge bands will be calculated in conjunction with forest structural parameters such
as Li-DAR leaf area index, clearance rate, biomass, and intensity variables, and attempts
will be made to monitor forest pests and diseases in multidimensional space using a variety
of susceptibility extraction methods to visualize the results of the study in three dimensions.

4.2. Accuracy of Larch Caterpillar Pest Severity Monitoring Models

In this study, we aimed to construct six larch caterpillar pest severity identification
models based on random forest and support vector machine algorithms using multispectral
vegetation index and LiDAR features combined with ground survey data. As is widely
known, traditional machine learning and deep learning models are commonly used research
methods in forest pest monitoring. Studies have shown that deep learning is better at
classifying, detecting, and recognizing pests compared to traditional machine learning.
However, it requires a large amount of training data and the support of high-performance
computer hardware [16,64]. Therefore, in this study, we chose to use the most frequently
used models of Random Forests and Support Vector Machines for our research [65,66].
Scholars compared deep learning (3D convolutional neural networks, backpropagation
neural networks, artificial neural networks) and traditional machine learning (support
vector machines, random forests, decision trees, and plain Bayes) in tree classification and
disease severity classification using UAV hyperspectral, multispectral, and LiDAR data.
The recognition accuracy of the support vector machine model (SVM) of the traditional
machine learning algorithms is more similar to that of deep learning, with the difference
in recognition accuracy ranging from 0.27% to 2.6% [16,67]. Recently, other scholars have
applied SVM and RF models to classify the severity of cotton diseases and oak leaf-eating
insects obtained from unmanned aerial multispectral imagery, all obtaining more than 90%
overall accuracy [68,69]. The support vector machine model constructed in this study based
on multispectral vegetation indices and LiDAR features showed optimal overall accuracy
(OA = 95.8%). This result is consistent with previous studies, indicating that the fusion of
multisource remote sensing data can effectively improve the accuracy of the recognition
model [16,18,66,70].

In this study, PA and UA of the SVMVI+LIDAR model for the identification of healthy,
mild, and severe damaged canopies reached more than 90% (Figure 11), which shows
that the larch caterpillar infestation identification model constructed on the basis of the
16 sensitive features extracted from the variance provides a reliable reference for iden-
tifying larch caterpillar infestations in forest trees of varying severities. Among the six
recognition models, PA and UA based on LIDAR features alone were overall lower as
vegetation index and a combination of both, with SVMLIDAR having higher accuracy than
RFLIDAR. Although the LIDAR height variable used in this paper did not accurately iden-
tify pest severity, other studies have shown that combining the LODAR intensity variable
with hyperspectral data can detect the stress aspect of pine tip beetle with high accuracy
(R2 = 0.83, RMSE = 15.84%) [18]. SVMVI has a PA rate of 100% in identifying mildly dam-
aged crowns. Additionally, it is capable of distinguishing subtle differences between healthy
and mildly damaged trees through the use of multispectral data, which can monitor changes
in both the external condition of trees and their internal biochemical components [71]. The
SVMVI+LIDAR model achieved a 100% PA in identifying severely damaged canopies. This
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was due to the fact that most needles of the severely damaged canopies in the experimental
area were shed, and all branches were exposed, resulting in large differences in canopy
reflectance and vertical structure information at different heights compared to healthy and
mild damaged stands [72]. Future attempts will include the use of multisource remote
sensing data combined with UAV multispectral and hyperspectral data as well as backpack
LiDAR data to mine a more accurate identification model of larch caterpillar infestations of
different severities and to achieve three-dimensional visualization of the research results.
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5. Conclusions

In this study, we used UAV multispectral and LiDAR data combined with field mea-
surement data to select vegetation indices, and LiDAR features sensitive to different severi-
ties of larch caterpillar infestation using the F test, constructed an effective pest severity
identification model with the help of random forest (RF) and support vector machines
(SVM) and used the model with the best integrated accuracy to map the severity of larch
caterpillar infestation at the single-plant scale and interpret the spatial distribution charac-
teristics according to topographic features. The conclusions are as follows:

(1) Ten multispectral vegetation indices and six LiDAR features were selected by the
ANOVA test, of which the strongest sensitivities were the NDGI and Pre_25%. The
vegetation indices calculated from the NIR and red-edge bands accounted for the
largest number (6/10); the strong sensitivity of the 25% height variable was correlated
with the date of collection of the experimental data and the growth cycle of larch
caterpillars;

(2) Among the six monitoring models with different feature sets derived from the study,
the SVMVI+LIDAR model has the highest integrated accuracy, with OA, KAPPA, Rmacro,
and F1macro above 0.95, and the overall accuracy of the model is improved by 5.63%
and 33.77% compared with SVMVI and SVMLIDAR, respectively. It can be seen that
Multisource remote sensing data synergy is an important way to improve the accuracy
of pest recognition;

(3) A high-precision monitoring model (SVMVI+LIDAR) was used to map the severity
distribution of larch caterpillar infestation in the study area based on a single-plant
scale, and the trend of infestation was analyzed according to the topographic char-
acteristics. It was found that the severity of larch caterpillar infestation tended to
increase with decreasing elevation and that control should be carried out first on
mildly and severely damaged canopies at low elevations to protect healthy canopies
at high elevations.
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At present, this paper provides a high-precision monitoring model for the identi-
fication of different severities of larch caterpillar infestations, which provides a reliable
technical means for the control of forest pests in Great Khingan.
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