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Abstract: Polarimetric Synthetic Aperture Radar (PolSAR) images with dual polarization modes have
great potential to map forest stock volume (FSV) by excellent penetration capabilities and distinct
microwave scattering processes. However, the response of these SAR data to FSV is still uncertain in
the non-growing season. To further interpret the response of FSV to different dual polarization SAR
images, three types of dual polarization SAR images (GF-3, Sentinel-1, and ALOS-2) were initially
acquired in coniferous planted forest in the non-growing season. Then, sensitivity between FSV and
all alternative features extracted from each type of SAR image was analyzed to express the response
of FSV to dual polarization SAR images with bands and polarization modes in the non-growing
season in deciduous (Larch) and evergreen (Chinese pine) forests. Finally, mapped FSV using single
and combined dual polarization images were derived by optimal feature sets and four machine
learning models, respectively. The combined effects were also analyzed to clarify the difference of
bands and polarization modes in deciduous and evergreen forests in the non-growing season. The
results demonstrated that the backscattering energy from different sensors is significantly different
in Chinese pine, and the difference is gradually reduced in Larch forests. It is also implied that the
polarization mode is more important than penetration capability in mapping forest FSV in deciduous
forest in the non-growing season. By comparing the accuracy of mapped FSV using single and
combined images, combined images have more capability to improve the accuracy and reliability
of mapped FSV. Meanwhile, it is confirmed that compensation effects with bands and polarization
modes not only have great potential to delay the saturation phenomenon, but also have the capability
to reduce errors caused by overestimation.

Keywords: forest stock volume (FSV); dual polarization SAR; polarization modes; non-growing
season; coniferous planted forest

1. Introduction

Planted forests play a significant role in making substantial contributions to climate
change mitigation and promoting the carbon cycle within ecosystems. The forest stock vol-
ume (FSV) is regarded as one of key indices in evaluating the quality of planted forests [1,2].
Normally, traditional methods of investigating FSV are obtained by time-consuming and
costly ground measurements, with which it is hard to satisfy the requirements of modern
forest resource monitoring [3]. In the last twenty years, remote sensing technology has pro-
vided a more promising approach to indirectly mapping FSV with a few ground-measured
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samples for large regions [4]. However, electromagnetic signals reflected from forests are
often prevented by cloud cover using optical remote sensing images [5–7]. Furthermore,
optical remote sensing images are still useless for forests during the deciduous season.
To overcome these disadvantages, Polarimetric Synthetic Aperture Radar (PolSAR) im-
ages have a great potential to map FSV by excellent penetration capabilities and distinct
microwave scattering processes [8].

Commonly, various bands (X, C, and L-bands), and various polarization modes (single,
dual, and quad) SAR images have been widely applied in mapping forest parameters [9–11].
Previous results have demonstrated that polarization features extracted from quad polar-
ization SAR images had a remarkable sensitivity to FSV [12]. However, the number of
images acquired with the dual polarization mode is much larger than that with the quad
polarization mode among these available SAR sensors [9]. Therefore, dual polarization SAR
images are still a main option to map forest parameters in large regions. Furthermore, the
sensitivity of features related to FSV is affected by the ability to penetrate the forest. As the
wavelength increases, the ability of the SAR signal to penetrate the forest increases [13,14].
Previous studies have indicated that SAR images scattering of different bands reflects
the FSV in different parts of the forest, with C-band SAR images reflecting more forest
canopy information, while the L-band penetrates the forest canopy and captures vertical
information. Most previous studies have shown that L-band SAR images showed greater
sensitivity to FSV than C and X-band SAR images in the growing season [15]. However,
most of these studies have focused on evergreen deciduous and coniferous forests during
the growing season. Therefore, for evergreen and deciduous forests in the non-growing
season, it is valuable to further interpret the response of FSV with dual polarization SAR
images with various bands, such as C and L-band SAR images.

Normally, features extracted from dual polarization SAR images with different bands
show different sensitivities to FSV. Recently, two polarization combinations have been
widely provided for dual polarization images, such as HH (horizontal transmission and
horizontal reception) and HV polarization (horizontal transmission and vertical reception)
for GF-3 and ALOS-2, VV (vertical transmission and vertical reception) and VH (vertical
transmission and horizontal reception) for Sentinel-1 [16]. Previous results have shown that
the sensitivity between the backscatter coefficient of cross-polarization (HV and VH) and
FSV is significantly higher than co-polarization (HH and VV) [17–19]. Because of the differ-
ent penetration abilities, some studies also showed that C-band SAR images were more
closely related to forest crowns, while L-band images received more reflection information
of trunks and branches [20–23]. Although L-band SAR images have higher saturation levels
for mapping forest FSV, they still affect the accuracy of estimating forest FSV, especially for
mature planted forests [24–27]. Furthermore, previous results have shown that the accuracy
of mapping FSV had been greatly improved by using multiple bands SAR images [28–30].
However, it is still an uncertain question to clarify the combined effects of bands and
polarization modes for different tree species and their growth conditions.

Additionally, forest types are also one of the key factors that influences the sensitivity
between forest FSVs and features extracted from PolSAR images [31,32]. Previous studies
have indicated that the accuracy and saturation levels of mapping FSV have significant
differences in temperate conifers and boreal conifers forests using the same bands of SAR
images [33]. Moreover, the accuracy of mapped AGB in deciduous and evergreen forests
has great gaps using Sentinel-1 images in the same region [28]. Therefore, it is valuable to
analyze seasonal factors for mapping forest FSV using dual polarization SAR images in
deciduous forests.

The objective is to clarify the response of forest FSV to various dual polarization SAR
images with different bands and polarization modes in deciduous (Larch) and evergreen
(Chinese pine) forests and interpret the combined effects of mapping forest FSV using GF-3,
Sentinel-1, and ALOS-2 dual SAR images acquired in the non-growing season. In this study,
several types of alternative features were initially extracted from three types of acquired
dual polarization SAR images, and the sensitivity between features and forest FSV was
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analyzed to clarify the response of forest FSV to bands and polarization modes. Finally,
using the sequential forward selection method and four machine learning models, mapped
FSVs were derived from various combined images with bands and polarization modes in
evergreen and deciduous forests in the non-growing season.

2. Materials and Methods
2.1. Studying Area

The study was conducted in the area of Wangyedian Experimental Forest Farm, located
in Harqin Banner, Inner Mongolia Autonomous Region, China (Figure 1). The geographic
coordinates of the forest farm are east longitude ranged from 118◦09′ to 118◦30′ and north
latitude ranged from 41◦21′ to 41◦39′, respectively. The terrain is characterized by mid-low
mountainous areas, with elevations ranging from 600 m to 1890 m. According to statistics
data from 2016, the area of forest cover is up to 23,300 hectares, with a forest coverage rate of
93%. The total volume of timber is nearly 1.527 million m3, and 49.78% of the research area
(approximately 11,600 hectares) is covered by planted forests, mainly tree species of Larch
(Larix principles-Ruprecht and Larixolgensis) and Chinese pine (Pinus tabuliformis).
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Figure 1. The location of the study area and maps of ground samples.

2.2. Ground Data

For mapping forest FSV, the field-measured data in this study were collected in October
2017. Based on the age and tree species, a total of 81 ground samples (Larch: 38 and Chinese
pine: 43) were determined by a stratified random sampling method. For each sample with
a size of 25 m × 25 m, the position of corners and centers were precisely surveyed by
GNSS with errors of less than 10 cm. And then, the tree height, DBH (diameter at breast
height), and crown size of each tree in sample were measured. The volume of each tree
was calculated using the bivariate volume equation based on the collected tree parameters
(Table 1). Finally, FSV was obtained by the sum of all trees in one sample. The distribution
of FSV is illustrated in Figure 2.
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Table 1. The bivariate volume formulas of two planted tree species.

Tree Species Volume Formula Note

Chinese pine V = 0.013464− 0.001967×D + D2 + 0.000628×D×H V: Volume
+ 0.000032×H×D2 − 0.003173×H D: Diameter

Larch V = −0.001498+ 0.00007×D2 + 0.000901×H+ 0.000032×H×D2 H: Height
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2.3. Dual Polarization SAR Images and DEM

In this study, forest FSV was estimated using three types of C and L-bands dual
polarimetric SAR images acquired in March 2017, including GF-3 (C-band), Sentinel-1
(C-band), and ALOS-2 (L-band). Table 2 listed the information of acquired multi-band
dual polarization SAR images. For GF-3 and ALOS-2 images, the polarization mode is HH
and HV, and for Sentinel-1 images, the polarization mode is VV and VH. Additionally, an
open-sourced digital elevation model (DEM) with a spatial resolution of 30 m was also
employed to geocode the SAR images.

Table 2. The lists of acquired multi-band dual polarization SAR images.

Number Band Acquired Time Sensors Polarization Modes Incidence Angle Resolution

1 C-band 2017.03.18 GF-3 HH and HV 38.57◦ 2.25 m × 3.12 m
2 C-band 2017.03.04 Sentinel-1 VV and VH 39.50◦ 2.32 m × 13.89 m
3 L-band 2017.03.09 ALOS-2 HH and HV 31.41◦ 4.29 m × 3.09 m

2.4. Dual Polarization SAR Image Pre-Processing

Normally, several image pre-processing steps were employed before extracting alterna-
tive features from dual polarization SAR images. Firstly, radiation calibration was applied
to convert the amplitude information into quantitative values. Secondly, the multi-look
processing and adaptive Frost filtering with a window size of 5 × 5 were performed to
smooth the coherent speckle noise of the SAR image. In addition, topographic radiation
correction was also needed to reduce the topographic influences, such as shrinkage, overlay,
and shadowing. Finally, all images were geocoded using external digital elevation model
(DEM) with spatial resolution of 30 m. All of the above pre-processing steps were done in
ENVI 5.6 software.
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2.5. Feature Extraction

For dual polarization SAR images, it is rather necessary to extract enough features for
mapping forest FSV, and backscattering coefficients with different polarizations are initially
extracted. Commonly, these backscattering coefficients of dual polarization SAR include
σHH, σHV (GF-3 and ALOS-2) and σVH, σVV(Sentinel-1), for a total of six backscattering
coefficients. For increasing the number of alternative features, mathematical operations
between backscattering coefficients with different polarizations were applied and eighteen
derived features [1] were extracted from each type of SAR image, for a total of 54 derived
features from three SAR images in this study (Table 3).

Table 3. The list of backscattering coefficients and their derived features extracted from three acquired
SAR images.

Number Feature Note Number Feature Note

1 HH (geo), VV (geo)
√

a2 + b2 12 X8 σHV/(σHH + σHV),
σVH/(σVV + σVH)

2 HV (geo), VH (geo)
√

a2 + b2 13 X9 (σHH)2, (σVV)2

3 σHH, σVV dB 14 X10 (σHV)2, (σVH)2

4 σHV, σVH dB 15 X11 (X1)2

5 X1 σHH + σHV, σVV + σVH 16 X12 (X2)2

6 X2 σHH-σHV, σVV-σVH 17 X13 (X3)2

7 X3 σHH/σHV, σVV/σVH 18 X14 (X4)2

8 X4 σHV/σHH, σVH/σVV 19 X15 (X5)2

9 X5 σHH*σHV, σVV × σVH 20 X16 (X6)2

10 X6 (σHH-σHV)/(σHH + σHV),
(σVV-σVH)/(σVV + σVH) 21 X17 (X7)2

11 X7 σHH/(σHH + σHV),
σVV/(σVV + σVH) 22 X18 (X8)2

Note: a and b are the real and imaginary components of SLC image; HH (geo), VV (geo), HV (geo) and VH
(geo) are the intensity of HH, VV, HV and VH polarization with a linear form; σHH, σVV, σHV and σVH
are backscattering coefficients of HH, VV, HV, and VH polarization; X1–X18 are derived features related to
backscattering coefficients.

Furthermore, Gray Level Co-occurrence Matrix (GLCM) was also employed to extract
textural information from each polarized intensity image (σHH, σHV, σVH, and σVV); there
were eight textural features, including mean, variance, homogeneity, contrast, dissimilarity,
entropy, second moment, and correlation, which were obtained from each image with
various window sizes (5 × 5, 7 × 7, 9 × 9). In this study, 144 texture features were extracted
from three SAR images.

2.6. Feature Selection and Models

To obtain the optimal feature set, the sensitivity between features and FSV was firstly
evaluated by the Pearson correlation coefficient and the absolute values of the correlation
were also obtained. Then the features were ordered in descending order according to the
Pearson correlation coefficient. After obtaining sorted features, the sequential forward
selection method and four machine learning models were employed to construct wrapped
feature selection methods [1,34]. Finally, optimal feature sets were obtaining by removing
the features with poor contributions to the accuracy of estimating FSV. In this study, K-
Nearest Neighbors Regression (KNN), Multiple Linear Regression (MLR), Random Forest
Regression (RF), and Support Vector Machine Regression (SVR) were employed to map FSV
using wrapped feature selection methods. All four regression models were constructed in
R software, where the parameters to be tuned for KNN are the number of neighbours K,
the parameters to be tuned for RF are the number of random trees (ntree) and the number
of randomly chosen variables to split each node in the tree (mtry), the parameters to be
tuned for SVM are the penalty coefficient (C) and gamma, and no parameters are needed to
be tuned for MLR. Furthermore, combined images of different strategies (ALOS-2 + GF-3,



Forests 2023, 14, 1700 6 of 16

ALOS-2 + Sentinel-1, Sentinel-1 + GF-3, and ALOS-2 + Sentinel-1 + GF-3) were formed to
interpret the combined effects of mapping forest FSV. The framework of mapping FSV with
combined dual polarization SAR data is illustrated in Figure 3. R 4.2.3 software was used
to select features and construct four machine learning models.
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2.7. Accuracy Evaluation

Based on the number of samples, LOOCV was employed to evaluate the accuracy
of mapping FSV among various combined SAR images. Specifically, Root Mean Square
Error (RMSE), Relative Root Mean Square Error (rRMSE), and Coefficient of Determination
(R-squared, R2) were selected as the accuracy evaluation metrics for evaluating models.
The formulas of these evaluation metrics are as follows.

RMSE =

√
1
N∑n

i=1(ŷi − yi) (1)

rRMSE =

(
RMSE

yi

)
× 100% (2)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (3)

where ŷi indicates the predicted FSV, yi is the measured FSV, y indicates the mean of the
measured FSV, and n indicates the total number of samples.

3. Results
3.1. The Sensitivity between Features and Forest FSV

For planted Chinese pine and Larch in the non-growing season, the backscattering
energy with different bands and polarization modes was extracted to explore the response
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of FSV (Figure 4). The results illustrated that the scattering energy from the HH and
VV polarization mode was obviously greater than that from HV and VH, because of
differences in scattering mechanisms. Moreover, the difference of backscattering energy
from different sensors is significant in planted Chinese pine forest (Figure 4a,b), and the
difference among these bands and polarization modes is gradually reduced in planted Larch
forests (Figure 4c,d). Specially, it was difficult to distinguish the difference of backscattering
energy between ALOS-2 and Sentinel-1 in co-polarization and cross-polarization modes in
planted Larch forests. For the same polarization mode, differences of penetration capacity
with L and C-bands can still be clearly identified in deciduous forest in the non-growing
season. It is implied that the difference of backscattering energy in bands and polarization
modes can be recognized in evergreen and deciduous forest in the non-growing season.
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Moreover, the absolute values of the Pearson correlation coefficient between FSV
and all alternative features extracted from three types of sensors were used to further
explore the sensitivity. The top ten sensitivity features of planted Chinese pine and Larch
in different sensors were illustrated in Figure 5, respectively. For planted Chinese pine,
the absolute values of the Pearson correlation coefficient ranged from 0.43 to 0.51 for GF-3,
from 0.47 to 0.59 for Sentinel-1, and from 0.29 to 0.46 for ALOS-2, respectively (Figure 5).
It was found that the texture features from three types of dual polarization SAR images
correlated well with the FSV, and the absolute values of Pearson correlation between FSV
and texture features extracted from cross-polarization images had higher sensitivity than
those extracted from co-polarization images (Figure 5). For planted Larch in the non-
growing season, the texture features from three types of dual polarization SAR images
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also correlated well with the FSV (Figure 5), and the absolute values of Pearson correlation
between FSV and texture features extracted from ALOS-2 were obviously higher than those
extracted from GF-3 and Sentinel-1 (Figure 5). And in the optimal feature set, some texture
features were selected as important features by the sequential forward selection method. It
is demonstrated that features extracted from three types of dual polarization SAR images
have great potential to map FSV in evergreen and deciduous forest in the non-growing
season.
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3.2. The Results of Estimated FSV Using Single Dual Polarization SAR Images

To further evaluate the potential of these dual polarization SAR data in mapping FSV
in the non-growing season, the sequential forward selection and four machine learning
models (MLR, KNN, SVR, and RF) were employed to construct wrapped feature selection
methods, and the optimal feature sets were ultimately obtained for each type of dual
polarization SAR images. The results of estimated FSV of Chinese pine and Larch are
shown in Table 4. Among the three types of dual polarization SAR data, the differences of
rRMSE in different models were less than five percentage points.

For Chinese pine, the values of rRMSE using optimal feature sets ranged from 30.58%
to 34.08% for GF-3, from 31.60% to 37.99% for Sentinel-1, and from 29.33% to 33.07%
for ALSO-2, respectively (Table 4). The highest average accuracy of mapping FSV was
obtained using dual polarization ALSO-2 images. The results indicated that the L-band
dual polarization images (ALSO-2) have more potential than C-band images (GF-3 and
Sentinel-1) in mapping forest FSV in evergreen forest. For planted Larch, the values of
rRMSE using optimal feature sets ranged from 27.34% to 32.80% for GF-3, from 24.47% to
28.49% for Sentinel-1, and from 30.05% to 33.13% for ALSO-2, respectively (Table 4). The
highest average accuracy of mapping FSV was obtained using dual polarization Sentinel-1
images. The results also showed that the accuracy of mapping FSV using C-band dual
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polarization SAR images (GF-3 and Sentinel-1) was slightly higher than using L-band dual
polarization SAR images (ALSO-2). It is demonstrated that polarization mode is more
important than penetration capability of bands in mapping forest FSV in deciduous forest
in the non-growing season.

Table 4. The table of accuracy indices in mapping FSV using each type of dual polarization SAR
images.

Data Models

Chinese Pine Larch

RMSE
(m3/ha)

rRMSE
(%) R2 Features

Number

Average
rRMSE

(%)

RMSE
(m3/ha)

rRMSE
(%) R2 Features

Number

Average
rRMSE

(%)

GF-3

MLR 87.48 34.08 0.40 6

32.61

62.92 28.34 0.35 4

30.00
KNN 85.50 33.31 0.43 19 69.95 31.51 0.20 7
SVR 78.51 30.58 0.51 4 60.68 27.34 0.40 4
RF 83.36 32.48 0.46 12 72.79 32.80 0.14 13

Sentinel-
1

MLR 97.51 37.99 0.27 5

35.23

58.40 26.31 0.44 4

26.63
KNN 88.98 34.66 0.38 15 60.45 27.23 0.41 12
SVR 81.11 31.60 0.49 5 54.31 24.47 0.52 15
RF 94.10 36.66 0.31 11 63.24 28.49 0.35 13

ALOS-2

MLR 77.24 30.09 0.53 5

31.21

67.64 30.47 0.25 2

31.06
KNN 83.03 32.34 0.46 8 66.70 30.05 0.28 12
SVR 75.29 29.33 0.56 7 67.68 30.58 0.25 6
RF 84.89 33.07 0.44 8 73.53 33.13 0.12 13

To further validate the performance of three SAR data in mapping FSV, the scatter
plots and residuals between predicted and measured FSV of samples were demonstrated
using the models with the highest accuracy of results from each type of data (Figure 6).
The results demonstrated that the accuracy of mapping FSV in Chinese pine forests was
higher than that in Larch forests in the non-growing season. Furthermore, the number of
underestimation samples in Larch forests was obviously larger than in Chinese Pine forests.
To improve the accuracy of mapping FSV, it is valuable to further analyze the response of
FSV with a combined strategy with bands and polarization modes.
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3.3. The Results of Estimated FSV Using Combined Images of Different Strategies

To further analyze the potential of combined dual polarization SAR data with different
bands and polarization modes, the combined images of different strategies were used to
map the FSV in Chinese pine and Larch forests in the non-growing season, respectively.
The optimal feature sets of combined images were also obtained by the forward feature
selection method and four machine learning models (MLR, KNN, SVR, and RF). The
accuracy indices of mapping FSV using combined images of different strategies were listed
in Table 5.

Table 5. The accuracy indices of mapping FSV using combined images of different strategies.

Combined
Images

Chinese Pine Larch

Model RMSE
(m3/ha)

rRMSE
(%) R2 Selected

Features

Average
rRMSE

(%)

RMSE
(m3/ha) rRMSE R2 Selected

Features

Average
rRMSE

(%)

ALOS-2 +
GF-3

MLR 71.40 27.81 0.60 9

28.93

60.54 27.27 0.40 4

27.68
KNN 72.21 28.13 0.59 21 61.36 27.65 0.39 13
SVR 72.66 28.31 0.58 8 55.20 24.87 0.50 9
RF 80.45 31.46 0.49 21 68.68 30.94 0.23 13

ALOS-2 +
Sentinel-1

MLR 67.64 26.35 0.64 4

29.56

61.69 27.80 0.38 5

26.51
KNN 74.35 28.96 0.57 22 57.60 25.95 0.46 12
SVR 75.83 29.54 0.55 11 60.09 27.07 0.41 14
RF 85.67 33.37 0.43 15 55.95 25.21 0.49 13

Sentinel-1
+ GF-3

MLR 71.06 27.68 0.61 3

28.22

65.29 29.41 0.31 4

26.92
KNN 64.81 25.25 0.67 25 55.93 25.20 0.49 20
SVR 67.67 26.36 0.64 11 54.35 24.49 0.52 11
RF 86.17 33.57 0.42 20 63.42 28.57 0.34 15

ALOS-2 +
Sentinel-1

+ GF-3

MLR 70.02 27.28 0.62 5

25.60

61.83 27.86 0.38 4

26.18
KNN 57.59 22.43 0.74 21 53.55 24.13 0.53 16
SVR 54.67 21.30 0.77 9 56.91 25.64 0.47 5
RF 80.59 31.40 0.49 18 60.15 27.10 0.41 13

Using combined images of different strategies, the accuracy of mapped FSV was
obviously improved in Chinese pine and Larch forests. The values of R2 ranged from 0.42
to 0.77 for Chinese pine forest and from 0.23 to 0.53 for Larch forests, respectively (Table 5).
Moreover, the values of average rRMSE obtained from combined dual polarization images
(ranged from 25.60% to 29.56%) were significantly smaller than those from single dual
polarization images (ranged from 31.21% to 35.23%) in Chinese pine forests (Table 5), and
the best results were obtained from a combination of three types of sensors (ALOS-2 +
Sentinel-1 + GF-3). For Larch forests, the values of average rRMSE obtained from combined
dual polarization images (ranged from 26.18% to 27.68%) were slightly smaller than those
from single dual polarization images (ranged from 26.63% to 31.06%) (Table 5), and the
best results were also obtained from a combination of three types of sensors (ALOS-2
+ Sentinel-1 + GF-3). The results demonstrated that combined images with bands and
polarization modes have the capability to improve the accuracy and reliability of mapped
FSV, and the degree of accuracy improvement is related to tree species and season.

To further interpret the response of FSV with different types of dual polarization SAR
images, scatter plots and residuals between predicted and measured FSV were plotted
using the best results of each type of combination (Figure 7). The results demonstrated that
combined dual polarization images with different strategies can improve accuracy due to a
significant improvement in underestimation. It is inferred that the compensation effect with
bands and polarization modes has exciting potential to delay the saturation phenomenon.
Additionally, the results also demonstrated that overestimated results which occurred in
low FSV were also obviously improved using combined dual polarization SAR images with
different strategies, and the degree of improvement in planted Chinese pine was higher
than that in planted Larch. In this study, the maps of forest FSV were finally generated
by the best models using a combination of three types of dual polarization SAR images
(ALOS-2 + Sentinel-1 + GF-3) in evergreen (Figure 8a) and deciduous forest (Figure 8b) in
the non-growing season, respectively.



Forests 2023, 14, 1700 11 of 16

Forests 2023, 14, x 11 of 17 
 

 

Using combined images of different strategies, the accuracy of mapped FSV was ob-
viously improved in Chinese pine and Larch forests. The values of R2 ranged from 0.42 to 
0.77 for Chinese pine forest and from 0.23 to 0.53 for Larch forests, respectively (Table 5). 
Moreover, the values of average rRMSE obtained from combined dual polarization images 
(ranged from 25.60% to 29.56%) were significantly smaller than those from single dual 
polarization images (ranged from 31.21% to 35.23%) in Chinese pine forests (Table 5), and 
the best results were obtained from a combination of three types of sensors (ALOS-2 + 
Sentinel-1 + GF-3). For Larch forests, the values of average rRMSE obtained from com-
bined dual polarization images (ranged from 26.18% to 27.68%) were slightly smaller than 
those from single dual polarization images (ranged from 26.63% to 31.06%) (Table 5), and 
the best results were also obtained from a combination of three types of sensors (ALOS-2 
+ Sentinel-1 + GF-3). The results demonstrated that combined images with bands and po-
larization modes have the capability to improve the accuracy and reliability of mapped 
FSV, and the degree of accuracy improvement is related to tree species and season. 

To further interpret the response of FSV with different types of dual polarization SAR 
images, scatter plots and residuals between predicted and measured FSV were plotted 
using the best results of each type of combination (Figure 7). The results demonstrated 
that combined dual polarization images with different strategies can improve accuracy 
due to a significant improvement in underestimation. It is inferred that the compensation 
effect with bands and polarization modes has exciting potential to delay the saturation 
phenomenon. Additionally, the results also demonstrated that overestimated results 
which occurred in low FSV were also obviously improved using combined dual polariza-
tion SAR images with different strategies, and the degree of improvement in planted Chi-
nese pine was higher than that in planted Larch. In this study, the maps of forest FSV were 
finally generated by the best models using a combination of three types of dual polariza-
tion SAR images (ALOS-2 + Sentinel-1 + GF-3) in evergreen (Figure 8a) and deciduous 
forest (Figure 8b) in the non-growing season, respectively. 

 
Figure 7. The scatter plots of estimating FSV based on combined-bands SAR data for two tree spe-
cies. 

Figure 7. The scatter plots of estimating FSV based on combined-bands SAR data for two tree species.

Forests 2023, 14, x 12 of 17 
 

 

 
Figure 8. Spatial distribution of predicted FSVs obtained from ALOS-2+Sentinel-1+GF-3 in Chinese 
pine and Larch. (a) is from a machine learning model with SVR for Chinese pine; (b) is from a ma-
chine learning model with KNN for Larch. 

4. Discussion 
4.1. Polarization Response of Deciduous and Evergreen Coniferous Forests 

Previous studies showed that the sensitivity between FSVs and alternative features 
closely relates to bands and polarization modes [35–37]. For deciduous and evergreen co-
niferous forests, the difference of backscattering energy in HH polarization is mainly 
caused by the penetration capability related to bands. Therefore, the information of trunks 
and branches acquired by L-band SAR images is more than that acquired by C-band SAR 
images [38]. Furthermore, backscattering energy in HV polarization reflected from the for-
est canopy is commonly lower than that in HH polarization in the same type of sensors 
[39]. In this study, the difference of backscattering energy in co-polarization modes highly 
related to bands and tree species in the non-growing season (Figure 4). The obvious gaps 
of backscattering energy in co-polarization modes can be observed between GF-3 and 
ALOS-2 in evergreen forest (Chinese pine), and the gaps were reduced in deciduous forest 
(Larch) in the non-growing season (Figure 4). Moreover, features extracted from Sentinel-
1 with VV polarization have more potential than those extracted from ALOS-2 and GF-3 
images in mapping FSV in deciduous forest in the non-growing season (Figure 5). It is 
inferred that polarization modes are the key factor in mapping FSV in deciduous forest 
without leaves [40,41]. 

In addition, the sensitivity between features and FSVs is influenced not only by bands 
and polarization modes, but also by forest structure [42–47]. Previous studies have shown 
that polarization features are highly correlated with forest parameters in evergreen forest 
[48]. Normally, backscattering energy extracted from dual SAR images with C-band 
mainly reflects forest canopy information, and the images with L-band reflects trunk in-
formation below the canopy [49,50]. In the non-growing season, the main difference be-
tween evergreen and deciduous forests is the depth of crowns. For deciduous forests with-
out leaves, the effect of microwave signal penetration on the scattering energy becomes 
weak, and the polarization modes become the main factor affecting the scattering signal. 
In this study, the values of correlation between polarization features and FSV in evergreen 
coniferous forests (Chinese pine) were higher than those in deciduous coniferous forests 
(Larch) in the non-growing season. Specially, the polarization features extracted from Sen-
tinel-1 images were highly correlated with FSV of evergreen coniferous forests (Chinese 
pine), but the estimated accuracy of mapped FSV using single Sentinel-1 images was the 
lowest among three types of sensors. For deciduous forests without leaves, the correla-
tions between features extracted from ALOS-2 and FSV were slightly higher than those 
extracted from Sentinel-1, but the accuracy of mapped FSV using Sentinel-1 images was 
higher than that using ALOS-2 images in deciduous coniferous forests (Larch). In the non-
growing season, the results implied that the accuracy of mapping FSV in evergreen 

Figure 8. Spatial distribution of predicted FSVs obtained from ALOS-2+Sentinel-1+GF-3 in Chinese
pine and Larch. (a) is from a machine learning model with SVR for Chinese pine; (b) is from a
machine learning model with KNN for Larch.

4. Discussion
4.1. Polarization Response of Deciduous and Evergreen Coniferous Forests

Previous studies showed that the sensitivity between FSVs and alternative features
closely relates to bands and polarization modes [35–37]. For deciduous and evergreen
coniferous forests, the difference of backscattering energy in HH polarization is mainly
caused by the penetration capability related to bands. Therefore, the information of trunks
and branches acquired by L-band SAR images is more than that acquired by C-band
SAR images [38]. Furthermore, backscattering energy in HV polarization reflected from
the forest canopy is commonly lower than that in HH polarization in the same type of
sensors [39]. In this study, the difference of backscattering energy in co-polarization modes
highly related to bands and tree species in the non-growing season (Figure 4). The obvious
gaps of backscattering energy in co-polarization modes can be observed between GF-3 and
ALOS-2 in evergreen forest (Chinese pine), and the gaps were reduced in deciduous forest
(Larch) in the non-growing season (Figure 4). Moreover, features extracted from Sentinel-1
with VV polarization have more potential than those extracted from ALOS-2 and GF-3
images in mapping FSV in deciduous forest in the non-growing season (Figure 5). It is
inferred that polarization modes are the key factor in mapping FSV in deciduous forest
without leaves [40,41].
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In addition, the sensitivity between features and FSVs is influenced not only by
bands and polarization modes, but also by forest structure [42–47]. Previous studies have
shown that polarization features are highly correlated with forest parameters in evergreen
forest [48]. Normally, backscattering energy extracted from dual SAR images with C-band
mainly reflects forest canopy information, and the images with L-band reflects trunk
information below the canopy [49,50]. In the non-growing season, the main difference
between evergreen and deciduous forests is the depth of crowns. For deciduous forests
without leaves, the effect of microwave signal penetration on the scattering energy becomes
weak, and the polarization modes become the main factor affecting the scattering signal. In
this study, the values of correlation between polarization features and FSV in evergreen
coniferous forests (Chinese pine) were higher than those in deciduous coniferous forests
(Larch) in the non-growing season. Specially, the polarization features extracted from
Sentinel-1 images were highly correlated with FSV of evergreen coniferous forests (Chinese
pine), but the estimated accuracy of mapped FSV using single Sentinel-1 images was the
lowest among three types of sensors. For deciduous forests without leaves, the correlations
between features extracted from ALOS-2 and FSV were slightly higher than those extracted
from Sentinel-1, but the accuracy of mapped FSV using Sentinel-1 images was higher than
that using ALOS-2 images in deciduous coniferous forests (Larch). In the non-growing
season, the results implied that the accuracy of mapping FSV in evergreen coniferous forests
(Chinese pine) depends on bands [28,51], while mapping FSV in deciduous coniferous
forests (Larch) mainly depends on polarization modes in the non-growing season [28].

4.2. Combined Effects of Multi-Bands Dual Polarization SAR Images

Because of different penetration capabilities and distinct microwave scattering pro-
cesses in evergreen and deciduous coniferous forests, the accuracy of mapping FSV com-
monly depended on the bands and polarization modes [52–54]. Previous studies have
shown that the accuracy of estimating FSV using the L-band dual polarization SAR images
is higher than using C-band images, caused by penetration capabilities improving the
underestimation results and delaying the saturation levels [55,56]. In this study, using
single-band polarization SAR images, the best accuracy of FSV estimation in evergreen
coniferous forests (Chinese pine (R2) ranged from 0.49 to 0.56) was significantly higher
than in deciduous coniferous forests (Larch (R2) ranged from 0.28 to 0.52). The number
of samples with underestimated FSV in deciduous forests (Larch) was larger than that in
evergreen coniferous forests (Chinese pine) (Figure 6). It is confirmed that the L- band
dual polarization SAR images are more suitable for mapping FSV in evergreen forest (Chi-
nese pine), and Sentinel-1 images with VV and VH polarization may be more suitable for
mapping FSV in deciduous coniferous forests (Larch) in the non-growing season.

Previous studies have also shown that combined images with different bands and
polarization modes can improve the accuracy of mapping FSV [53,57]. The degree of
accuracy improvement is severely related to the combination strategies and forest structure
parameters. In this study, the results demonstrated that the accuracy of mapping FSV using
combined SAR images was significantly improved compared to the results derived from a
single type of sensor (Figure 9). The main reason for the improvement of accuracy is that
overestimation and underestimation have been greatly alleviated using combined SAR
images. It is confirmed that combined effects of multi-bands dual polarization SAR images
have great potential to delay saturation levels.

In addition, the accuracy of mapping FSV using combined images related to combina-
tion strategies. In this study, the results also demonstrated that there is little variation in
accuracy between different combinations using various combined images with two types of
sensors; the best results were obtained from a combination of three types of sensors (ALOS-
2 + Sentinel-1 + GF-3). It is implied that dual polarization SAR images with various bands
and various polarization modes contain different scattering information for evergreen and
deciduous coniferous forests, and these complementarily make an important contribution
to improving the accuracy of mapping FSV [36,54].
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5. Conclusions

In this study, three dual polarization SAR images (GF-3, Sentinel-1, and ALOS-2) were
acquired in March 2017 in planted Larch and Chinese pine forests. Then, backscattering
energy of co-polarization and cross-polarization and sensitivity between FSV and all alter-
native features were analyzed to express the difference of bands and polarization modes in
deciduous and evergreen forests in the non-growing season. The results demonstrated that
the difference in backscattering energy in bands and polarization modes can be recognized
in evergreen and deciduous forests in the non-growing season. Furthermore, it is also
implied that polarization mode is more important than penetration capability in mapping
forest FSV in deciduous forests in the non-growing season. Comparing single and dual
polarization images, the accuracy of mapped FSV was obviously improved in Chinese
pine (ranged from 25.60% to 29.56%) and Larch (ranged from 26.18% to 27.68%) forests
using combined images with different strategies. The best results were obtained from the
combination of three types of sensors (ALOS-2 + Sentinel-1 + GF-3). Additionally, it is also
confirmed that compensation effects with bands and polarization modes not only have
great potential to delay the saturation phenomenon, but also have the capability to reduce
errors caused by overestimation. Mapping forest FSV using dual polarization SAR images
is rarely conducted at non-growing season. The purpose of this study was to analyze the
response of FSV to dual polarization SAR images with bands and polarization modes in the
non-growing season, and to clarify the difference between bands and polarization modes
in deciduous and evergreen forests. In addition, the study confirmed that the accuracy of
mapping FSV using combined images related to combination strategies. To further confirm
that the response of forest FSV varied with season, more dual polarization SAR images and
more diverse types of forest will be employed to conduct studies for clarifying the response
changes during the growing season.
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