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Abstract: Pinus massoniana (Lamb.) is an important plantation species in southern China. Accurate
measurement of P. massoniana seedling morphological indicators is crucial for accelerating seedling
quality assessment. Machine vision, with its objectivity and stability, can replace human eyes in
performing these measurements. In this paper, a measurement method for seedling morphological
indicators based on Euclidean distance, Laplacian contraction, PointNet++, and 3D reconstruction
is proposed. Firstly, multi-angle sequence images of 30 one-year-old P. massoniana seedlings were
collected, distorted, and corrected to generate a sparse point cloud through the Structure-from-Motion
(SFM) and dense point cloud through the Patch-Based Multiple View Stereo (PMVS). Secondly, a
Dense Weighted Semantic Segmentation Model based on PointNet++ was designed, achieving
effective segmentation of the P. massoniana seedling point clouds. Finally, a multi-iteration plane
method based on Laplacian contraction was proposed. The new skeleton points were refined by
minimizing the Euclidean distance, iteratively generating the optimal morphological skeleton, thus
facilitating the extraction of morphological indicators. The experimental results demonstrated a
good correlation between the machine vision-extracted morphological indicators (including plant
height, ground diameter, and height-to-diameter ratio) and manually measured data. The improved
PointNet++ model achieved an accuracy of 0.9448 on the training set. The accuracy and Mean
Intersection over Union (MIoU) of the test set reached 0.9430 and 0.7872, respectively. These findings
can provide reliable technical references for the accurate assessment of P. massoniana seedling quality
and the promotion of digital forestry construction.

Keywords: Pinus massoniana seedlings; machine vision; 3D point cloud; semantic segmentation;
feature measurement

1. Introduction

Forests serve as the cradle of human civilization, and artificial forests, as an important
component of China’s forest resources, play an increasingly prominent role in maintaining
global carbon balance and mitigating global warming [1]. In a series of ecological projects
implemented in China, such as the Grain for Green Program, Pinus massoniana (Lamb.),
as a crucial pioneer afforestation species in barren mountainous areas, has significantly
improved the low forest coverage and scarcity of forest resources [2,3]. P. massoniana,
known for its preference for sunlight, drought tolerance, strong adaptability, rapid growth,
and high economic value, is widely distributed in China’s subtropical regions, making
significant contributions to the development of artificial forests [4].

High-quality and robust seedlings serve as the material foundation and prerequi-
site for the sustainable development of plantation forestry. The quality of P. massoniana
seedlings directly affects the success of afforestation, operational costs, and economic bene-
fits. Therefore, employing scientifically sound methods for evaluating seedling quality is a
crucial mean of ensuring the production of superior seedlings [5,6].

Currently, the main indicators used to evaluate the quality of nursery seedlings and es-
tablish grading standards are morphological indicators. These indicators primarily include
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seedling height, ground diameter, height-to-diameter ratio, root system morphology, stem–
root ratio, and apical bud, among other comprehensive quality indices. These indicators
are closely related to the growth status of the seedlings [7,8]. Traditional measurements
of seedling height and ground diameter rely heavily on tools such as vernier calipers and
rulers, which are time-consuming, inefficient, and prone to significant subjective errors in
manual measurements [9].

To enhance the accuracy of morphological indicator measurements, researchers have
integrated computer technology, image processing techniques, machine vision, and Deep
Learning (DL) techniques into the extraction of seedling morphological indicators [10–14].
McGuinness et al. [15] proposed three algorithms that effectively and accurately measure
the morphological features of the stem, height, and root system of radiata pine seedlings in
New Zealand. They also developed a machine vision system for the sorting of radiata pine
seedlings. The study employed denoising and segmentation techniques for preprocessing
the acquired images and introduced an algorithm for measuring the feature dimensions
of the images. The results demonstrated a strong correlation between the measured data
of seedling features obtained by the machine vision system and the actual values. Suo
Rui et al. [16] proposed a transfer learning approach for apple seedling segmentation
based on Blend Mask with ResNet-101. The novel labeling strategy employed in this study
contributed to improved accuracy in image segmentation, enabling precise measurement
of apple seedling morphological indicators. Hao et al. [17] applied Mask Region Convolu-
tional Neural Networks (Mask R-CNNs) and Residual Neural Network-50 (ResNet-50) to
segment Chinese fir, achieving an F1 score of 84.7% and an IoU score of 91.3%.

Accurate and robust plant segmentation based on DL is a key technique in machine
vision for measuring morphological indicators [18,19]. Compared to traditional plant
segmentation methods, DL approaches exhibit significant advantages in various aspects,
including speed and accuracy [20–23]. Expanding DL from two-dimensional (2D) to three-
dimensional (3D) research applications is currently a trending research direction [24,25].
Utilizing machine vision techniques to acquire image-based 3D models of seedlings offers
several advantages. It eliminates the need for strict research environments, mitigates costly
expenses, and enables the capture of color, texture information, and improved measurement
precision [26,27]. Sun et al. [28] proposed a high-throughput, three-dimensional rapid plant
point cloud reconstruction method based on autonomous calibration of the Kinect v2
sensor position. The sensor captured two Red–Green–Blue-Depth (RGB-D) images of
the turntable surface, automatically calculated the center point and normal vector of the
turntable rotation axis, and aligned the coordinate systems of the depth images taken
from different viewpoints to achieve coarse registration. Subsequently, the iterative closest
point algorithm was employed for precise registration of the multi-viewpoint point cloud,
enabling fast three-dimensional point cloud reconstruction and extraction of morphological
parameters for greenhouse plants. Turgut et al. [29] employed a DL approach based on a
3D point cloud to achieve segmentation and morphological feature extraction of plants in
the Rosa genus. The study utilized six novel point cloud-based DL architectures to segment
the structural components of the rose tree models and generate 3D models. The results
indicated that among the six methods, PointNet++ exhibited the highest segmentation
accuracy. The advantage of PointNet++ lies in its flexibility in handling the hierarchical
organization of point cloud data. By iteratively extracting features from the neighborhood
of each point, PointNet++ enables the network to effectively capture local features of the
point cloud [30].

The aforementioned studies have demonstrated the accuracy and effectiveness of mor-
phological feature extraction methods using three-dimensional reconstruction techniques.
However, there is currently limited research on the reconstruction of three-dimensional
point cloud models for coniferous seedlings. In order to address this gap, we proposed a
viable theoretical approach to further meet the demands of technology-assisted ecological
engineering in forestry. In this paper, a series of corrected two-dimensional images of P. mas-
soniana from multiple viewpoints were collected, and these images were reconstructed into



Forests 2023, 14, 1726 3 of 21

a 3D point cloud, which then underwent preprocessing. Subsequently, a dense weighted
semantic segmentation network based on PointNet++ was introduced to construct a dense
weighted semantic segmentation model. Finally, a multi-iteration plane method based
on Laplacian contraction to extract the skeletal points of the stems in a refined manner
was designed, enabling the extraction of morphological feature values for P. massoniana.
This research provides a novel method for detecting morphological indicators during the
process of seedling production and cultivation.

2. Materials and Methods

This study primarily focuses on the non-destructive measurement of morphological
indicators of P. massoniana. The research involves the collection of images and the utilization
of the SFM [31] and PMVS [32] algorithms for reconstructing P. massoniana seedlings.
Various processing techniques were applied to the resulting point cloud of P. massoniana,
enabling the extraction of seedling morphological indicators. The experimental workflow
is illustrated in Figure 1.
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2.1. Sample and Experimental Environment

The P. massoniana seedling samples used in this study were sourced from the Qingyuan
Nursery in Yizhou District, Hechi City, Guangxi, China. A total of 30 one-year-old seedlings
with diverse morphological characteristics were selected, and a subset of these samples
is illustrated in Figure 2. Environment for multi-angle image acquisition is illustrated in
Figure 3. Parameters of industrial camera and lens are illustrated in Table 1.

Table 1. Parameters of industrial camera and lens.

Name Parameter

MER-1070-10GC

Resolution 3840 × 2748 px
Frame rate 10 fps

Sensor 1/2.3′′ MT9J003 electronic Rolling
shutter CMOS

Signal-to-noise ratio 36.67 dB

M1620-MPW2
Focal length 16 mm

Iris F2.0–F16.0
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2.2. Camera Calibration

To achieve high-precision 3D reconstruction, it is necessary to obtain the camera’s
parameter matrix and perform distortion correction on the images. Camera calibration
involves solving parameters such as intrinsic parameters and distortion parameters. In
this study, Zhang Zhengyou’s calibration method [33] was chosen for its simplicity of
operation and high accuracy in obtaining these parameters. A chessboard pattern with a
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size of 4 × 5 and a grid size of 20 mm per cell was used as the calibration target. Initially,
a total of 60 images capturing the chessboard pattern at various poses were collected.
Subsequently, the Zhang Zhengyou camera calibration method was applied to obtain the
camera’s parameter matrix. To determine the scaling factor of the P. massoniana point
cloud, a known-sized calibration block was placed during the capture process. The scaling
factor was calculated by comparing the point cloud height of the calibration block with its
actual height.

2.3. Acquisition and Preprocessing of Point Cloud
2.3.1. Acquisition of Point Cloud

After distortion correction, multi-angle images of P. massoniana were processed using
the SFM algorithm to obtain an initial sparse point cloud, which is then refined into a dense
point cloud using the Patch-Based PMVS algorithm. However, due to the minimal color
difference and indistinctive shape features of the leaf at the top of P. massoniana seedlings,
the algorithm detected only a few feature points, resulting in scattered and discontinuous
point cloud data. To address this issue, paper labels were added to the pots containing the
seedlings to increase the number of feature points, thereby enhancing the accuracy of the
three-dimensional reconstruction of P. massoniana seedlings.

2.3.2. Point Cloud Denoising

Due to the influence of the shooting environment and image background, the obtained
dense point cloud of P. massoniana seedlings contained irrelevant points and abundant
background noise. Therefore, further processing of the acquired dense point cloud was
necessary to reduce the impact of irrelevant information and noise on subsequent plant
semantic segmentation and extraction of morphological parameters.

Firstly, prior to capturing multi-angle images of P. massoniana seedlings, a black
background with a significant color contrast to the plants and a turntable were chosen.
Thus, unrelated noise points resulting from the image background can be directly elimi-
nated using RGB threshold segmentation. The RGB threshold (Red, Green, Blue) is set to
(0,0,0)~(40,45,50).

Additionally, to address the issue of scattered outliers and abnormal points in the
point cloud of P. massoniana seedlings, this study employed the Statistical Outlier Removal
(SOR) filtering method [34] for removal. The SOR filtering algorithm calculates various
metrics such as the average distance and standard deviation of each point’s surrounding
k-nearest neighbors. By setting an appropriate threshold, the algorithm identifies and
eliminates the noise points from the point cloud. The SOR filtering algorithm is configured
with a neighborhood point count of k = 6 and a standard deviation multiplier parameter of
nSigma = 1.

2.3.3. Point Cloud Coordinate Calibration

The dense point cloud of P. massoniana obtained using SFM-PMVS was unordered
and inconsistent. To facilitate the subsequent experimental measurement of various scalar
parameters of the P. massoniana point cloud, it is necessary to redefine the coordinate system.

Due to the intricate and complex stem and leaf structure of P. massoniana, it is not
suitable for coordinate calibration. Therefore, the point cloud of the pot was first clipped
using CloudCompare software 2.12.3. Then, four points, Px1, Px2, Pz1, and Pz2, located on
the circular top surface of the pot, were selected which are the minimum and maximum
coordinates on the x and z axes, respectively, as shown in Figure 4.
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Firstly, two points, Px1 and Px2, are selected. After applying the rotation matrix R1,
the transformed points, P′x1 and P′x2, are obtained, ensuring that the line segment formed
by P′x1 and P′x2 is perpendicular to the y-axis. By utilizing the equality of the y-coordinates
of the transformed points, the rotation angle θ of the point cloud around the z-axis can be
determined. The coordinate transformation equation for the point cloud is represented by
Equation (1):

P′xi = R1·Pxi =

 cos θ sin θ 0
−sin θ cos θ 0

0 0 1

·Pxi (1)

where i represents the index of the i-th point, and θ denotes the angle of rotation of the
point cloud around the z-axis.

Next, two points, Pz1 and Pz2, are selected. After applying the rotation matrix R2, the
transformed points, P′z1 and P′z2, are obtained, and the line segment formed by connecting
P′z1 and P′z2 is perpendicular to the y-axis. By utilizing the constraint of equal y-coordinates
for the transformed points, the rotation angle α around the x-axis for the point cloud is
determined. The point cloud coordinate transformation is given by Equation (2):

P′zi = R2·Pzi =

1 0 0
0 cos α sin α
0 −sin α cos α

·Pzi (2)

where i represents the index of the i-th point, and α denotes the angle of rotation around
the x-axis for the point cloud.

In conclusion, the corrected point cloud of P. massoniana exhibits a bottom surface
point cloud parallel to the xoz plane, while the stem point cloud extends vertically along
the y-axis. The coordinate calibration equation for the P. massoniana seedling point cloud is
represented by Equation (3):

P′i = R·Pi = R2·R1·Pi =

 cos θ sin θ 0
−sin θ·cos α cos θ·cos α sin α
sin θ· sinα −cos θ·sin α cos α

·Pi (3)

where i represents the index of the i-th point, Pi denotes the i-th point, and P′i represents
the i-th point after correction.

2.4. Dense Weighted Semantic Segmentation Model Based on PointNet++

In subsequent experiments aimed at extracting morphological indicators from P.
massoniana seedlings, different parts of the plant were used to correspond to distinct
morphological characteristics. For instance, the pot containing the P. massoniana seedling
represents irrelevant background information and needs to be removed prior to measuring
the morphological indicators of the stem and leaf. The stem section of P. massoniana can
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provide parameters such as stem length and ground diameter, while the combination of
the stem and leaf sections enables the extraction of the tree height parameter.

The semantic segmentation using the PointNet++-based dense weighted model allows
for the rapid and automated segmentation of different parts of P. massoniana point cloud,
facilitating subsequent parameter measurements. Compared to the original PointNet++
model, the PointNet++-based dense weighted semantic segmentation model exhibits higher
accuracy. Given the dense leaves of P. massoniana with its close connection to the stem, and
the green appearance of the stem surface, traditional clustering and threshold segmenta-
tion methods prove inadequate, while the PointNet++-based dense weighted semantic
segmentation model successfully accomplishes the segmentation task.

PointNet [35] and PointNet++ [30] are DL networks that directly take point cloud
data as input. PointNet initially elevates the (x, y, z) coordinates of each point to high-
dimensional features using Multilayer Perceptrons (MLPs), and then obtains global features
through max pooling. Finally, fully connected MLPs [29] are employed. However, this
design limitation hinders PointNet’s ability to effectively extract local fine-grained features.

PointNet++ consists of two main layers: the Hierarchical Set Abstraction (SA) layer
and the Feature Propagation (FP) layer. The SA layer includes the sampling and grouping
stages. Firstly, the Furthest Point Sample (FPS) algorithm is employed to uniformly sample
a fixed number of points from the input point cloud. Then, each sampled point forms a
local neighborhood with a radius of R, resulting in multiple overlapping neighborhoods
that partition the input point cloud. Finally, PointNet is applied to each neighborhood to
extract features specific to that neighborhood. On the other hand, the FP layer propagates
the extracted features from each local neighborhood back to the original input point cloud.
Therefore, PointNet++ aims to extract fine-grained features at different scales of the input
point cloud, focusing on local rather than global information.

Due to the numerous imbalances in the total number of sample points among different
classes in the dataset, training the model directly yields unsatisfactory results. Therefore,
to achieve a better balance among the quantities of pot, stem, and leaf samples in the
entire dataset, this study incorporated class balance weights into the loss function. When
calculating the class balance weights, the total number of each class in the dataset is first
computed, and the proportion of each class in the dataset is determined using Equation (4):

Fi =
Pointi
Sum

(i = 0, 1, 2) (4)

where Pointi represents the total number of points labeled as i in the training set; Sum
represents the total number of all points in the training set; 0 denotes the pot, 1 denotes the
stem, and 2 denotes the leaf; and Fi represents the proportion of labels i in the dataset.

Subsequently, the average proportion, denoted as the Median, is computed for each
class. Based on the Median and Fi, the balanced weights for each class in the dataset are
determined using Equation (5):

Weighti =
Median

Fi
(i = 0, 1, 2) (5)

where Weighti represents the balancing weight for each class.
The FP layer of PointNet++ propagates local features to the input point set through

only two MLP layers. However, when the input point set contains a large number of
points, it may lead to incorrect feature assignment for some points. Therefore, this study
introduced a feature point adaptive weighting module that calculates the weights of the
features of points output by the FP layer across different channels. These weights are then
multiplied with the original features, thereby enhancing the expression of the original
features and improving the segmentation accuracy of the input point set.

The feature point adaptive weighting module designed in this study consists of
1 adaptive average pooling layer, 1 adaptive max pooling layer, 4 1D convolutional layers,
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2 LeakyReLU activation function layers, and 1 Sigmoid activation function layer. The
architectural diagram is shown in Figure 5.
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Equation (6) represents the computational formula for the feature point adaptive
weighting module:

F = σ(W1(LeakyReLU(W 0(Fc
avg))) + W1(LeakyReLU(W 0(Fc

max)))) (6)

where σ represents the Sigmoid activation function; W0 and W1 denote the weights of the
first and second convolutional layers within this module; and Fc

avg and Fc
max refer to the

tensors resulting from adaptive average pooling and adaptive max pooling, respectively.
Furthermore, to enhance the classification capability of the fully connected (FC) layer

in the network, this study also introduced a dense mapping block that incorporates a
feature point adaptive weighting module. By progressively reducing the feature output
dimensions and iteratively optimizing the feature weights at each layer, the accuracy of the
network is further improved.

The dense mapping block designed in this study consists of 1D convolutional layers,
1D BatchNorm layers, ReLU activation function layers, feature point adaptive weighting
modules, and Dropout layers, with a dropout probability of 0.1 for each neuron. The
structure of the dense weighted semantic segmentation network, built based on PointNet++,
is illustrated in Figure 6.
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In this study, a multi-angle image-based approach was employed to perform 3D recon-
struction of P. massoniana. Subsequently, a series of data processing steps, including image
distortion correction, point cloud denoising, and coordinate calibration, were conducted to
obtain high-quality point cloud data. Moreover, to facilitate the rapid measurement of mor-
phological indicators from the acquired P. massoniana point cloud, an improved PointNet++
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algorithm was utilized for semantic segmentation. This allowed for the classification of the
point cloud into three categories: pot, stem, and leaf.

The dataset preparation was performed using Cloud-Compare software, where each P.
massoniana point cloud was manually divided into three parts. The training and testing
sets were split in an 8:2 ratio. An example of the created dataset is shown in Figure 7.
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The point cloud in red represents the leaves with a label value of 2.

The hardware and software studied were system: Windows 10; CPU: Intel I7-11700F
2.50 GHz; GPU: Nvidia GeForce RTX 3080Ti (12GB); and environment configuration: Py-
Charm + Pytorch1.8 + Python 3.7.4 + Cuda 12.1, Agisoft Metashape, Cloud-Compare 2.12.3,
MATLAB R2021b.

2.5. Multi-Iteration Plane Method Based on Laplacian Contraction

After obtaining the segmented stem point cloud of P. massoniana seedlings, extraction
of the stem skeleton points is necessary to measure the stem length, ground diameter, and
height-to-diameter ratio. The original Laplacian contraction algorithm tends to produce
skeleton points with large intervals, leading to large errors when calculating the stem
length. Therefore, this study proposed a multi-iteration plane method based on Laplacian
contraction. By slicing the original stem point cloud into layers using the Laplacian
contraction algorithm, new skeleton points are generated within each point cloud layer.
These new skeleton points are positioned to minimize the sum of Euclidean distances
between themselves and all other points in the corresponding point cloud layer. The
refinement process improves the measurement accuracy of morphological indicators for
P. massoniana seedlings. For complex morphological structures in certain P. massoniana
samples, increasing the number of iterations allows for the extraction of skeleton points
that accurately reflect the growth status of the stem.

2.5.1. Nearest-Neighbor Sorting

The skeleton points extracted by the Laplacian contraction algorithm are unordered,
thus requiring sorting of the skeleton points before the multi-plane iteration.

The skeleton points extracted using the Laplacian contraction algorithm are denoted
as the point set O, and the sorted skeleton points are denoted as the point set O′. Initially,
the point set O′ is an empty set. Firstly, the point Pm with the minimum y-axis in the point
set O is selected as the starting point. Pm is removed from the point set O and appended
to the point set O′. Subsequently, the updated point set O is searched to find the point
Pn with the minimum distance (D) from the end point Pm of the updated point set O′.
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Pn is then removed from the point set O and appended to the point set O′. This process
is repeated, resulting in the correctly sorted point set O′. The distance D is calculated
using Equation (7):

D =

√
(xm − xn)

2 + (ym − yn)
2 + (zm − zn)

2 (7)

where xm, ym, zm, xn, yn, and zn represent the coordinates of points Pm and Pn.

2.5.2. Skeleton Refinement of P. massoniana Stem Point Cloud

After obtaining the sorted set of points, O′, firstly, select two points, P′1 and P′2, and
consider the vector passing through these two points as the normal vector, N1. Construct
two planes, A1 and A2, perpendicular to N1 at these two points, respectively. Using A1 and
A2 as plane constraints, obtain a subset of points, S1, representing the stem point cloud
within these planes. Then, using the minimum bounding box of S1 as a constraint, identify
the point, T1, that minimizes the sum of Euclidean distances between T1 and all points
in S1. Next, take P′1 and T1 as new reference points and repeat the aforementioned steps
to obtain the second refined skeleton point, T2. Subsequently, compute the third skeleton
point, T3, based on T1 and P′2. By iteratively repeating this process, a set of refined skeleton
points, T, can be obtained. The workflow of the multi-iteration plane method based on
Laplacian contraction is illustrated in Figure 8.
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Figure 8. The flowchart of the multi-iteration plane method. Note: The Ymin(O) function finds the
element in the point set O with the minimum Y value. Prior to the algorithm’s initiation, P is an
empty set. The Dis function calculates the Euclidean distance between two points in space. The
Distancemin function is used to determine the (X, Y, Z) coordinates corresponding to the minimum
distance. The Vector function computes the normal vector of the line segment connecting these two
points. The Plane function identifies a plane passing through the input point and perpendicular to
the input normal vector. J represents the set of points in the stem of P. massoniana. The Constraint
function is employed to find a new set of points by constraining the stem points within the input
plane, obtained by using the minimal bounding box of the partial point set as the constraint. The
Re f ine function is computed as follows: first, compute Sum = ∑m

i=1 Dis((x, y, z), (xi,yi, zi)), where
(x, y, z) represents the coordinates of the current element during the traversal of the input point
set, (xi, yi, zi) represents the coordinates of the i-th element within the input point set, and m is the
number of elements in the input point set. Then, identify the (x, y, z) coordinates that minimize Sum,
which serves as the output of the Re f ine function.
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2.6. Acquisition of Morphological Indicators for P. massoniana Seedlings

The morphological indicators investigated in this study for P. massoniana primarily
include plant height, stem length, ground diameter, and height-to-diameter ratio.

In this study, the true plant height of P. massoniana samples was measured using a
measuring tape. The true ground diameter was measured using an electronic caliper. For
measuring the true stem length of P. massoniana seedlings, a flexible ruler was placed along
the curve of the stem, and then straightened to measure its length. The ratio of plant height
to ground diameter is referred to as the height-to-diameter ratio of P. massoniana.

After calibration, the point cloud of P. massoniana exhibits a bottom plane parallel to the
xoz plane, while the direction of the stem is vertically aligned along the y-axis. Therefore,
the difference between the maximum and minimum values in the y-axis direction of the
stem and leaf point cloud represents the plant height, denoted as Hc. By slicing the point
cloud using two refined skeleton points at the bottom of the stem point cloud, the sum of
the differences between the maximum and minimum values in the x and z-axis directions
of the sliced point cloud, divided by two, gives the ground diameter, denoted as Wc. The
sum of the Euclidean distances between the refined skeleton points provides the stem
length, denoted as Lc. The ratio of plant height to ground diameter is defined as the height-
to-diameter ratio, denoted as RHW . These relationships are mathematically described by
Equations (8)–(11):

Hc = Pymax − Symin (8)

Wc =
(sxmax − sxmin) + (szmax − szmin)

2
(9)

Lc =
n−1

∑
i=1

√
(xi − xi+1)

2 + (yi − yi+1)
2 + (zi − zi+1)

2 (10)

RHW =
Hc

Wc
(11)

where Pymax represents the point with the maximum y-axis in the leaf point cloud; Symax and
Symin correspond to the points with the maximum and minimum y-axis values, respectively,
in the stem point cloud; sxmax, sxmin, szmax, and szmin denote the points with the maximum
and minimum x- and z-axis values in the stem point cloud slice; xi, yi, and zi denote
the coordinates of the i-th point in the refined skeleton points, with n representing the
total number of skeleton points; pxmax, pxmin, pzmax, and pzmin refer to the points with the
maximum and minimum x- and z-axis values, respectively, in the leaf point cloud.

2.7. Evaluation Indicators

In this study, the accuracy of the semantic segmentation for the P. massoniana point
cloud was evaluated using measures such as Accuracy and Mean Intersection over Union
(mIoU). The accuracy of skeleton extraction was assessed using the determination coeffi-
cient (R2) for the stem length parameter of P. massoniana. The precision of three-dimensional
reconstruction was evaluated according to Equations (12) and (13):

Accuracy =
∑k

j=0 Pii

∑k
i=0 ∑k

j=0 Pij
(12)

mIOU =
1
k

k

∑
i=0

Pii

∑k
i=0 Pij + ∑k

i=0 Pji − Pii
(13)

where k represents the number of categories in the dataset. Pii represents the number of
accurately predicted point clouds. Pij and Pji denote the misclassified point clouds, where
Pij refers to the number of point clouds with a true label of j but predicted as i, and Pji
refers to the number of point clouds with a true label of i but predicted as j.
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3. Results and Discussion
3.1. Camera Parameter Matrix

The parameters required for camera calibration were calculated and are presented in
Table 2. The consistency between the resolution of the calibrated images and the actual
resolution indicates the correctness of the camera calibration experiment results.

Table 2. Camera parameters.

Camera Intrinsic Matrix Radial Distortion
Coefficient

Average
Reprojection

Error
Resolution

Front-view
camera

10, 485.8106 0 1231.4592
0 10, 501.9894 −176.3217
0 0 1

 (
−0.2158 −0.0870

)
0.3071 3840 × 2748

Oblique-view
camera

10, 053.5173 0 2030.3629
0 10, 074.7860 728.5858
0 0 1

 (
−0.3832 3.8786

)
0.1277 3840 × 2748

Figure 9 illustrates both the original images and the images after distortion parameter
correction. Figure 9a,b represent the original images captured by the frontal and oblique
cameras. Figure 9c,d represent distortion-corrected images. The inconsistency in the
proportion of seedlings displayed is due to the fact that the seedlings in the corrected image
are not the actual size. In this study, a calibration block was introduced to determine the
scaling factor and restore it to its true size.

Forests 2023, 14, x FOR PEER REVIEW 12 of 22 
 

 

where 𝑘 represents the number of categories in the dataset. 𝑃௜௜ represents the number of 
accurately predicted point clouds. 𝑃௜௝  and 𝑃௝௜  denote the misclassified point clouds, 
where 𝑃௜௝ refers to the number of point clouds with a true label of 𝑗 but predicted as 𝑖, 
and 𝑃௝௜ refers to the number of point clouds with a true label of 𝑖 but predicted as 𝑗. 

3. Results and Discussion 
3.1. Camera Parameter Matrix 

The parameters required for camera calibration were calculated and are presented in 
Table 2. The consistency between the resolution of the calibrated images and the actual 
resolution indicates the correctness of the camera calibration experiment results. 

Table 2. Camera parameters. 

Camera Intrinsic Matrix Radial Distortion  
Coefficient 

Average Reprojec-
tion Error 

Resolution 

Front-view 
camera 

൭10485.8106 0 1231.45920 10501.9894 −176.32170 0 1 ൱ (−0.2158 −0.0870) 0.3071 3840 × 2748 

Oblique-view 
camera 

൭10053.5173 0 2030.36290 10074.7860 728.58580 0 1 ൱ (−0.3832 3.8786) 0.1277 3840 × 2748 

Figure 9 illustrates both the original images and the images after distortion parameter 
correction. Figure 9a,b represent the original images captured by the frontal and oblique 
cameras. Figure 9c,d represent distortion-corrected images. The inconsistency in the pro-
portion of seedlings displayed is due to the fact that the seedlings in the corrected image 
are not the actual size. In this study, a calibration block was introduced to determine the 
scaling factor and restore it to its true size. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Original image and distortion-corrected image. (a,b) represent the original images cap-
tured by the frontal and oblique cameras, respectively, while (c,d) represent the images after distor-
tion correction. 

  

Figure 9. Original image and distortion-corrected image. (a,b) represent the original images
captured by the frontal and oblique cameras, respectively, while (c,d) represent the images after
distortion correction.



Forests 2023, 14, 1726 13 of 21

3.2. P. massoniana Point Cloud
3.2.1. Original P. massoniana Seedling Point Cloud

To validate the significance of maintaining seedling stability during the acquisition
of multi-angle images for three-dimensional reconstruction, this section compares the
reconstruction results of two image acquisition methods.

Figure 10a shows the point cloud of P. massoniana reconstructed from the multi-angle
images captured during continuous rotation of the turntable, depicting one full rotation
of the seedling. In Figure 10b, the turntable rotated at a fixed angle of 5◦, and the images
were captured after waiting for the seedling to stabilize, resulting in the reconstructed point
cloud of the seedling. It is evident that the point cloud in Figure 10a exhibited noticeable
ghosting artifacts, resulting in significant measurement errors of the ground diameter. This
is primarily attributed to the slender and tall stems of P. massoniana seedlings which, even
with low-speed rotation, can shake. Conversely, the point cloud in Figure 10b demonstrates
that waiting for the P. massoniana seedling to stabilize before image capture effectively
reduces the ghosting artifacts caused by these jitters.

Forests 2023, 14, x FOR PEER REVIEW 13 of 22 
 

 

3.2. P. massoniana Point Cloud 
3.2.1. Original P. massoniana Seedling Point Cloud 

To validate the significance of maintaining seedling stability during the acquisition 
of multi-angle images for three-dimensional reconstruction, this section compares the re-
construction results of two image acquisition methods. 

Figure 10a shows the point cloud of P. massoniana reconstructed from the multi-angle 
images captured during continuous rotation of the turntable, depicting one full rotation 
of the seedling. In Figure 10b, the turntable rotated at a fixed angle of 5°, and the images 
were captured after waiting for the seedling to stabilize, resulting in the reconstructed 
point cloud of the seedling. It is evident that the point cloud in Figure 10a exhibited no-
ticeable ghosting artifacts, resulting in significant measurement errors of the ground di-
ameter. This is primarily attributed to the slender and tall stems of P. massoniana seedlings 
which, even with low-speed rotation, can shake. Conversely, the point cloud in Figure 10b 
demonstrates that waiting for the P. massoniana seedling to stabilize before image capture 
effectively reduces the ghosting artifacts caused by these jitters. 

  
(a) (b) 

Figure 10. Three-dimensional reconstruction results of two image acquisition methods. (a) Point 
cloud reconstructed under continuous rotation. (b) Point cloud reconstructed after stabilization. 

A partial point cloud of P. massoniana seedlings obtained through 3D reconstruction 
is shown in Figure 11. 

 
Figure 11. Partial point cloud of P. massoniana seedlings after 3D reconstruction. 

Figure 10. Three-dimensional reconstruction results of two image acquisition methods. (a) Point
cloud reconstructed under continuous rotation. (b) Point cloud reconstructed after stabilization.
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3.2.2. Point Cloud Denoising

In this section, RGB threshold segmentation is applied to remove irrelevant noise
points such as the background with black color. The SOR filtering algorithm was selected
to eliminate scattered outliers and abnormal points in the point cloud. After the above
preprocessing, a higher accuracy and fewer outliers in the P. massoniana seedling point cloud
can be obtained, and the complex branch and leaf structures at the top of the plants were
also more clearly visible. Figure 12 illustrates the point cloud before and after denoising for
a P. massoniana seedling.
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3.2.3. Point Cloud Coordinate Calibration

To facilitate the extraction of morphological indicators from the P. massoniana point
cloud for subsequent experiments, it is necessary to perform coordinate correction on the
point cloud, aligning the basal plane of the P. massoniana with the xoz plane. A P. massoniana
point cloud before and after coordinate correction is shown in Figure 13.
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3.2.4. Comparisons with Previous Study

In 2019 [36], our team designed a non-contact morphological parameter extraction
system for P. massoniana seedlings based on multi vision, including the establishment of
a hardware experimental platform for seedling image acquisition and 3D reconstruction
based on Delaunay triangulation algorithm. The reconstructed model diagram is shown
in Figure 14. The difference between early surface reconstruction fitting and Figure 13b
shows that the early details are clearly not refined enough, and the gaps between the pine
needles of the seedlings could not be accurately fitted and segmented. The point cloud
reconstruction method based on SFM and PMVS in this study had clearer images, and the
subsequent extracted morphological index parameters were more accurate.
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3.3. Dense Weighted Semantic Segmentation Model Based on PointNet++

By incorporating the feature point adaptive weighting module in the FP layer, the
features are enhanced, enabling better capture of both local and global characteristics
of P. massoniana point clouds. The addition of the dense mapping block in the FC layer,
with progressively decreasing feature dimensions and adaptive adjustment of the weight
for each feature point, further improves the accuracy of the network. The results of the
PointNet++ model before and after the improvement are presented in Table 3.

Table 3. Training results of the model.

Model
Training Set Test Set

Accuracy Loss Accuracy mIOU

PointNet++ 0.8966 0.1444 0.8915 0.6361
CDC-PointNet++
(our algorithm) 0.9448 0.0814 0.9430 0.7872

The Accuracy, Loss, and mIOU curves during model training are illustrated in Figure 15.
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The training set accuracy of the CDC-PointNet++ model reached 0.9448, demonstrat-
ing a 4.82% improvement compared to the original network. For the test set, the accuracy
and mIoU achieved values of 0.9430 and 0.7872, respectively, representing improvements
of 5.15% and 15.11% compared to the original network. The proposed feature point adap-
tive weighting module in this study enables adaptive learning of each point’s features,
enhancing the original feature representation and providing a more comprehensive feature
representation for the original network. Additionally, the proposed dense mapping block
optimizes output features layer by layer, enhancing the network’s non-linearity, stability,
and generalization ability, thereby improving the accuracy and mIoU of the final segmenta-
tion. The segmentation results of the dense weighted semantic segmentation model based
on PointNet++ on the test set are visualized in Figure 16.
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3.4. Stem Point Cloud Skeleton Extraction

To obtain the stem length parameter of P. massoniana, this study employs the Laplacian
contraction algorithm for skeleton extraction from the stem point cloud. By cumulatively
calculating the Euclidean distance between adjacent points, the stem length parameter is
determined. The extracted skeleton points are illustrated in Figure 17.
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Figure 17. Skeleton points of a P. massoniana stem point cloud. (a) Original skeleton points. (b) Refined
skeleton points.

From Figure 17a, it can be observed that the extracted initial skeleton points have
relatively large gaps between neighboring points. Moreover, due to the arc-shaped nature
of P. massoniana stems, there is a large error when calculating the stem length parameter
using Euclidean distances. To minimize this calculation error, this study employed a multi-
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iteration plane method based on Laplacian contraction to refine the initial skeleton points.
The refined skeleton points are illustrated in Figure 17b.

The measured stem length parameters from the original skeleton points and the refined
skeleton points are presented in Figure 18.
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As one of the challenging parameters to measure in plant morphological indicators,
achieving high precision in stem length measurements is difficult. From Figure 18, it can
be observed that the stem length parameter obtained from the original skeleton points
underestimates the true values, with a coefficient of determination (R2) of only 0.5142.
This discrepancy arises from the large gaps between neighboring points in the original
skeleton, rendering the direct use of Euclidean distances between neighboring points
as a substitute for the arc length of P. massoniana unfeasible. However, after skeleton
refinement, the R2 value increases to 0.7191, resulting in a 20.49% improvement in stem
length measurements compared to those obtained from the original skeleton points. This
improvement is attributed to the fact that skeleton refinement reduces the distances between
neighboring points, making the Euclidean distances between them more comparable to
the arc length and thereby yielding stem length measurements that closely align with the
true values.

3.5. Other Morphological Indicators of P. massoniana Seedlings

From the experiment, the predicted values and the actual values of the ground diame-
ter, plant height, and height-to-diameter ratio parameters for 30 groups of P. massoniana
seedlings obtained are shown in Figure 19.

From Figure 19, it can be observed that the predicted ground diameter parameter of P.
massoniana exhibited an accuracy of 0.8677 when compared to the ground truth values. The
primary cause of inaccuracies in ground diameter measurements is the presence of some
holes and outliers in the reconstructed point cloud of P. massoniana, which are difficult to
eliminate through point cloud preprocessing. Furthermore, due to the positional relation-
ship between stem and leaf point cloud and errors introduced by the manually annotated
dataset, the semantic segmentation network failed to precisely segment the stem and leaf
point cloud. In contrast, the predicted plant height parameter of P. massoniana demonstrated
an accuracy of 0.8893 when compared to the ground truth values. This is because the plant
height parameter measures the difference between the maximum and minimum y-axis of
the stem and leaf point cloud of P. massoniana. Notably, there were distinctive characteristics
between the pot, the stem and leaf (the pot being at the bottom), enabling the semantic
segmentation network to accurately segment the pot point cloud. Moreover, the R2 for the
predicted height-to-diameter ratio parameter of P. massoniana reached 0.8354. Additionally,
during the measurement of P. massoniana morphological indicators, the use of calibration
blocks to determine the scaling factor between the reconstructed seedling and the real
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seedling introduced errors that contributed to the predicted errors of P. massoniana seedling
morphological indicators.
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4. Conclusions

The aim of this study was to design a measurement method for morphological indica-
tors of P. massoniana seedlings utilizing 3D reconstruction, semantic segmentation models,
and skeleton extraction techniques.

(1) For the 3D reconstruction of P. massoniana seedlings, an image acquisition platform
was established to capture a multi-angle sequence of 2D images. After distortion
correction, the images are used in SFM combined with PMVS to construct a 3D
point cloud of P. massoniana seedlings. Preprocessing methods such as denoising and
coordinate correction were applied to the original point cloud of P. massoniana.

(2) The processed P. massoniana point cloud was used to create a dataset, and a dense
weighted semantic segmentation network based on PointNet++ was proposed to
enhance the representation of original features and improve the segmentation ac-
curacy of the input point set. The experimental results demonstrated that the im-
proved PointNet++ network accurately segments the pot, stem, and leaf of P. mas-
soniana. The accuracy of the model on the training and testing sets reached 0.9448
and 0.9430, respectively, indicating its applicability and segmentation performance in
point cloud segmentation.

(3) To reduce measurement errors caused by large gaps between neighboring points, a
multi-plane iterative method based on Laplacian contraction was employed to refine
the skeleton points of the stem point cloud. After skeleton refinement, R2 increased to
0.7191, representing a 20.49% improvement in stem length compared to measurements
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obtained from the original skeleton points. The predicted parameters of plant height,
ground diameter, and height-to-diameter ratio for P. massoniana show good correlation
with the ground truth values, with an average determination coefficient of 0.8641.

The proposed method and workflow are also applicable to other tree seedlings. This
study replaces traditional manual measurement methods while meeting measurement
accuracy and increases the stability of measurement data while reducing manual labor,
providing a more accurate approach for rapid non-destructive measurements of seedling
morphological indicators, as well as a reference for the precise sorting of P. massoniana
seedlings. In the future, combined with measurements of the growth and changes in roots,
comprehensive applications will be implemented according to the national seedling quality
grading standards.
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