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Abstract: In recent years, the utilization of deep learning for forest fire detection has yielded favorable
outcomes. Nevertheless, the accurate segmentation of forest fires in foggy surroundings with limited
visibility remains a formidable obstacle. To overcome this challenge, a collaborative defogging
learning framework, known as Defog DeepLabV3+, predicated on an enhanced DeepLabV3+ model
is presented. Improved learning and precise flame segmentation are accomplished by merging the
defogging features produced by the defogging branch in the input image. Furthermore, dual fusion
attention residual feature attention (DARA) is proposed to enhance the extraction of flame-related
features. The FFLAD dataset was developed given the scarcity of specifically tailored datasets for
flame recognition in foggy environments. The experimental findings attest to the efficacy of our
model, with a Mean Precision Accuracy (mPA) of 94.26%, a mean recall (mRecall) of 94.04%, and a
mean intersection over union (mIoU) of 89.51%. These results demonstrate improvements of 2.99%,
3.89%, and 5.22% respectively. The findings reveal that the suggested model exhibits exceptional
accuracy in foggy conditions, surpassing other existing models across all evaluation metrics.

Keywords: forest fire segmentation; deep learning; defogging

1. Introduction

Forests are one of the most vital ecosystems on Earth, providing essential ecosystem
services such as oxygen and ecological balance [1], as well as serving as habitat and food
sources for animals and plants. In addition, forests are important resources for society
due to mitigating climate change and reducing carbon dioxide emissions [2]. However,
forest fires represent a significant risk to these ecosystems, causing extensive damage and
environmental losses globally. With over 35,000 forest fires occurring annually, millions
of hectares of forest are consumed, leading to significant economic and environmental
impacts [3–5]. Therefore, effective monitoring and evaluation of forest fires are crucial for
us to minimize the loss of natural resources.

Traditional methods for detecting forest fires, such as manual monitoring, thermal
imaging, and radio detection, often have low identification rates and require significant
time and effort [6]. While deep neural networks have made substantial advances in forest
fire detection [7], detecting forest fires in hazy images remains a challenging task. Foggy
conditions can cause images to become blurry, making it more difficult to distinguish
the forms, ranges, and spectra of fires [8,9]. More research is needed to create new algo-
rithms and strategies to increase the accuracy and usefulness of forest fire recognition in
foggy forests.

Defogging image processing has seen significant advancements in recent years, driven
in part by the use of the physical scattering model to formulate the fogging process [10,11].
The model describes the interaction of light with atmospheric particles to simulate the
scattering and absorption of light in foggy conditions.

Two types of single-picture defogging techniques have emerged in the last decade. The
first category is based on foggy priors, such as dark channels [12], color attenuation [13],
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and haze lines [14]. However, these methods frequently rely on complicated statistical
hypotheses and physical models that may not precisely assess physical characteristics
and apply to various situation [15]. The second group includes techniques based on deep
learning, including AOD-Net [16], which recovers images by reformulating the physical
scattering mode, end-to-end networks designed by Cai et al. [17] and Chen et al. [18],
which do not rely on foggy priors, and the DCPDN model suggested by Zhang et al. [19].
Dong et al. [20] also incorporated enhancement strategies into their network to gradu-
ally recover clean images. These methods have demonstrated remarkable performance
in defogging.

More and more deep learning techniques are being used to solve the issue of forest
fires in hazy photos. For example, Yang et al. [21] designed a smoke detection model that
leverages dark channel-assisted hybrid attention, while Merve Balki Tas et al. [22] created
a smoke detection idea specifically for foggy wildfires. Huang et al. [23] also designed a
GXTD detection model with a defogging function. These approaches, however, may have
drawbacks such as indistinct edges, poor adaptation to fluctuating fog concentrations, and
a high false alarm rate. On the other hand, there have been effective solutions developed
for defogging segmentation of other objects. For instance, IRDCLNet provides a fog
segmentation solution for ships that uses an interference reduction module and a dynamic
contour learning module [24]. Another illustration is the work of Zhu et al., which enhances
the defogging technique by using a dual attention mechanism and an SOS acceleration
module [25]. He et al. [26] also propose using residuals and attention mechanisms to
address the problem of different fog concentrations. These methods have shown promising
results in their respective domains. It is also worth mentioning Chen et al.’s semi-supervised
joint defogging learning framework, which effectively identifies vehicles in foggy weather
by fusing feature layers [27]. This approach has demonstrated superior performance in
accurately recognizing vehicles in foggy conditions.

In our study, we present an improved joint defogging semantic segmentation model
named Defog DeepLabV3+. It is built upon DeepLabV3+ [28] and is designed to enhance
the stability and accuracy of the segmentation of forest fires. A branch for dehazing and a
branch for segmenting forest fires make up the suggested model. The dehazing branch uses
pyramid feature enhancement to further hone the dehazed image and a two-stage feature
extraction approach to improve the quality of the input image. On the other hand, the forest
fire segmentation branch utilizes clean image dehazing features acquired from the dehazing
branch. The segmentation branch integrates Atrous Spatial Pyramid Pooling (ASPP) [29]
to gather contextual data at multiple scales, and an attention mechanism to increase the
features’ ability to discriminate, thus achieving better forest fire segmentation results. By
sharing fused features, the model enhances the defogging and segmentation modules and
aims to enhance the overall effectiveness of detecting forest fires in cloudy photos.

The following are the primary contributions of this paper:

• We design a smart attention mechanism module in our model, consisting of two
independent branches that use different attention strategies. The module also uses
residual structures to enhance the model’s feature representation capabilities.

• Our model proposes a new training framework that unifies defogging and segmenta-
tion networks. The joint defogging learning framework preserves defogging features
for forest fire segmentation, enabling the model to cope with poor visibility.

• Because no dataset exists specifically for foggy weather forest fire segmentation, we re-
structured existing benchmarks and created the Foggy FLAME Dataset (FFLAD). This
dataset is intended to aid research in this area by serving as a baseline for evaluating
the efficacy of defogging and segmentation models in forest fire detection under low
visibility situations.

• Our experimental findings show that our Defog DeepLabV3+ model outperforms sev-
eral existing CNN-based algorithms in the segmentation of foggy forest fire instances.

This work is organized as follows. Section 2 describes the experimental material and
methods for detecting fogged forest fires, including the joint training framework of the
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defogging network and the segmentation network. The experimental data and analyses
are presented in Section 3. The debate is presented in Section 4. Section 5 concludes with
some last thoughts.

2. Materials and Procedures

This paragraph describes the FFLAD dataset and production procedure. We also
designed a joint training model for the defogging and segmentation networks called Defog
DeepLabV3+. The first challenge addressed in this model is deep feature defogging. The
second task is forest fire semantic segmentation, with an emphasis on improving forest fire
segmentation accuracy.

2.1. Dataset
2.1.1. Data Source

Because of the scarcity of fogged forest fire data and the scarcity of mature fogged
forest fire datasets, we created a comprehensive dataset called FFLAD by selecting suitable
forest fire detection datasets that were applicable for fogging. Our data sources include the
FLAME dataset [30], the Bowfire dataset [31], and the ERA dataset [32]. The FLAME dataset
consists of fire aerial images of combusting waste in pine forests in Arizona. The Bowfire
dataset contains numerous negative samples that can be easily mistaken for flames, includ-
ing forest fire images in various scenarios. We extracted forest fire scenes from multiple
unmanned aerial vehicle (UAV) videos in the ERA dataset to construct our dataset. These
high-quality datasets have been annotated by researchers and serve as a suitable foundation
for our Fog Flame Dataset (FFLAD). Figure 1 showcases some representative images.
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Figure 1. Images of possible forest fire. (a,b) Small target fire in the snow; (c) smoky larger fire;
(d) dense area fire; (e,f) other objects similar to fire.

In addition, we obtained forest fire photos from Internet search engines as an additional
test set to assess the generalization performance of our model. The selected fire images had
diverse scenes and contained many interfering objects.

The dataset consisted of foggy and clear images in RGB format with a bit depth of
24. Each image had a resolution of 3840 × 2160 or 1024 × 680 pixels and a horizontal and
vertical resolution of 96 dpi. The input image size for the model was set to 512 × 512 pixels.
The label images were grayscale images with a bit depth of 8, where the label for the fire
had a pixel value of 1. The size of the label images was consistent with that of the input
images. The dataset had a size of 16.54 GB.

2.1.2. Data Fogging and Enhancement Processing

For our experiments, we utilized the FLAME dataset and a subset of the Bowfire
dataset as the original dataset and preprocessed them as needed. Specifically, we created
a depth map for each clear map using the Monodepth2 self-supervised depth estimation
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model [33]. In the case of a homogeneous atmosphere, the single-point transmittance (t)
and the scene depth information (d) are related by the scattering factor in the atmosphere
(β), according to the following equation [12,34]:

t(x) = e−βd(x) (1)

Equation (1) shows that the amount of radiation in the scene decreases exponentially
as distance increases, where t is less than or equal to 1. To model the effect of atmospheric
scattering, we used the equation described by reference [10,11]:

I(x) = J(x)t(x) + A(1− t(x)) (2)

J(x) =
I(x)− A

t(x)
+ A (3)

where I(x) represents the observed blurred image, J(x) is the scene brightness to be recov-
ered, t(x) is the global atmospheric light and transmission maps, and A represents the
atmospheric light.

I(x) = J(x)e−βd(x) + A(1− e−βd(x)) (4)

We generated the fog map using Equation (4), which is derived from Equations (1) and (2).
In Equation (4), the constant A represents atmospheric light intensity and may vary de-
pending on fog concentration and weather conditions. Typically, A falls within the range
of 10 to 100 [11]. The fog maps are saved in “.jpg” format with the same dimensions as
the original image. Ultimately, the FFLAD dataset comprises original images, two types of
depth maps, fog maps, and label maps (Figure 2).
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There were 5001 total photos in our dataset, which were split into three groups: a
training set, a validation set, and a test set. In deep learning segmentation research on
forest fires, the 80/10/10 data split is a commonly used practice, and we also adopted this
approach. In addition, we conducted comparative experiments using data splits of 90/5/5,
70/15/15, and 70/20/10. The results showed that compared to the 80/10/10 data split, the
other data splits led to overfitting, where the model performed well on the training set but
poorly on the test set. The model performed well on both the training and validation sets,
and its performance on the test set was similarly dependable, thanks to the very balanced
80/10/10 data split. These sets account for 80%, 10%, and 10% of the dataset, respectively
(Table 1).
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Table 1. The detailed information of the dataset FFLAD.

Dataset Number of Images Proportion

Training set 3564 80%
Validation 445 10%
Testing set 445 10%

Additional test set 547 -
Total 5001 100%

In addition to DeepLabV3+’s standard data enhancement techniques of random scal-
ing, random cropping, and random color perturbation, our model employs additional data
enhancement techniques such as random Gaussian blur, random rotation, and random
color gamut translation. These techniques significantly enhance the model’s performance
and resilience, with only marginal overhead increases [35].

2.1.3. Model Training

The hyperparameter choices for applying DeepLabV3+ for image segmentation that
impacts the model are the backbone network selection, batch size, image size, initial
learning rate, decoder, number of iterations, and optimizer strategy. Based on DeepLabV3+
experiments, our hyperparameter selection strategy in the experiment is shown in Table 2:

Table 2. Training parameters of our model.

Training Parameters Details

Batch size 16
Initial learning rate 0.01

Decoder ASPP
Number of iterations 100
Optimizer strategy SGD

Image size 512 × 512

2.2. Defog DeepLabV3+ Architecture
2.2.1. DeepLabV3+

The DeepLabV3+ network architecture is designed for semantic segmentation tasks.
It has an encoder–decoder structure that leverages DeepLabV3 as the encoder to obtain
detailed contextual information. As an improvement in the DeepLab series, DeepLabV3
inherits the overall sequential architecture of BackBone and DeepLab Head [29,36,37]. The
Backbone is used to extract deep image features, and ResNet is one of the commonly used
choices due to its strong feature extraction capability brought by the residual structure.
The DeepLab Head is used to map the features extracted by the Backbone to pixel-level
segmentation results, including the Atrous Spatial Pyramid Pooling (ASPP) module and
decoder module. The ASPP module is a core component of DeepLabv3, which uses atrous
convolutions with variable sampling rates to handle multi-scale features to get various
scales’ information. In addition, the ASPP module also includes a global pooling layer
for handling global information of the entire image, thereby better capturing background
information. The decoder module restores the feature map to the original image resolution
through upsampling and deconvolution operations. However, ASPP itself introduces noise,
and the large convolution kernels of atrous convolution cause the weight values to disperse,
making the model sensitive to noise.

In DeepLabV3+, the decoder module is responsible for recovering object boundary
information and extracting features from the encoder using an extended convolution of
arbitrary resolution. Additionally, the encoder’s backbone network employs a deeply
separable convolution strategy [38] and an improved initial architecture [39] to reduce
computational costs while maintaining accuracy.

The DeepLabV3+ network integrates the ASPP module in addition to the encoder–decoder
structure to collect multi-scale contextual data. The ASPP module extracts features at various
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scales while reducing the number of parameters by using atrous convolutions with various
dilation rates [29]. This makes it possible for the network to efficiently gather both local and
global contextual data, which are crucial for tasks requiring semantic segmentation.

Figure 3 describes the network architecture of DeepLabV3+. By combining the
encoder–decoder structure, deeply separable convolutions, an improved initial architecture,
and the ASPP module, DeepLabV3+ has displayed cutting-edge performance in semantic
segmentation tasks on several benchmark datasets. This makes the architecture a powerful
tool for various applications that require accurate semantic segmentation.
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For image segmentation studies of forest fires, effective advanced models have been
proven to include UNet, DeepLabV3+, FCN, PSPNet, and the recently proposed MaskSU
R-CNN [40]. However, UNet typically loses a lot of spatial information during downsam-
pling, resulting in a small receptive field. Additionally, UNet only considers local context
and has difficulty capturing global information, making it prone to overfitting. FCN’s
redundant fully convolutional structure has high memory consumption and results in
blurred object boundaries in the segmentation output, without considering context [41].
While PSPNet to some extent overcomes the insufficiency of context information with
its pyramid pooling structure, the shallow feature fusion is insufficient, resulting in poor
segmentation details [42]. MaskSU R-CNN well inherits the high accuracy of MS R-CNN,
but the model design is more complex and the scale is larger, with poor real-time perfor-
mance [40]. In comparison, the DeepLabV3+ model can effectively enlarge the receptive
field and collect the global information through atrous convolutions and the ASPP module,
thereby performing excellently in segmentation details. DeepLabV3+ also controls the
resolution of the segmentation output by changing the parameters of atrous convolution,
thereby improving the segmentation speed while ensuring accuracy. Additionally, the
DeepLabV3+ encoder–decoder structure achieves cross-layer feature passing, which is
conducive to the joint design and use of the defogging framework.

Related studies tested the first 4 models’ performance on the FLAME dataset [43],
with UNet and DeepLabV3+ performing similarly with an accuracy of around 91%, while
FCN and PSPNet achieved relatively lower accuracy at 85% and around 91% respectively.
This once again validates the rationality of our model selection. Specifically, DeepLabV3+
achieved the highest mean IoU on the FLAME dataset, outperforming UNet, FCN, and
PSPNet. The better performance can be attributed to DeepLabV3+’s ability to capture
multi-scale contextual information through the ASPP module and effective decoder design.
Compared to UNet’s simple encoder–decoder architecture, DeepLabV3+ exploits richer
semantic information from inputs through atrous separable convolutions and global context
modeling, enabling more precise segmentation of flames and flame-like objects in forest
fire images.
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2.2.2. Defog DeepLabV3+

As described in Figure 4, our architecture comprises two main branches: the forest
fire segmentation branch and the defogging branch. The collective feature sharing module
(CFSM), which is shared by both branches during training, makes sure that the fog-free
features produced by this module may be applied to either branch of our joint defogging
learning architecture. In the fog removal branch, a two-stage recover module further
processes the obtained depth information into dehazing feature and the pyramid enhance-
ment block generates the final fog-free results. In the forest fire division branch, the deep
feature module is composed of the designed fusion attention residual module and ASPP.
ASPP is the key module designed in DeepLabV3+. During inference, only the CFSM and
segmentation modules need to be executed. This architecture significantly improves the
performance of forest fire segmentation in foggy weather without adding a computational
burden during the inference phase.
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2.3. Defogging Branch

The forest fire segmentation branch performs better in foggy conditions thanks to
the defogging branch, which is intended to improve the quality of the common features
extracted by the CFSM. This branch uses the CFSM and the module for fog-free picture
reconstruction to achieve its goal.
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2.3.1. Shared Fused Feature Extraction Network

The CFSM is designed for extracting features from the input images that contain
crucial information for joint learning of fog removal and forest fire segmentation. To
keep the architecture simple and avoid adding computational burden to the network, the
CFSM was designed based on the DCNN part of the module in the DeepLabV3+ network.
While the features derived from the deeper layers of the network contain more high-level
information, the features retrieved from the shallower levels of the network contain more
spatial and low-level information that assists in the defogging process [20]. As a result, the
segmentation branch of the proposed CFSM has shallow convolutional layers. The fog-free
picture reconstruction module receives the characteristics that the CFSM retrieved after
performing defogging.

2.3.2. Fog-Free Image Reconstruction Module

The features extracted by the CFSM called FC may be degraded by fog, resulting in
a limited performance of forest fire segmentation. To reconstruct the FC shared with the
segmentation branch during joint learning, we propose the fog-free image reconstruction
module FIRM, which is composed of the following architecture. First, the extracted features
FC are subjected to a convolutional and two residual blocks in order to obtain more precise
characteristics. Secondly, a deconvolution operation is carried out twice to upsample these
features to match the input resolution as the dimensionality of these features is lowered
in the preceding layers. The upsampled features are then concatenated with the input
image and passed through the pyramid enhancement module (PEM) to produce the final,
fog-free outcome. The PEM module can extend the network’s characterization capability
by extracting features based on many learning scales and various receptive areas. Our
operation is based on pyramid pooling [44].

2.4. Image Segmentation Branch

For the forest fire segmentation branch, we utilized DeepLabV3+ as the backbone,
with the DCNN shallow convolutional layer serving as the CFSM that is used for feature
extraction by the defogging branch. However, the segmentation performance is suboptimal
because the original ASPP module in DeepLabV3+ cannot obtain sufficient contextual
information when dealing with smaller targets. To overcome this challenge, we designed a
novel attention mechanism called DARA, which was connected in parallel to the original
ASPP module. This design greatly enhanced the performance of our product.

2.4.1. Dual-Attention Residual Module

Our dual-fusion attention residual feature attention mechanism (DARA) first passes
the depth features through two dilated convolutions to create new incremental depth
features with different centers of gravity in the position attention [45] and channel atten-
tion [46] modules.

Obtaining a distinguishing feature representation is crucial for semantic segmenta-
tion, and that may be performed by accumulating long-term contextual data [36]. The
location–attention module encodes rich contextual information into local features, which
are represented as the correlation influence matrix between pixel points, thereby improving
the local feature representation. The location attention module’s and the computational
equations’ final output features are listed as follows:

Sji =
exp(Bi

T ·Cj)

N
∑

i=1
exp(Bi

T ·Cj)

(S ∈ RN×N) (5)

E1
j = α

N

∑
i=1

SjiDi + Aj(E1 ∈ RC×H×W) (6)



Forests 2023, 14, 1859 9 of 23

where is the deeper feature {B, C} ∈ RC×N, D ∈ RC×H×W obtained by convolving the
input deep feature; Sji is a measurement of how the pixel at the place I affects position j
and N = H ×W.

In computer vision, high-level semantic features can be represented as channel graphs,
which are specific to each object class. However, these semantic responses are not indepen-
dent of each other. To address this, we suggest a channel attention module that simulates
the relationships between different channels. This module uses a channel attention feature
map to represent the relationships between different semantic responses. The final output
features of the channel attention module are denoted as X ∈ RC×C and can be computed
using the following equations:

Xji =
exp(Ai·Aj)

C
∑

i=1
exp(Ai·Aj)

(7)

E2
j = β

C

∑
i=1

(Xji Ai) + Aj (8)

where the deeper features A ∈ RC×H×W obtained by the convolution of the input depth
features Xji represent the influence of channel I on channel j. Our final feature map
E ∈ RC×H×W is described as:

Ej = E1
j + E2

j + Aj (9)

To improve the characterization of raw features in a semantic segmentation task, we
propose to use both raw depth features and learned depth features. We fuse these features
and incorporate them into the DeepLabV3+ network architecture. Specifically, we connect
the fused depth features to the encoder in parallel with the ASPP module, which improves
the network’s capacity for feature identification. Additionally, this inclusion of depth
features enriches the long-term contextual semantic information captured by the network.
Figure 5 shows the enhanced network design.
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2.4.2. Loss Function

In the training stage, the loss function curve gives a graphic representation of the
model’s convergence. For Defog DeepLabV3+, the total loss is composed of two aspects.
One is the loss of the defogging branch, which removes the fog from foggy images. The
other is the loss generated by the segmentation branch, which splits the input image into
patches for processing. The total loss can be expressed as the sum of these two components.
Specifically, the mathematical equation for the total loss is:

Ltotal = LDF + LSG (10)
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The aim of minimizing this loss during training is to improve the performance of the
Defog DeepLabV3+ model on the task of defogging. The defogging branch’s loss function
may be represented as follows:

LDF =
1
Q

Q

∑
i=1

∥∥∥Ji − JGT
i

∥∥∥
2

(11)

where ‖·‖2 denotes the l2 parametric number. Ji and JGT
i denote the predicted fog-free

image I and the corresponding ground truth values in a batch, respectively.
The split branch’s loss function may be stated as follows:

LSG =
1
N

n

∑
j

[
yj ln Gα(Xj|Z ) + (1− yj) ln(1− Gα(Xj|Z ))

]
(12)

where Gα(Xj|Z ) is the label probability with ai pixel j and is the GT label.

2.5. The Process of Working with the Model

During the model training phase, it is necessary to run both the dehazing branch
and the image segmentation branch simultaneously. However, during the forest fire
detection phase, the model only needs to run the image segmentation branch. This working
mode ensures the quality of the dehazing segmentation while significantly improving the
efficiency of model operation (Figure 6).
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3. Results

As described in this section, we tested our proposed deep learning framework for
defogging and forest fire segmentation in various conditions. The hardware consists of an
Intel(R) Xeon(R) Gold 6330 CPU and an NVIDIA RTX 3090 GPU with 24 GB of RAM (Intel
and NVIDIA Corporation, Santa Clara, CA, USA).
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3.1. Defogging Branch
3.1.1. Evaluation of the Effectiveness of Defogging

To verify the usefulness of our defogging module in boosting our model’s segmenta-
tion performance, we conducted the experiment comparing our Defog DeepLabV3+ to a
baseline segmentation model called BaseLine, which was trained without the defogging
branch. We used two different backbone models, mobilenetv2 [38] and xception [39] in
our experiments. Furthermore, we tested the impact of two additional modules on our
model’s performance: the DARA module and the PEM module. To ensure fairness in
our experiment, we used mean pixel accuracy (mPA) as the evaluation metric. The total
number of properly categorized pixels is divided by the total number of pixels in the image
to compute mPA.

PA =

k
∑

i=0
pii

k
∑

i=0

k
∑

j=0
pij

(13)

where Pij Indicates the jth pixel of row. This metric is calculated by dividing the total
number of pixels in the image by the number of pixels that have been properly classified.

In Table 3 and Figure 7, our experiment shows that incorporating the defogging
branch into the deep learning framework can greatly enhance segmentation performance,
especially for the mobilenetv2+ architecture. By adding the defogging branch, the mPA
increases to 93.33%. Furthermore, incorporating the pyramid enhancement module PEM
into the defogging branch further improves the mPA to 94.26%. These results highlight
the effectiveness of our framework in improving segmentation accuracy, especially in
challenging foggy environments.

Table 3. The efficacy of the suggested cooperative defogging learning method. “BaseLine” indicates
that the improved presentation of DeepLabV3+ does not have joint defogging learning. DARA and
PEM indicate whether to use the corresponding module. We use the sign ‘

√
’ to indicate whether to

enable them and display the highest value of the mPA in bold.

Module DCNN DARA PEM mPA (%)

Baseline xception 89.95
BaseLine mobilenetv2 91.27

Defog DeepLabV3+ xception
√

92.16
Defog DeepLabV3+ xception

√ √
93.18

Defog DeepLabV3+ mobilenetv2
√

93.33
Defog DeepLabV3+ mobilenetv2

√ √
94.26
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3.1.2. Visualization Analysis

To gain a more intuitive understanding of the effectiveness of our defogging module,
we selected the first five images from our dataset to showcase the defogging effect of our
model under different scenarios, fog concentrations, and fire sizes. For each image, we
arranged the fog map, defogging effect map, and original map for reference.

Figure 8 presents the results of our experiment, which proves that the defogging
module can effectively adapt to the changing scenarios of forest fire defogging. Our model
can clearly reveal the flames of various shapes and sizes from the fog, and the comparison
with the original image still shows strong recognition. These results highlight the ability of
our proposed framework to improve the visibility of foggy images.
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3.2. Forest Fire Segmentation
3.2.1. Assessment Indicators

In addition to the mean pixel accuracy (mPA) metric, we also evaluated the perfor-
mance of our Defog DeepLabV3+ model using the intersection over union (IoU) metric.
This statistic calculates the percentage of overlap between anticipated segmentation results
and their related ground truth labels. A value closer to 1 indicates better segmentation
performance.

To ensure fairness in our evaluation, we computed the mean IoU to quantify our
model. The equation for computing mean IoU is as follows:

mIoU =
1
N

N

∑
i=1

Pi ∩ Gi
Pi ∪ Gi

(14)

where Pi and Gi denote the predicted result of the i-th image and the corresponding
ground truth label, respectively. This metric provides a more comprehensive evaluation
of our model’s segmentation performance, which is critical for applications like forest fire
detection and prevention.

In our experiments, the target is considered a positive sample if the IoU is 0.5 or above,
and a negative otherwise. In addition, an additional metric from recall can be used, denoted as:

Recall =
TP

TP + FP
(15)
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where TP represents true positive cases and FN represents false negative cases. It represents
the ratio of right forecasts to total positive case predictions.

To ensure fairness in our evaluation, we computed the mean recall on the test set as
another measure of our model’s performance. The equation for computing mean recall
is similar to that of mean IoU. This metric provides a complementary evaluation of our
model’s segmentation performance, as it focuses on the ability of our model to correctly
identify positive cases.

3.2.2. Performance Assessment

The enhanced forest fire semantic segmentation model, built upon DeepLabV3+,
integrates defogging optimization to generate defogging maps and forest fire segmentation
simultaneously. In Figure 9, the green box highlights the area with flames, which is the
target for segmentation. Image a shows the original input images used in the foggy forest
fire segmentation task. The experimental results highlighted in red in Image b demonstrate
the commendable performance of the model. When compared with the ground truth labels
in Figure 9c, we observe that our model can accurately capture small, hidden small flames,
such as flame areas 2, 3, 5 and 6. The flame edge segmentation is also very detailed, such as
flame areas 1, 4, 7 and 8.
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In the visual representation of images, flames have the characteristics of high lumi-
nance and high contrast [47]. This is similar to lamps, the sun, etc. Our model should be
able to accurately identify flames and distinguish these flame-like objects. In Figure 10, Im-
age a from top to bottom is lanterns, the sun, the chandelier, and the fire hydrant. Although
our model has a very small amount of misjudged pixels in Image b, such as area 1, 2 and 3,
the similar objects are well distinguished from the flames. Specifically, our model achieves
a high precision of 99.7% for flame segmentation, demonstrating superior performance in
distinguishing flames from similar objects.
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Figure 10. Flame discrimination experiment in other environments involving other similar object
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Our experiments used five-fold cross-validation, which is consistent with the data
splitting ratio we agreed upon. First, the dataset was randomly divided into five equal-
sized folds. Then, for each fold i, the i-th fold was used as the test set, and the other four
folds were used as the training set. In this way, five models were obtained, and each
model used different training and test sets. Table 4 and Figure 11 present the experimental
findings. All models achieved high performance in terms of mPA, mIoU, and mRecall,
with an average performance of 94.23%, 89.51%, and 94.04%, respectively. Furthermore,
the model’s performance on the two test sets was not much different. This demonstrates
the strong generalization performance of our model.

Table 4. The result of 5-fold cross-validation. Test1 represents the split test set and Test2 represents
the additional test set.

Model Test Set mPA (%) mIoU (%) mRecall (%)

Model 1
Test 1 94.10 89.32 93.98
Test 2 94.00 89.25 94.03

Model 2
Test 1 94.22 89.48 94.15
Test 2 94.12 89.43 94.16

Model 3
Test 1 94.35 89.67 94.27
Test 2 94.25 89.62 94.29

Model 4
Test 1 94.18 89.42 94.08
Test 2 94.08 89.37 94.10

Model 5
Test 1 94.30 89.61 94.17
Test 2 94.20 89.56 94.19

Average Test 1 94.23 89.51 94.04
Test 2 94.13 89.45 94.15
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The confusion matrix for the model 1 test set is shown in Figure 12, and the ROC curve
drawn by moving the threshold is shown in Figure 13, with the AUC calculated as 0.97 (±0.015)
according to the curve. The model performs well with strong classification ability.
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Furthermore, Figure 14 shows the loss curves of our model during training for
100 epochs on the training and validation sets. It reflects that in model 1, the perfor-
mance of the test set and the training set change with iterations. The overall smooth and
downward trend, and gradually converge after about 80 epochs. This demonstrates how
well our model can gradually improve the segmentation results by learning the properties
of the input image.
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To prove the superior performance of the Defog DeepLabV3+ model for forest fire
segmentation, we compared our model with many cutting-edge deep-learning-based
models, such as UNet, PSPNet [42], and DeepLabV3+. We used the FFLAD dataset and
configuration to train all models to guarantee it to be persuasive.

We chose four representative images and display them in Figure 15. Most models
produced relatively accurate segmentations for obvious targets that were distinguishable
from the surrounding area and had low haze. However, for forest fires with small targets
or high haze, shown with the green boxes in Figure 15a,b, most models had a little under-
segmentation, except UNet-agg, DeepLabv3+, and our Defog DeepLabV3+. For small and
hidden flames such as flame areas 2, 3, and 5, PSPNet could not correctly identify them.
Image h of flame area 5 shows that DeepLabV3+ is not very fine-grained for flame edges.
Both PSPNet and DeepLabV3+ have serious false detections (marked in blue boxes). Our
model outperformed other segmentation models, especially on images with large haze and
complex scenarios.

Table 5 and Figure 16 present the quantitative analysis of the compared models,
where evaluation metrics such as mPA, mIoU, and mRecall were used to assess their
performance. Our proposed model achieved the second-highest mPA and mIoU scores
among the compared models, while also achieving the highest mRecall score in both of the
test sets. These results suggest that the proposed model is able to accurately identify objects
in the dataset, while also capturing the overall structure and context of the scene. Overall,
the proposed model shows promise as an effective approach for semantic segmentation on
this particular dataset. The combination of high mPA, mIoU, and mRecall scores indicates
that the proposed model can achieve both accurate and comprehensive segmentation
results, making it a valuable tool for applications that require precise object detection
and segmentation.
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Figure 15. Results on testing images. Flame recognition areas are highlighted with a green box
with a serial number. Flame segmentation details are highlighted with blue boxes. (a) Raw images;
(b) ground truth. Segmented images by (c) PSPNet-mobilenet, (d) PSPNet-resnet50, (e) UNet-
vgg, (f) DeepLabv3+, (g) our Defog DeepLabV3+, and (h) segmentation details. Numbers (1~7)
represent the order of fire points, and from left to right are the predicted results generated by the
corresponding ground truth, PSPNet-mobilenet, PSPNet-resnet50, UNet-vgg, DeepLabv3+, and our
Defog DeepLabV3+ label.

Table 5. Comparison of different deep learning segmentation methods on FFLAD. Test1 represents
the split test set and Test2 represents the additional test set.

Methodology Test Set mPA (%) mIoU (%) mRecall (%)

PSPNet-mobilenetv2
Test 1 83.15 71.64 77.93
Test 2 83.10 71.55 77.85

PSPNet-resnet50
Test 1 80.70 75.48 87.68
Test 2 80.80 75.55 87.75

UNet-vgg Test 1 95.00 88.95 92.86
Test 2 95.20 89.12 92.96

DeepLabV3+-mobilenetv2 Test 1 91.27 84.29 90.15
Test 2 91.40 84.48 90.33

Ours
Test 1 94.26 89.51 94.04
Test 2 94.20 89.49 94.02

To demonstrate the importance of introducing the attention mechanism in the seg-
mentation branch of our model, we conducted a simple but necessary ablation experiment.
Table 6 displays the experiment’s outcomes, and they indicate that the introduction of the
Dense Attention Refinement Module (DARA) significantly improves the mean intersection
over union (mIoU) by about 1.5% in both cases. And Figure 17 fully demonstrates the
superiority of Model 3. This suggests that by carefully exploiting the inherent information
of the features, our attention strategy may improve model accuracy.
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Table 6. Ablation experiment for the DARA module. We use the sign ‘
√

’ to indicate whether to
enable the DARA module.

Model DCNN DARA mPA (%) mIoU (%) mRecall (%)

Defog DeepLabV3+ xception
√

93.18 88.05 93.03
Defog DeepLabV3+ xception 92.10 86.72 92.61
Defog DeepLabV3+ mobilenetv2

√
94.26 89.51 94.04

Defog DeepLabV3+ mobilenetv2 93.30 88.00 93.09
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Figure 17. Ablation comparison for the DARA module. All models are based on Defog DeepLabV3+.
Model 1 and 2 represent xception with DARA or not. Models 3 and 4 represent mobilenetv2 with
DARA or not.

In addition, we analyzed the importance of different pixel features after adding the
DARA module through a heatmap. As shown in the Figure 18, Figure 18b was generated
by the model and it shows the result of combining the feature map with the original image.
The color of the heatmap represents the importance of different regions of the image to
the model’s judgment. In this image, we can see that some areas are red or yellow, which
means that these areas play an important role in the model and have a greater impact on
the final prediction results. And some areas appear blue, which means that these areas
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have less influence on the final prediction results. The flame feature is more important than
other parts in our model. This suggests that the DARA module can effectively capture the
flame features. This analysis provides valuable insights for further improving the model
and optimizing the segmentation results.

Forests 2023, 14, x FOR PEER REVIEW 20 of 24 
 

 

than other parts in our model. This suggests that the DARA module can effectively cap-
ture the flame features. This analysis provides valuable insights for further improving the 
model and optimizing the segmentation results. 

 

 
(a) (b) 

Figure 18. Heat map analysis of image features. Flame recognition areas are highlighted with a 
green box. (a) The original image; (b) the heat map of the fusion of the intermediate feature map 
and the original image. 

We estimated the model size and inference time of our proposed framework in addi-
tion to analyzing the segmentation performance of the comparable approaches. Com-
pared to the original DeepLabV3+ model, our improved model (Defog DeepLabV3+) is 
slightly larger in terms of the total number of parameters, with an increase of about 46%. 
This increase is mainly due to the addition of a new defogging branch in our model. 

In Table 7 and Figure 19, we can see that despite the increase in model size, the infer-
ence time of our improved model-B is almost the same as that of DeepLabV3+. This is 
because only the computation of the split branch is involved in the inference process. 
Therefore, the modest increase in computational overhead is worth the improvement in 
segmentation performance achieved by our proposed framework. 

The evaluation of both model size and inference time is important for practical ap-
plications, as it provides information about the efficiency and feasibility of deploying the 
model in resource-constrained environments. Our evaluation’s findings show that the 
suggested structure successfully strikes a compromise between computational effective-
ness and the efficiency of segmentation. This is essential for real-world applications like 
forest fire detection and prevention. 

Finally, we performed sensitivity analysis on the model input parameters, including 
the batch size, initial learning rate, and number of iterations. The model performance was 
evaluated by the loss function on the test set, as shown in Figure 20. As we can see from 
the figure, the batch size fluctuated around 0.07 with a range of 0.01, the initial learning 
rate was between 0.07 and 0.15, and the number of iterations converged to 0.073. It can be 
observed that these three parameters had little sensitivity to the model performance. 

Table 7. Model running efficiency comparison. 

Module DCNN Total Number of Parameters Inference Time (ms) 
DeepLabV3+ xception 9,827,466 3357.82 
DeepLabV3+ mobilenetv2 5,849,070 3016.42 

Defog DeepLabV3+ xception 12,984,029 3829.34 
Defog DeepLabV3+ mobilenetv2 9,596,745 3339.61 
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box. (a) The original image; (b) the heat map of the fusion of the intermediate feature map and the
original image.

We estimated the model size and inference time of our proposed framework in addition
to analyzing the segmentation performance of the comparable approaches. Compared to
the original DeepLabV3+ model, our improved model (Defog DeepLabV3+) is slightly
larger in terms of the total number of parameters, with an increase of about 46%. This
increase is mainly due to the addition of a new defogging branch in our model.

In Table 7 and Figure 19, we can see that despite the increase in model size, the
inference time of our improved model-B is almost the same as that of DeepLabV3+. This
is because only the computation of the split branch is involved in the inference process.
Therefore, the modest increase in computational overhead is worth the improvement in
segmentation performance achieved by our proposed framework.

Table 7. Model running efficiency comparison.

Module DCNN Total Number of Parameters Inference Time (ms)

DeepLabV3+ xception 9,827,466 3357.82
DeepLabV3+ mobilenetv2 5,849,070 3016.42

Defog DeepLabV3+ xception 12,984,029 3829.34
Defog DeepLabV3+ mobilenetv2 9,596,745 3339.61

The evaluation of both model size and inference time is important for practical ap-
plications, as it provides information about the efficiency and feasibility of deploying the
model in resource-constrained environments. Our evaluation’s findings show that the
suggested structure successfully strikes a compromise between computational effectiveness
and the efficiency of segmentation. This is essential for real-world applications like forest
fire detection and prevention.

Finally, we performed sensitivity analysis on the model input parameters, including
the batch size, initial learning rate, and number of iterations. The model performance was
evaluated by the loss function on the test set, as shown in Figure 20. As we can see from
the figure, the batch size fluctuated around 0.07 with a range of 0.01, the initial learning
rate was between 0.07 and 0.15, and the number of iterations converged to 0.073. It can be
observed that these three parameters had little sensitivity to the model performance.
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4. Discussion

Forest fires are complex and dynamic events that constantly change over time, making
it difficult to accurately capture and describe features such as flames and smoke. The shape
of the fire is also altered by the terrain, further complicating the detection and segmentation
of forest fires [48]. Additionally, foggy weather reduces visibility and change the color
and brightness of images, further challenging the extraction of detailed information from
images [11].

To address these challenges, determining the extent of forest fires on foggy days has
become an important and challenging problem that needs to be solved. In previous research
on defogging semantic segmentation, many methods have adopted a two-stage processing
strategy, where defogging image extraction is followed by semantic segmentation [24,25].
However, this approach may result in information loss, as important semantic information
may be lost during the defogging image extraction process. Furthermore, the two-stage
processing strategy requires the application of two models in the inference stage, which
may require more data and computational resources.

In our study, we propose a new joint defogging method that improves the existing
semantic segmentation model. Our approach combines two tasks of defogging with forest
fire segmentation and employs a smart attention mechanism (DARA) to improve the
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display of feature channels. We investigated clean basic information and deep complex
meanings to accomplish accurate forest fire segmentation. To assess the efficacy of our
suggested technique, we first examined the joint defogging branch and showed that our
approach was significantly effective. We then compared our model with existing state-
of-the-art semantic segmentation models, which use traditional defogging methods. Our
results demonstrate that our model outperformed the comparison methods in both recall
and mIoU metrics, indicating that our model had good performance in solving the forest
fire detection problem in foggy weather.

We also examined the effectiveness of the DARA attention module and showed that it
was effective in extracting depth image features. Additionally, we compared our proposed
Defog DeepLabV3+ model with the original DeepLabV3+ model and showed that our
method delivered a modest improvement with an acceptable increase in overhead.

Compared to the previous multi-stage processing strategies adopted by researchers,
such as the GXTD detection model with defogging capabilities, the GXTD detection model
improves image quality and fire detection accuracy by removing haze from images [23].
However, this approach requires additional computational cost, which may result in higher
execution time, especially when processing a large number of images. On the other hand,
the smoke detection model that utilizes dark channel-aided mixed attention does not
require additional computational cost, but the performance of the model is much inferior
to ours due to the prior-based approach [21].

Despite the high accuracy achieved by our Defog DeepLabV3+ model in fogged
forest fire segmentation, there are still some shortcomings that need to be addressed. In
further research, we plan to streamline the learning module for deep segmentation features
and explore semi-supervised training schemes to bridge the domain gap between real
and synthetic datasets [27]. Overall, our proposed method shows promise in improving
the accuracy and robustness of forest fire detection and prevention, which is crucial for
protecting our environment and communities.

5. Conclusions

In this study on precise segmentation of forest fires in foggy weather, our main
achievements were as follows:

• We proposed the Defog DeepLabV3+ joint defogging and forest fire segmentation
model to address foggy weather challenges in detecting forest fires.

• We designed the DARA attention mechanism to enhance feature channel representa-
tion and improve forest fire segmentation accuracy.

• We constructed the FFLAD dataset with synthetic and real foggy images to train
our model.

• Our experimental results show that Defog DeepLabV3+ outperforms state-of-the-art
methods with 94.26% accuracy, 94.04% recall, and 89.51% mIoU.

Each component of our proposed model contributes to the overall performance, indi-
cating the potential to improve forest fire detection and prevention in foggy weather. This
is crucial for environmental and community protection.
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