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Abstract: Ecological fire prevention forest belts can effectively alleviate the spread of forest fires
and reduce the harm caused by forest fires. Exploring the distribution and changes in suitable
growth areas for fire-resistant forest species under the effects of climate change can provide effective
references for the introduction of ecological fire prevention and tree species preservation in the
region. This study is based on the distribution data of six typical ecological fire prevention forest
species in the subtropical regions of China. The maximum entropy model (MaxEnt), optimized by
the ENMeval data package, was used to analyze the potential relationship between the ecological
environment variables and fire prevention forest species. The potential distribution of certain tree
species in the historical period and in future periods is simulated. In addition, the area changes,
migration trends, and stable areas of tree species under climate change are also discussed. The
research results indicated the following: (1) The AUC values of the optimized model are all higher
than 0.9, indicating the optimal prediction results. (2) The climate variables that have the greatest
impact on the suitable habitat of Schima superba were the annual mean temperature, precipitation of
the driest month, and mean diurnal range. Quercus glauca was mainly influenced by the minimum
temperature of the coldest month and the precipitation of the warmest quarter. Castanopsis eyrei
was mainly influenced by the precipitation of the driest month and the annual precipitation. The
distribution of suitable growth areas for Symplocos sumuntia is mainly influenced by the precipitation
of the driest month. The distribution of Camellia oleifera was influenced by the minimum temperature
of the coldest month. The potential habitat distribution of Photinia serratifolia was greatly influenced
by annual precipitation. (3) Until 2090, the expansion degree of the suitable growth area will be
Symplocos sumuntia (51.05%) > Schima superba (19.41%) > Camellia oleifera (10.14%) > Quercus glauca
(6.80%) > Castanopsis eyrei (2.34%) > Photinia serratifolia (−6.97%). (4) The centroid of Schima superba
will migrate northward. Quercus glauca will migrate northeast. The suitable areas for the migration of
Symplocos sumuntia and Castanopsis eyrei will move in a northwest direction, with repeated changes in
alum migration, as well as with the largest migration span for Castanopsis eyrei. In addition, Camellia
oleifera will move southwest. The centroid of Photinia serratifolia will migrate to the southeast. (5) The
six fire-resistant tree species in this study were noted to have excellent stability in Guizhou, Hunan,
Jiangxi, Fujian, Guangdong, and Guangxi. This conclusion can provide an effective reference for the
introduction of ecological fire prevention tree species and the protection of tree species under climate
change in subtropical forest-fire-prone areas in China.

Keywords: fireproof forest belt; MaxEnt; ENMeval data package; climate change; distribution of
suitable habitats; centroid migration
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1. Introduction

Ecological fire prevention forest is a fundamental project in the construction of a
forest fire prevention system, which can prevent the spread of forest fires and reduce
the probability of large-scale forest fires [1,2]. As early as 1936, foreign countries began
to utilize plants with low flammability and high water content, such as the gramineous
plant Agropyron cristatum (L.) Gaertn., Fagus longipetiolata Seem., Quercus robur L., and
Viburnum odoratissimum Ker.-Gawl., to establish fire belts in order to suppress the spread of
fires [3–5]. The United States once experimented with the use of the foreign tree species
Tamarix chinensis Lour. to build fire-resistant forest belts, which initially achieved good
results. But this tree species has been squeezed out by local tree species [6]. The principle
of selecting suitable land and trees to build fire-resistant forest belts in China has been
adopted, and the proportion of tree species with strong fire resistance [7] has increased
in the high-frequency forest fire areas of Guangdong, Fujian, and other such places; such
an approach has achieved good results. Deng et al. proposed increasing the planting
proportion of Schima superba and Michelia macclurei Dandy in fire-prone areas [8], and
Lai et al. selected Camellia oleifera as the construction of the fire prevention forest belt in
the Sanming Mountain area [9]. Based on the natural environment of the Greater Khingan
Mountains forest area, the main tree species from the local fire prevention tree species can
be selected to build an ecological fire prevention forest belt [10]. Combining the climatic
conditions of different periods and studying the potential distribution of suitable habitats
for fire-resistant forest tree species can provide reference opinions on the spatiotemporal
changes that are involved in the planting and selection of fire-resistant forests.

Due to its unique geographical location and terrain distribution, China is influenced by
different monsoons, resulting in differences in climates, vegetation types, and soil textures
among the different regions of China [11]. This has also made China one of the countries
with the richest plant resources in the world, where most plant genera are represented in
temperate climates with over 80 fire-resistant tree species [12]. This study selected Schima
superba, Quercus glauca, Castanopsis eyrei, Symplocos sumundia, Camellia oleifera, and Photinia
serratifolia from the subtropical regions of China as the research objects, including six typical
ecological fire prevention forest species. Among them, Schima superba has a high water
content and is characterized by fire, wind, and cold resistance. Quercus glauca has a beautiful
tree shape, as well as dense branches and leaves; furthermore, it has good resistance to toxic
gases, wind, dust, and fire. Castanopsis eyrei has excellent fire resistance [13]. Symplocos
sumundia is a typical tree species in the subtropical regions of China, and its leaves have
excellent fire resistance [14]. It is often mixed with other tree species as a fire-resistant
tree species. Camellia oleifera has high water content, strong adaptability, and a certain
economic value; in addition, it is widely planted in the mountainous and hilly areas of
Hunan, Jiangxi, Fujian, and other regions in China [15]. Photinia serratifolia is a common
ornamental evergreen shrub in the subtropical regions of China, and it is commonly planted
in gardens and urban roads.

The MaxEnt model is, at present, the most widely used species habitat suitability
model [16]. Due to its simple operation and strong applicability, it can achieve good
prediction results, even when the distribution sample data and environmental variable data
are insufficient, and it is widely used [17]. Zhang et al. used the MaxEnt model to predict
the potential distribution of rare tree species Picea smithiana in the Mount Everest Nature
Reserve in China [18]. In order to study the response of geographical changes in Castanopsis
sclerophylla to climate change, Miao et al. used the MaxEnt model to simulate and predict
the potential distribution areas of Castanopsis sclerophylla during the last glacial maximum,
currently, and by 2070 and evaluated the impact of climate factor changes on its potential
geographical distribution [19]. Some studies have shown that when using the default
feature combination (FC) and regularization multiplier (RM) parameter combination of the
maxent model to predict the potential distribution of species, the complexity of the model
may be increased, thus resulting in problems such as the over sensitivity of the model to
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samples and overfitting of the model [20]. In order to solve such problems, this study uses
the R-project-based ENMeval package to adjust the parameter values of FCs and RM [21].

This study is based on climate data from different periods and the distribution data
of six typical ecological fire prevention forest tree species. The MaxEnt model, which is
optimized with the ENMeval package and is based on the R project, was used to analyze
the important factors that affect the distribution of fire prevention tree species. The po-
tential distribution of fire prevention forest tree species in subtropical regions of China
during historical periods was studied, and the distribution and changes in tree species
during the 2050 and 2090 periods under climate change were predicted, thus providing
theoretical support for promoting the construction of ecological fire prevention forest belts
and selecting species of ecological fire prevention belts in China.

2. Materials and Methods
2.1. Materials
2.1.1. Overview of the Research Area

The study area is the subtropical region of China, which is at a 25–35◦ north latitude
and is mainly south of the Huaihe River in the Qinling Mountains, east of the Qinghai
Tibet Plateau, and north of the tropical monsoon climate [22,23]. The temperature changes
throughout the four seasons are significant, with abundant precipitation throughout the
year, exhibiting the characteristics of high temperature and rainfall in summer and mild
and less rainfall in winter. However, due to the influence of vegetation, terrain, climate,
and population density, forest fires are more frequent [24].

2.1.2. Species Distribution Data

The six typical ecological fire prevention forest tree species selected in this study
were distributed using data from the Global Biodiversity Information database (https:
//www.gbif.org, accessed on 15 April 2023), iNaturalist (www.inaturalist.org, accessed on
15 April 2023), and the Chinese Virtual Herbarium (https://www.cvh.ac.cn, accessed on
15 April 2023).

2.1.3. Ecological Environment Data

Ecological environment variables were sourced from the World Climate Network
(https://www.worldclim.org, accessed on 15 April 2023). The spatial resolution is 2.5 arc
minutes (approximately 20.25 km2), which includes terrain data and 19 categories of climate
data (Table 1) from the following three periods: the historical climate (1970–2000), the future
average climate in 2050 (2041–2060), and the future average climate in 2090 (2081–2100).
Among these, the future climate data are the bioclimate variable data that are utilized in
the medium emissions SSP245 scenario, which is based on the BBC-CSM2-MR climate
model [25]. In addition, ArcGIS was used to process the terrain data to obtain the elevation,
aspect, and slope.

Table 1. Ecological environment variables.

Code Environmental Factor Unit

Bio_1 Annual Mean Temperature ◦C
Bio_2 Mean Diurnal Range ◦C
Bio_3 Isothermality %
Bio_4 Temperature Seasonality ◦C
Bio_5 Max. Temperature of Warmest Month ◦C
Bio_6 Min. Temperature of Coldest Month ◦C
Bio_7 Temperature Annual Range ◦C
Bio_8 Mean Temperature of Wettest Quarter ◦C
Bio_9 Mean Temperature of Driest Quarter ◦C
Bio_10 Mean Temperature of Warmest Quarter ◦C

https://www.gbif.org
https://www.gbif.org
www.inaturalist.org
https://www.cvh.ac.cn
https://www.worldclim.org
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Table 1. Cont

Code Environmental Factor Unit

Bio_11 Mean Temperature of Coldest Quarter ◦C
Bio_12 Annual Precipitation mm
Bio_13 Precipitation of Wettest Month mm
Bio_14 Precipitation of Driest Month mm
Bio_15 Precipitation Seasonality %
Bio_16 Precipitation of Wettest Quarter mm
Bio_17 Precipitation of Driest Quarter mm
Bio_18 Precipitation of Warmest Quarter mm
Bio_19 Precipitation of Coldest Quarter mm
Dem m
Aspect ◦

Slope ◦

2.1.4. MaxEnt Model

The MaxEnt model was first proposed by Steven J. Phillips in 2004 [26]. The idea
of MaxEnt is to estimate the target probability distribution by finding the probability
distribution of the maximum entropy [27,28]. The available information about the target
distribution is usually represented as a set of real, valued variables called “features” with
the constraint that the expected value of each feature should match its empirical mean
(i.e., the average value of a set of sample points is obtained from the target distribution).
When MaxEnt is applied to the modeling of species habitat suitability models, the pixels in
the study area constitute the space defining the MaxEnt probability distribution, and the
longitude and latitude positions of known species occurrence records form sample points,
characterized by environmental variables such as climate variables, elevations, soil types,
vegetation types, and their functions [29,30].

Currently, there are five features in FCs: Linear (L), Quadratic (Q), Hinge (H), Product
(P), and Threshold (T). In the default settings, FCs are LQHPT, and the RM is 1. This study
created 6 FCs: L, LQ, H, LQH, LQHP, and LQHPT. The RM was set from 0.5 to 4 with an
increase of 0.5 each time, a total of 8 gradients, and 48 parameter combinations, as shown
in Table 2.

Table 2. Parameter combinations.

FCs RM

L 0.5 1 1.5 2 2.5 3 3.5 4
LQ 0.5 1 1.5 2 2.5 3 3.5 4
H 0.5 1 1.5 2 2.5 3 3.5 4
LQH 0.5 1 1.5 2 2.5 3 3.5 4
LQHP 0.5 1 1.5 2 2.5 3 3.5 4
LQHPT 0.5 1 1.5 2 2.5 3 3.5 4

The 48 parameter combinations mentioned above were optimized and tested using
the ENMeval data package. The Akaike Information Criterion corrected value (Delta AICc)
and 10% training omission rate (OR10), under different parameter combinations, were used
to measure the performance of the model. The smaller the index value, the lower the degree
of overfitting of the model, and the better the model prediction results [31,32].

2.2. Methods
2.2.1. Data Preprocessing

Figure 1 shows the complete workflow of the analysis in this study.
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Figure 1. Flow chart of the MaxEnt prediction experiment.

For the obtained historical distribution data of species—after deleting incorrect and
duplicate data in order to avoid errors in the experimental results due to the dense distri-
bution of the same tree species—this study set up only one type of distribution data for
each tree species within a 50 km range. The final retained data include 121 Schima superba,
186 Quercus glauca, 152 Castanopsis eyrei, 114 Symplocos sumundia, 174 Camellia oleifera, and
127 Photinia serratifolia, as shown in Figure 2.

Considering the strong correlation between ecological environment variables, if all
variables were used for MaxEnt model modeling, it may lead to overfitting of the model,
and the contribution rate of ecological environment variables to each type of forest fire tree
species may be different. Therefore, it is necessary to screen the ecological environment
variables of the six forest fire tree species. Firstly, using the 22 ecological environment
variables listed in this study, MaxEnt pre-modeling was performed on each type of tree
species to obtain the contribution rates of each environmental variable; then, Pearson
correlation analysis was performed on ecological environment variables to generate a
correlation heat map, as shown in Figure 3. When the correlation between the ecological
environment variables was |r| > 0.7, the variable with the lower contribution rate was
removed [33]. Finally, the ecological environment variables of each tree species after
screening are shown in Table 3.
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Table 3. Ecological environment variables after screening of various tree species.

Tree Species Ecological Environment Variables

Schima superba Bio_1, Bio_2, Bio_3, Bio_5, Bio_7, Bio_14, Bio_18, Aspect, Slope
Quercus glauca Bio_5, Bio_6, Bio_7, Bio_8, Bio_12, Bio_18, Aspect, Slope
Castanopsis eyrei Bio_2, Bio_4, Bio_6, Bio_12, Bio_14, Aspect, Slope
Symplocos sumuntia Bio_2, Bio_3, Bio_5, Bio_8, Bio_14, Bio_15, Aspect, Slope, dem
Camellia oleifera Bio_2, Bio_4, Bio_5, Bio_6, Bio_8, Bio_14, Bio_18, Aspect, Slope
Photinia serratifolia Bio_3, Bio_12, Bio_18, Aspect, Slope

2.2.2. Precision Evaluation

The receiver operating characteristic curve (ROC curve) uses each predicted value as a
possible judgment threshold and calculates the corresponding sensitivity and specificity.
The curve is plotted with the false positive rate (1-specificity) as the horizontal axis and
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the true positive rate (sensitivity) as the vertical axis. The size of the area under the curve
(AUC) is used as a measure of the accuracy of the model prediction, and its value range is
[0, 1] [34]. Furthermore, it is generally believed that the accuracy of a model is relatively
low at 0.7, is moderate when between 0.7 and 0.9, and is high when it is greater than 0.9.
The knife-cutting method was used to detect the contribution rate of various factors in
the changes in the distribution of suitable habitats. The larger the contribution rate, the
greater its impact on the distribution of species in suitable habitats. The environmental
factor response curve reflects the trend of the probability of species’ existence when the
numerical value of environmental factors changes. It is generally believed that when the
probability of existence is greater than 0.5, the size of the environmental factor is more
suitable for the growth of the species [35].

2.2.3. Model Evaluation

To ensure the accuracy of the model results, 10 replicates of the model were set in
the model settings, and cross-validation was used to verify the dataset by default. The
output format was selected as Logistic, and the receiver operating characteristic curve
(ROC) was used to test the model’s accuracy. In addition, the jackknife method was utilized
to test the percentage contribution (PC) and permutation importance (PI) of the ecological
environment variables. Lastly, ecological environment variable response curves were
created to facilitate observing the trend of environmental factor changes.

The PC value reflects the contribution of each ecological environment variable to the
geographical distribution of species during the training process of the model: the larger the
value, the greater the impact of the variable on the distribution of species. The PI value
reflects the degree to which the AUC value obtained from the model simulation results
decreases after randomly replacing the ecological environment variables of the species. The
greater the decrease, the greater the dependence of the model on this variable [36]. The
response curve of ecological environment variables reflects the trend of changes in the prob-
ability of species’ existence when the value of the variable changes. It is generally believed
that when the probability of existence is greater than 0.5, the size of the environmental
factor is more suitable for the growth of the species [37].

2.2.4. Model Evaluation and Analytical Methods

To evaluate the accuracy of the MaxEnt model, this study used the area under the ROC
curve (AUC). The area under the ROC curve (AUC) is the best indicator for evaluating
the accuracy of the model [38]. The ROC curve uses each value of the predicted result as
the judgment threshold and calculates the corresponding sensitivity and specificity. The
model is plotted with the false positive rate (1-specificity) as the horizontal axis and the
true positive rate (sensitivity) as the vertical axis. The size of the area under the ROC curve
(AUC) is used as a measure of the model’s prediction accuracy, with a value range of [0, 1].
The larger the value, the stronger the model’s judgment [39].

ArcGIS10.8 was used to process the distribution results of tree species obtained in the
experiment. Using the method of manual classification in resampling, potentially suitable
areas were classified into four categories based on suitability: unsuitable areas (0.0–0.1), low-
suitability areas (0.1–0.4), moderate-suitability areas (0.4–0.7), and high-suitability areas
(0.7–1.0). Potential distribution maps of tree species in different periods were drawn. In
addition, ArcGIS10.8 was used to perform a weighted overlay analysis on the distribution of
potentially suitable growth areas in three periods, and the stable distribution of various tree
species under climate change was obtained. Then, grid computing was used to calculate
the area of each suitable habitat.

3. Results and Analysis
3.1. Model Accuracy

Table 4 shows various indicators of the simulation results of the MaxEnt model under
default parameters and after optimization. It can be seen that the Delta AICc value and
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OR10 index of the MaxEnt model optimized by the ENMeval data package have a certain
reduction compared with the default value, indicating that the optimized MaxEnt model
has a lower overfitting degree and better model prediction results. From Figure 4, it can
also be seen that the AUC values of the optimized MaxEnt model are all >0.9, indicating
that the model accuracy has reached an excellent level.

Table 4. Model evaluation indicators under different parameter settings.

Tree Species Type FC RM Delta AICc OR10

Schima superba Optimum LQ 1 0 0.14
Default LQHPT 1 55.55 0.21

Quercus glauca Optimum LQHP 1.5 0 0.14
Default LQHPT 1 28.07 0.27

Castanopsis eyrei Optimum LQH 2 0 0.18
Default LQHPT 1 30.43 0.23

Symplocos sumuntia Optimum LQH 1.5 0 0.21
Default LQHPT 1 66.56 0.28

Camellia oleifera Optimum LQHPT 2 0 0.19
Default LQHPT 1 47.10 0.24

Photinia serratifolia Optimum LQHP 2 0 0.40
Default LQHPT 1 25.99 0.54
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3.2. Main Environmental Factors Affecting the Distribution of Tree Species during Historical Periods

In this study, the focus was on analyzing the three ecological environment variables
that have the greatest impact on the distribution of various tree species. According to
Table 5, the distribution of tree species was mainly influenced by annual mean temperature
(Bio_1), mean diurnal range (Bio_2), isothermality (Bio_3), maximum temperature of
the warmest month (Bio_5), minimum temperature of the coldest month (Bio_6), annual
precipitation (Bio_12), precipitation of the driest month (Bio_14), and precipitation of the
warmest quarter (Bio_18).

Table 5. Percentage contribution and permutation importance of ecological environment variables.

Tree Species Variable PC PI

Schima superba
Bio_1 59.8 2.5

Bio_14 16.1 3
Bio_2 12.5 3.8

Quercus glauca
Bio_6 66.8 33.4

Bio_18 13.8 0.2
Slope 7.2 6.3

Castanopsis eyrei
Bio_14 57.9 3.6
Bio_12 20.7 3.6
Bio_6 7.7 67.4

Symplocos sumuntia
Bio_14 73.4 39.5
Bio_5 9.3 6
Bio_6 5.7 47.9

Camellia oleifera
Bio_6 68.4 59.7

Bio_14 7.8 1
Bio_5 5.6 3.1

Photinia serratifolia
Bio_12 82.3 89.5
Bio_3 7.7 3
Slope 4.4 2.1

It can be seen from the percentage contribution and permutation importance of ecolog-
ical environment variables that among the three ecological environment variables that have
the greatest impact on the distribution of Schima superba’s habitat, the PC value of Bio_1 was
higher than the other two variables; this had a greater impact on the distribution of suitable
growth areas for Schima superba. Among the three variables that had the greatest impact
on the Quercus glauca distribution, the PC value and PI value of Bio_6 were much higher
than the other variables, indicating that it has an absolute advantage in influencing the
distribution of the Quercus glauca suitable area. For Castanopsis eyrei, Bio_14 plays a major
role in the environmental variables that affect its distribution, while the model that was
sensitive to the dependency of Bio_6 was greater. Bio_14 was found to be the environmental
variable with the greatest impact on the potential distribution of Symplocos sumuntia, while
Bio_14 and the sum of PI values for Bio_6 were as high as 87.4%, indicating that the model
is sensitive to Bio_14 and Bio_6 is highly dependent. Among the key variables affecting the
Camellia oleifera distribution, the PI value and PC value of Bio_6 were much higher than
the variable value; thus, they have the greatest impact on the Camellia oleifera distribution
results simulated by the model. In the distribution prediction of the tree species Photonia
serratifolia—which is also the ecological environment variable with the greatest impact on
the distribution of Photonia serratifolia—the PI value and PC value of Bio_12 were both
greater than 80%.

3.3. Response of Tree Species to Major Environmental Factors during Historical Periods

The response curve of ecological environment variables in Figure 5 provided by
the analysis model shows that when the average temperature of the living environment
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of Schima superba is −18 ◦C, the driest month precipitation is 30–210 mm, the average
temperature difference between day and night is between 8–19, and the probability of
existence is greater than 0.5, which is more suitable for Schima superba to survive. Quercus
glauca is more likely to survive in environments where the lowest temperature in the coldest
month is between −6 ◦C and 6 ◦C, and the precipitation in the warmest season is less
than 1000 mm. Thus, environments where the precipitation in the driest month is >10 mm,
the annual precipitation is >250 mm, and the lowest temperature in the coldest month
is no less than −3 ◦C are more conducive to the survival of Castanopsis eyrei. Symplocos
sumuntia is more suitable for environments where the precipitation in the driest month
is >25 mm, the highest temperature in the warmest month is greater than 30 ◦C, and the
lowest temperature in the coldest month is between 0 and 8 ◦C. Camellia oleifera is more
likely to survive in environments where the lowest temperature in the coldest month
is >−2 ◦C and the highest temperature in the warmest month is no less than 23 ◦C. When
the annual precipitation of the ecological environment variable is >1200 mm, and the
isotherm is no less than 30%, the presence rate of Photonia serratifolia is greater than 0.5,
which is more suitable for survival.

3.4. Distribution Prediction of Tree Species during Historical Periods

According to the distribution changes of tree species shown in Figures 6 and 7, it can be
seen that the distribution areas of Schima superba during the historical period were mainly
concentrated in the southern provinces of China. In addition, the low-altitude mountainous
areas of Tibet were also suitable for the growth of Schima superba. The highly suitable
growth area of Schima superba has a total area of 82,500 km2, mainly concentrated in the
southeastern, hilly areas of Hunan, Jiangxi, Fujian, Guangdong, and Guangxi, as well as the
Taipei area of Taiwan. Quercus glauca is mainly distributed in the Shannan region of Tibet
and the hilly areas of Shandong Province, in addition to various southern provinces. The
total area of its highly suitable habitat is 79,100 km2, mainly distributed in the Chongqing,
Hunan, and Jiangxi regions, as well as being scattered in the southern parts of the Shaanxi,
Guizhou, Hubei, Anhui, Zhejiang, Fujian, and Guangdong provinces. The area of the
moderately suitable habitat is 1.5189 million km2, accounting for 60.5% of the total suitable
habitat area. The highly suitable areas for Castanopsis eyrei are scattered in the Guizhou,
Hunan, Jiangxi, Fujian, and Guangdong provinces, while there are also small areas in
Taipei with a total area of 97,300 km2. The distribution of suitable habitats for Symplocos
sumunta, with a total area of 99,500 km2 of high-suitability habitats, is relatively convergent
toward the south when compared to other tree species. It is mainly concentrated in the
southeastern, hilly areas of Hunan, Jiangxi, Fujian, Guangdong, and Guangxi and also has a
small distribution in the Taiwan Mountains. The total area of the moderate-suitability zone
is only 586,100 km2, and it spreads and distributes around the high-suitability zone. The
high-suitability habitat of Camellia oleifera, which has a total area of 75,500 km2, is relatively
concentrated in the southeast of Jiangxi and Hunan, with scattered distribution in Jiangsu,
Fujian, Guangdong, and Guangxi. Among these, the total area of the Du Shi Sheng area
is 1.2966 million km2, which is mainly distributed in various southern provinces and also
has a small amount of distribution in the coastal areas of Shandong and low-altitude areas
of Tibet. Photonia serratifolia’s suitable habitat area accounts for about 31.2% of China’s
total area, and its high-suitability habitat area is only 51,300 km2, mainly distributed in
Hunan, Jiangxi, the northern coast of Taiwan, the coast of Hainan Province, the Hengduan
Mountains in Sichuan, and the Yunnan–Guizhou Plateau. The moderate-suitability area
accounts for 62.8% of the total suitable area, mainly distributed in the southern provinces,
as well as in the Shannan region of Tibet, Shandong Hills, and Liaodong Hills.
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3.5. Changes in the Area of Suitable Growth Areas for Tree Species under Climate Change

The climate data used to predict the future distribution of tree species in this study are
based on the bioclimate variable data that were obtained via the BBC-CSM2-MR climate
model with medium emissions of SSP245. As shown in Figure 6, it was found that the
high-suitability areas of Schima superba, Quercus glauca, and Camellia oleifera tree species,
at different stages, gradually increased over time. Among these, Schima superba had the
largest increase in its high-suitability area, while the high-suitability areas of Castanopsis
eyrei, Symplocos submunitia, and Photonia serratifolia saw a certain degree of decrease by the
year 2020. Among these, the area of the high-suitability areas of Symplocos sumuntia has
decreased the most. Where there were changes in moderate-suitability zones, except for the
area of Photonia serratifolia (which has gradually decreased), the area of the other tree species
in moderate-suitability zones had a wide range. Table 6 shows the potential suitable area
and changes in the tree species in different periods in the future climate change scenarios.
Except for a decrease in the total suitable area of Photonia serratifolia, the other five types of
ecologically fire-resistant forest species have shown an increasing trend. Among them, the
potential growth area of Symplocos sumunta was found to be the largest as it will increase by
51.05% when compared to the historical period. The potential habitat area of Schima superba
will increase by 19.41% when compared to the historical period, and Camellia oleifera will
increase by 10.14%. When comparing the changes in the total suitable area of each tree
species from the historical period to 2050, as well as from 2050 to 2090, it was found that
the changes were more significant between 2050 and 2090 and that the total suitable area of
each tree species showed a positive increase during this period.

Table 6. Potential suitable habitat area and changes in tree species in different periods.

Tree Species
Historic
Period

Historic Period to 2050
2050

Future 2050 to 2090
2090

Historic Period to 2090

Area
Change

Change
Amplitude

Area
Change

Change
Amplitude

Area
Change

Change
Amplitude

Schima superba 223.06 −6.70 −3.00% 216.37 49.99 23.10% 266.36 43.29 19.41%
Quercus glauca 250.92 7.90 3.15% 258.82 9.17 3.54% 267.99 17.07 6.80%

Castanopsis eyrei 246.26 −3.75 −1.52% 242.51 9.51 3.92% 252.02 5.76 2.34%
Symplocos sumuntia 166.84 3.00 1.80% 169.85 82.17 48.38% 252.02 85.17 51.05%

Camellia oleifera 232.29 23.44 10.09% 255.73 0.12 0.05% 255.85 23.56 10.14%
Photinia serratifolia 300.92 −21.81 −7.25% 279.11 0.84 0.30% 279.95 −20.97 −6.97%

3.6. Changes in the Distribution of Suitable Growth Areas of Tree Species When under
Climate Change

From Figure 8, it can be seen, from the centroid changes in the suitable growth areas of
various tree species, that Schima superba has a large migration longitude span and develops
northward as a whole. Quercus glauca shows a trend of migration toward the northeast,
which will occur by the year 2090. The two tree species, Castanopsis eyrei and Symplocos
sumuntia, will both migrate in the northwest direction, with Symplocos sumuntia migrating
in the same direction from the historical period to 2050 and then to 2090 and beyond, with
the largest migration span of the six tree species. In terms of time variation, the suitable
growth areas of Camellia oleifera and Photonia serratifolia show a trend of moving southward,
whereby Photonia serratifolia will migrate southward with a greater longitude and overall
movement toward the southeast. The trend of Camellia oleifera moving southward, however,
was noted to be slower, and its overall movement is toward the southwest.
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The changes in the distribution areas of tree species were observed by combining the
data in Figure 6 with the distribution of suitable areas for each tree species in the historical
period and the data in Figure 9 with the distribution of suitable areas for each tree species
in the future period. Schima superba is distributed in the high-suitability areas of northern
Taiwan and has been removed from moderate-suitability areas. However, certain areas
in Hainan Province have gradually evolved into high-suitability areas. The moderate-
suitability areas of Schima superba have significantly increased in Sichuan, Chongqing,
Yunnan, and Tibet, while the expansion of low-suitability areas has been most significant
in the Shandong and Hebei regions. The high-suitability zone of Quercus glauca gradually
converges over time toward the southeastern mountain areas within the Sichuan Basin and
Hunan and Jiangxi provinces. The moderate-suitability zone has expanded in low-altitude
areas of Taiwan, Hainan, Yunnan, and Tibet, while the low-suitability zone has increased
in the hilly areas of Shandong. By 2050, the distribution area of highly suitable areas for
Castanopsis eyrei will have increased in Hunan, Jiangxi, Guangdong, and Guangxi, but by
2090, the suitability of Castanopsis eyrei in these areas will have decreased and evolved into
a moderately suitable area.

The high-suitability zone of Symplocos sumuntia gradually degenerates into a moderate-
suitability zone over time, and the moderate-suitability and low-suitability zones are
gradually expanding toward the southwest region. From the historical period to the
future period, the changes in the Camellia oleifera suitable areas are more obvious. The
high-suitability areas located in the Hunan region have been gradually increasing. The
moderate-suitability areas in the Hainan region have been developing into high-suitability
areas, and the low-altitude areas in Sichuan and Tibet have gradually become moderate-
suitability areas. Compared to the regional changes in the suitable areas of other tree
species, the distribution area of suitable areas for Photonia serratifolia has significantly
decreased. By 2090, the high-suitability areas of Photonia serratifolia will only be scattered in
Sichuan, Guizhou, Hunan, Jiangxi, and Fujian. The moderate- and low-suitability areas will
gradually move northward, but the suitable areas located in Liaoning and Jilin provinces
will disappear.
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3.7. Stable and Suitable Distribution of Tree Species under Climate Change

As shown in Figure 10, when examining the distribution of stable and suitable areas of
each tree species under climate change, it was found that, by 2090, the potentially suitable
area of Photonia serratifolia will be the largest, and the stability of the suitable area will be
the highest, while the distribution of the suitable area of Symplocos sumuntia will be the
most unstable, with the unstable area accounting for one-third of its total suitable area.
Guizhou, Hunan, Jiangxi, Fujian, Guangdong, and Guangxi have maintained excellent
stability in the distribution and changes in the six ecological fire prevention forest species.
Chongqing, Hubei, Anhui, and Zhejiang have good stability, while most suitable areas in
Yunnan, Sichuan, Shaanxi, Henan, Jiangsu, Shandong, Hebei, Taiwan, and Hainan show an
unstable state.
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4. Discussion

This study used the R-based ENMeval optimization package to optimize the regulation
frequency doubling and feature combination of the model. The area under the ROC curve
(AUC) values of the optimized model were all greater than 0.9, indicating that the prediction
accuracy of the model had reached an excellent level.
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According to the sixth assessment report (AR6) released by the United Nations In-
tergovernmental Panel on Climate Change (IPCC) (titled “Climate Change 2021: Natural
Science Foundations”), it is estimated that—in the coming decades—climate change in all
regions will intensify, with global average temperatures rising by 1.5 ◦C. There will also be
an increase in polar climate, an extension of the warm season, and a shortening of the cold
season [40,41]. Climate change directly or indirectly affects biodiversity [42,43], resulting
in significant changes in the horizontal and vertical distribution of species. In this study,
the distribution of tree species was mainly influenced by annual mean temperature, mean
diurnal range, isothermality, maximum temperature of the warmest month, minimum tem-
perature of the coldest month, annual precipitation, precipitation of the driest month, and
precipitation of the warmest quarter. In the future, with a gradual increase in greenhouse
gases and the intensification of extreme climates, the range of climate factors that affect the
distribution of tree species may also change [44].

The main climate variables that affect the distribution of Schima superba are annual
mean temperature, precipitation of the driest month, and mean diurnal range difference be-
tween day and night. This is consistent with Ni Jian’s conclusion in 1996 that Schima superba
adapts to a warm and rainy climate and is widely distributed in the subtropical regions of
China [45]. Over time, the suitable growth areas of Schima superba have gradually expanded
northward; by 2090, the total area of the suitable growth area will have increased by 19.41%
compared to the historical period. The centroid of its suitable habitat will have moved
northward from Suining County, Shaoyang City, Hunan Province (110.34◦ E, 26.77◦ N),
to the Mayang Miao Autonomous Prefecture, Huaihua City (109.94◦ E, 27.90◦ N). The
distribution of suitable habitats for Quercus glauca is greatly affected by water and heat [46].
Under the trend of global warming, its potential suitable habitat area will increase by
6.80% by 2090, and its centroid will move from Fenghuang County (109.54◦ E, 28.12◦ N) in
western Hunan Province to Yuanling County (110.44◦ E, 28.80◦ N) in the northeast direction
of Huaihua City. The distribution and trend of Quercus glauca under future climate change
scenarios, as simulated by Cao Mingchang et al. using generalized models and classification
regression trees in 2005, are basically consistent [47]. Castanopsis eyrei has a certain medici-
nal value [48], and the bark has good fire resistance [49]. Under the influence of climate
change, the total suitable area for growing alum will decrease slightly from the historical
period to 2050. By 2090, the suitable area for growing Castanopsis eyrei will have only
increased by 2.34%. According to Jing Mengdan et al., the suitable living environment for
Castanopsis eyrei has not changed for the better or worse with future temperature increases,
which is basically consistent with the results of this experiment [50]. Because the response
of Castanopsis eyrei to precipitation is more significant [51], its centroid will have undergone
significant changes, moving from Zhongfang County (109.99◦ E, 27.45◦ N) in Huaihua City
to Zunyi City (107.96◦ E, 28.50◦ N) in Guizhou Province, and then to Fenghuang County
in Xiangxi (109.45◦ E, 28.01◦ N). Symplocaceae often grows in a warm and humid climate
environment, preferring light and shade, with strong adaptability to temperature, high-
temperature resistance, and strong cold resistance [52]. Because of its strong adaptability,
in terms of climate change, the high-suitability growth areas for Symplocos sumuntia will
have decreased compared to the historical period, but the total area of suitable growth
areas will have increased by 51.05% compared to the historical period, mainly reflected
in the moderate-suitability growth areas. The centroid of Symplocos sumuntia will move
northwest due to climate change, spanning approximately 314.2 km from Dong’an County
(111.45◦ E, 26.82◦ N) in Yongzhou City to Xiushan (108.85◦ E, 28.52◦ N) in Chongqing City.
The research results show that the lowest temperature in the coldest month has a significant
impact on the distribution of camellia oleifera, which is consistent with the findings of Hu
Juanjuan et al. that Camellia oleifera has a lower resistance to low temperatures during cli-
mate change [53]. By the 2090 period, the suitable growth area of Camellia oleifera will have
an expanding trend, with a total suitable growth area of approximately 2.5585 million km2,
an increase of 10.41% compared to the total suitable growth area in the historical period.
Furthermore, its centroid will change within Hunan Province, moving southwest from An-
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hua County (110.92◦ E, 27.79◦ N) in Yiyang City to Zhongfang County (110.20◦ E, 27.58◦ N)
in Huaihua City. Photinia serratifolia has good water resistance [54], as well as average
heat and cold resistance [55]. Its potential habitat area during the historical period was
sufficient to reach 3.0092 million km2, accounting for about one-third of the total area of the
country. Due to climate change, its habitat has experienced a trend of reduction, with the
largest reduction seen between the historical period and 2050, a reduction of 7.25%.

By 2090, the stable growth areas of these six typical subtropical ecological fire-resistant
tree species will mainly be concentrated in Guizhou, Hunan, Jiangxi provinces, and non-
coastal areas of Fujian, Guangdong, and Guangxi. However, the following regions will be
in an unstable state: the southwestern Yunnan and Sichuan regions, Shaanxi, Henan, and
Shandong; Hebei regions north of the Qinling Huaihe River; and coastal Jiangsu, Taiwan,
and Hainan regions. This is mainly due to climate sensitivity; Wu Hao et al. conducted
a study on the sensitivity of climate change in China, indicating that climate change is
evident in high-latitude, tropical, and subtropical regions, with the north and southwest
being more sensitive. In addition, coastal areas are more sensitive due to the impact of
strong precipitation caused by monsoons and typhoons [56].

5. Conclusions

This study used the MaxEnt model optimized by ENMeval to simulate the potential
relationships between six typical fire-resistant forest species, environmental variables
in subtropical China, and the potential distribution of tree species during the historical
period. The AUC values of the optimized model are all higher than 0.9, indicating the
optimal prediction results. The climate variables that have the greatest impact on the
suitable habitat of Schima superba were the annual mean temperature, the precipitation
of the driest month, and the mean diurnal range. Quercus glauca was mainly influenced
by the minimum temperature of the coldest month and the precipitation of the warmest
quarter. Castanopsis eyrei was mainly influenced by the precipitation of the driest month
and the annual precipitation. The distribution of suitable growth areas for Symplocos
sumuntia is mainly influenced by the precipitation of the driest month. The distribution
of Camellia oleifera was influenced by the minimum temperature of the coldest month.
The potential habitat distribution of Photinia serratifolia was greatly influenced by annual
precipitation. Until 2090, the expansion degree of the suitable growth area will be Symplocos
sumuntia (51.05%) > Schima superba (19.41%) > Camellia oleifera (10.14%) > Quercus glauca
(6.80%) > Castanopsis eyrei (2.34%) > Photinia serratifolia (−6.97%). The centroid of Schima
superba will migrate northward. Quercus glauca will migrate northeast. The suitable areas for
the migration of Symplocos sumuntia and Castanopsis eyrei will move in a northwest direction,
with repeated changes in alum migration, as well as with the largest migration span for
Castanopsis eyrei. In addition, Camellia oleifera will move southwest. The centroid of Photinia
serratifolia will migrate to the southeast. The six fire-resistant tree species in this study
were noted to have excellent stability in Guizhou, Hunan, Jiangxi, Fujian, Guangdong,
and Guangxi.

In the current study, only the bioclimate variable data under the SSP245 scenario in
the BBC-CSM2-MR climate model were used for the prediction of future suitable habitats.
When considering the complexity of climate change in the future, scenario models can be
added in later experiments to obtain simulation results under multiple scenarios so as to
improve the research results on suitable habitats.
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