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Abstract: The utilization of multi-temporally integrated imageries, combined with advanced tech-
niques such as convolutional neural networks (CNNs), has shown significant potential in enhancing
the accuracy and efficiency of tree species classification models. In this study, we explore the ap-
plication of CNNs for tree species classification using multi-temporally integrated imageries. By
leveraging the temporal variations captured in the imageries, our goal is to improve the classification
models’ discriminative power and overall performance. The results of our study reveal a notable
improvement in classification accuracy compared to previous approaches. Specifically, when com-
pared to the random forest model’s classification accuracy of 84.5% in the Gwangneung region, our
CNN-based model achieved a higher accuracy of 90.5%, demonstrating a 6% improvement. Further-
more, by extending the same model to the Chuncheon region, we observed a further enhancement in
accuracy, reaching 92.1%. While additional validation is necessary, these findings suggest that the
proposed model can be applied beyond a single region, demonstrating its potential for a broader
applicability. Our experimental results confirm the effectiveness of the deep learning approach in
achieving a high accuracy in tree species classification. The integration of multi-temporally integrated
imageries with a deep learning algorithm presents a promising avenue for advancing tree species
classification, contributing to improved forest management, conservation, and monitoring in the
context of a climate change.

Keywords: tree species classification; multi-temporally integrated imageries; convolutional neural
networks (CNNs); deep learning; forest management

1. Introduction

Tree species classification is instrumental in deepening our understanding of the
distinct characteristics and functional roles exhibited by different tree species within ecosys-
tems [1–3]. Each species possesses specific traits, such as growth rates, carbon sequestration
capacities, and tolerance to environmental stressors [4]. With climate change introducing
new challenges, including altered temperature and precipitation patterns, increased fre-
quency of extreme events, and shifts in species distributions [5,6], accurate classification
becomes crucial in evaluating the responses and adaptive capacities of tree species to
changing environmental conditions.

In recent years, the utilization of multi-temporally integrated satellite imageries has
shown significant potential in tree species classification [7]. Ref. [8] conducted a study
exemplifying this approach, highlighting its benefits in accurately identifying and catego-
rizing tree species. Multi-temporally integrated satellite imageries involve the acquisition
and integration of satellite data from multiple time points, capturing seasonal variations
and long-term changes in vegetation patterns. This approach provides researchers with a
comprehensive and dynamic view of the landscape, enabling them to assess the temporal
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dynamics of tree species composition and distribution. Ref. [8] successfully demonstrated
the effectiveness of multi-temporally integrated satellite imageries by combining various
data sources, including high-resolution satellite imagery, multi-spectral data, texture infor-
mation, and vegetation indices. Through the integration of these datasets across different
time points, they were able to capture the phenological changes and unique spectral signa-
tures associated with different tree species. This integration of multi-temporal data resulted
in a more robust classification algorithm capable of differentiating between tree species
with higher accuracy.

Although [8] focused on utilizing a machine learning-based random forest model, the
complexity of the data suggests the potential for the future implementation of deep learning
approaches. The utilization of deep learning algorithms enhances the accuracy and robust-
ness of tree species classification models, contributing to improved forest management,
biodiversity conservation, and ecosystem health monitoring. Moreover, deep learning
techniques hold promise in assessing the impacts of climate change on tree species distribu-
tion and identifying areas of vulnerability or resilience [9]. It is worth noting that various
parameters of convolutional neural networks (CNNs) can affect tree species classification
results. For instance, in U-net-based CNNs, adjusting parameters such as patch size, epoch,
patches per image, blur distance, class weight, and loss weight can significantly impact the
classification outcomes. Notably, patch size and epoch are particularly influential factors in
determining the classification results.

The absence of red-edge and/or SWIR bands in the data limits its utility, especially
for ecosystem monitoring and agricultural management. These bands are essential for
estimating biophysical and biochemical vegetation parameters. To enhance its applicabil-
ity for forestry research, additional wavelengths such as water vapor (WVP) and SWIR
bands are necessary to analyze the spectral reflection characteristics of trees in more detail.
However, currently, domestic satellites lack these bands, requiring the use of satellites
such as Landsat, Sentinel, and MODIS to analyze forest resources. The integration of
heterogeneous imageries from different satellites may introduce errors due to variations
in the spatial and spectral resolutions. Studies integrating specific bands have shown an
improved classification accuracy for tree species. For instance, Ref. [10] achieved an overall
average accuracy of 77.21% by combining VNIR-SWIR bands in tree species classification
using Aster imageries. Similarly, Ref. [11] achieved a performance of up to 88.32% by
integrating red-edge and SWIR bands in high-resolution land cover classification.

The characteristics of each tree species, such as texture, color tone, and pattern,
are essential for accurate identification. The crown forms of different tree species ex-
hibit distinct features, such as Pinus densiflora’s umbrella shape with star-like branches or
Larix kaempferi’s conical form with layered branches. Although visually interpreting these
crown characteristics from satellite imageries is challenging, studies have estimated the
wavelength differences based on their crown features. Texture information has also been
utilized in tree species classification analysis. Researchers have employed techniques, such
as gray-level co-occurrence matrix (GLCM), to extract texture features from imageries.
Studies have shown that incorporating texture information improves classification accuracy.
For instance, Ref. [12] demonstrated that using texture information from Landsat imageries
increased the classification accuracy by at least 3.6%.

Vegetation indices derived from satellite imageries provide valuable insights into
tree growth patterns, which are influenced by environmental conditions. Multi-temporal
vegetation indices offer intrinsic characteristics for each tree species. They have been
used for forest monitoring, biophysical vegetation analysis, and land-cover classification.
Ref. [13] classified vegetation in urban areas using normalized difference vegetation index
(NDVI) and green vegetation index (GVI) derived from KOMPSAT imageries and aerial
photographs. Integrating specific bands, incorporating texture information, and utiliz-
ing multi-temporal vegetation indices are valuable approaches to improving tree species
classification accuracy.
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In this study, we adjusted these parameters to construct the input dataset from multi-
temporally integrated satellite imageries and trained them to learn the characteristics
of forests in South Korea. Our aim was to design a deep learning-based tree species
classification model that can estimate tree classes for forests across the entire country
of South Korea. We compared the results with the previous random forest model and
highlighted the improvements achieved by our proposed model.

2. Materials and Methods

The research flow for tree species classification is illustrated in Figure 1. The input
data include pre-processed multi-temporal wavelengths from RapidEye and Sentinel-2,
gray-level co-occurrence matrix (GLCM) of NIR band, and vegetation indices. The reference
data were obtained from Korea Forest Service’s field survey-based forest type information,
which was used to create a refined forest type map. The study evaluated the accuracy of
tree species classification using different input datasets, represented by scenarios 1 to 6.
Building on [8], the results from the selected best scenarios, scenario 4 and scenario 6, were
analyzed and compared for their accuracy through deep learning. The scenarios 1 to 6
represent different combinations of input data as follows (* RE: RapidEye; S2: Sentinel-2,
P: previous study, T: this study):

- (P) Scenario 1: wavelengths of RE
- (P) Scenario 2: wavelengths of RE, GLCM statistics
- (P) Scenario 3: wavelengths of RE, GLCM statistics, vegetation indices from RE
- (P,T) Scenario 4: wavelengths of RE and S2, GLCM statistics
- (P) Scenario 5: wavelengths of RE and S2, GLCM statistics, vegetation indices from RE
- (P,T) Scenario 6: wavelengths of RE and S2, GLCM statistics, vegetation indices from

RE and S2

Figure 1. Research flow for the study.
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2.1. Study Sites

In addition to the Korea National Arboretum (KNA) located in the Gwangneung forest
between Namyangju and Pocheon City in Gyeonggi Province, our research extended to
include the Chuncheon area. The selection of this area was based on its high potential for
the development of economic forest complexes or forest industrial parks, characterized by
an active participation from local residents and favorable conditions for forest management.
Specifically, the Chuncheon management complex was chosen to encompass large-scale
(500 hectares or more), well-organized, and consolidated private forests with excellent
forest management conditions. In this study, we compared the accuracy of tree species
classification between the natural forest area of Gwangneung and the managed forest area
of Chuncheon.

2.2. Input Dataset from Satellite Imageries

In order to facilitate the implementation of deep learning across different regions
under consistent input data conditions, similarly to the approach employed in the study
conducted by [8], we prepared the dataset using the same input data as theirs. The dataset
consisted of pre-processed satellite imagery, specifically high-resolution RapidEye and
low to medium-resolution Sentinel-2 imageries. These imageries encompassed a range of
spectral wavelengths, which were utilized for subsequent analysis. For the pre-processing
of satellite imageries, we conducted several steps following established methodologies.
First, geometric and orthometric correction were performed using a 1:5000 resolution
national forest map to ensure accurate spatial alignment. Next, atmospheric correction
was carried out using the quick atmospheric correction (QUAC) model, which effectively
removes atmospheric interference and improves image quality. Due to the varying growth
characteristics preferred by different tree species and their distinct geographic distributions,
it is necessary to incorporate topographic factors that can account for these variations
to perform the appropriate corrections [14]. So, terrain correction was applied using the
SCS + C technique, considering the topographic variations present in the imagery. Terrain
correction was adopted based on the methodology described by [15].

To extract meaningful features from the satellite imagery, we employed a range of
techniques that encompassed both texture analysis and vegetation indices. The gray-level
co-occurrence matrix (GLCM) played a pivotal role in capturing texture information by
analyzing the near-infrared band, allowing us to discern spatial patterns within the imagery.
In this regard, we computed seven essential GLCM statistics, namely the mean, variation,
homogeneity, contrast, dissimilarity, entropy, and angular second moment. This compre-
hensive approach accounted for the influence of the window size utilized in generating
texture information, as its selection profoundly impacts the accuracy of tree species classifi-
cation [16–18]. In addition to the GLCM, we calculated a diverse set of widely recognized
vegetation indices. These indices included the difference vegetation index (DVI), green
normalized difference vegetation index (GNDVI), infrared percentage vegetation index
(IPVI), normalized difference index using band 3 and 4 (NDI34), normalized difference
vegetation index (NDVI), ratio vegetation index (RVI), transformed normalized difference
vegetation index (TNDVI), global vegetation moisture index (GVMI), normalized burn
ratio (NBR), and simple MIR/NIR ratio drought index (RDI) [19–28]. By leveraging these
indices, we gained insights into critical vegetation attributes such as density, health, and
moisture content, all of which play a pivotal role in tree species classification and effective
forest management.

It is important to note that detailed descriptions of the preprocessing methods can
be found in the study by [8], serving as a comprehensive reference for the applied tech-
niques. The utilization of this consistent dataset allows for a standardized comparison and
evaluation of tree species classification accuracy across the natural forest of Gwangneung
area and the managed forest of Chuncheon area, contributing to a deeper understanding of
the potential applications of deep learning in forest management complexes. The detailed
information of input datasets is in Table 1.
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Table 1. Detailed information of input datasets.

Group Satellite Spatial Resolution (m) Time Resolution (days) Swath Width (km) Spectral Bands Center Wavelength (nm) Band Width (nm)

Sa
te

lli
te

Im
ag

er
ie

s

RapidEye
5 5.5 77

Blue 475 70

Green 555 70

Red 657.5 55

Red edge 710 40

NIR 805 90

Acquisition date in Gwangneung: 2019.03/05/07/09/12
Acquisition date in Chuncheon: 2019.04/05/09/10/12

Sentinel-2

60

5 290

Coastal aerosol 443 20

10

Blue 490 65

Green 560 35

Red 665 30

20

Red edge 705 15

Red edge 740 15

Red edge 783 20

10 NIR 842 115

20 Red edge 865 20

60
Water vapor 945 20

SWIR-Cirrus 1375 30

20
SWIR 1610 90

SWIR 2190 180

Acquisition date in Gwangneung: 2019.03/05/09
Acquisition date in Chuncheon: 2019.03/05/09
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Table 1. Cont.

Group Satellite Spatial Resolution (m) Time Resolution (days) Swath Width (km) Spectral Bands Center Wavelength (nm) Band Width (nm)

gr
ay

-l
ev

el
co

-o
cc

ur
re

nc
e

m
at

ri
x

(G
LC

M
)

Indices Equation

Mean
quantk

∑
i=0

quantk
∑

j=0
i × hc(i, j)

Variation
quantk

∑
i=0

quantk
∑

j=0
(i − µ)2 × hc(i, j)

Homogeneity
quantk

∑
i=0

quantk
∑

j=0

1
1+(i−j)2 × hc(i, j)

Contrast
quantk

∑
i=0

quantk
∑

j=0
(i − j)2 × hc(i, j)2

Dissimilarity
quantk

∑
i=0

quantk
∑

j=0
hc(i, j)2×

∣∣∣i − j
∣∣∣

Entropy
quantk

∑
i=0

quantk
∑

j=0
hc(i, j)× log[hc(i, j)]

Angular second moment
quantk

∑
i=0

quantk
∑

j=0
hc(i, j)2

where quantk is the quantization level of band k (e.g., 28 = 0 to 255) and hc(i, j) is the (i, j)th entry in one of the angular brightness value spatial-dependency matrices

Ve
ge

ta
ti

on
In

di
ce

s

Difference Vegetation Index (DVI) BNIR − BRed

Green Normalized Difference Vegetation Index (GNDVI)
BNIR−BGreen
BNIR+BGreen

Infrared Percentage Vegetation Index (IPVI) BNIR
BNIR+BRed

Normalized Difference Index (NDI34)
BRed edge−BRed
BRed edge+BRed

Normalized Difference Vegetation Index (NDVI)
BNIR−BRed
BNIR+BRed

Ratio Vegetation Index (RVI) BNIR
BRed

Transformed Normalized Difference Vegetation Index (TNDVI)
√

BNIR−BRed
(BNIR+BRed)+0.5

Global Vegetation Moisture Index (GVMI)
(BWVP+0.1)−(B SWIR+0.02)
(BWVP+0.1)+(B SWIR+0.02)

Normalized Burn Ratio (NBR)
BWVP−BSWIR
BWVP+BSWIR

Simple Ratio MIR/NIR Ratio Drought Index (RDI) BSWIR
BWVP
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The Jeffries–Matusita Distance (JMD) serves as a valuable measure for assessing the
dissimilarity between selected independent variables within a deep learning model. Rang-
ing from 0 (indicating identical distributions) to 1.414 (representing complete dissimilarity),
JMD is frequently employed to quantify the degree of separation [29–31]. In our study, all
of the independent variables used exhibited a significantly high degree of separation across
the various indices. This observation affirms their suitability for a robust model evalua-
tion and underscores their effectiveness in capturing distinct patterns and features within
the dataset.

2.3. Referrence Dataset from Field Based Refined Forest Type Map

The primary data source for tree species classification in this study was the forest
type map, a widely utilized forest map in South Korea. The forest type map provides
comprehensive information on attributes such as tree type, species, diameter, age, and
crown density. Produced on a national scale by Korea Forest Service (KFS), it serves as
a national forest type map for forest management purposes. The forest type map used
in this study was surveyed in the field from 2006 to 2019 and served as the ground truth
for validating the tree species classification performed by the deep learning model. To
ensure accuracy, the forest type map was examined at the stand level and underwent
meticulous corrections based on field information. Field surveys were conducted on trees
with a diameter at breast height (DBH) of 6 cm or higher, focusing on major tree species and
species with significant presence. The standard plot size for the surveys was 0.04 hectares
(20 m × 20 m), and over 800 sample plots were carefully selected to represent the tree
species composition observed during the precise field survey.

The temperate forest, specifically the Gwangneung region, predominantly consists
of nine tree species: P. densiflora, P. koraiensis, L. kaempferi, Pinus rigida, A. holophylla,
Quercus acutissima, Quercus (aliena, dentata, serrata), C. crenata, and R. pseudoacacia. These
species collectively cover an area of 28,200 hectares within the Gwangneung region. No-
tably, P. densiflora occupies 2702 hectares (9.58%), P. koraiensis covers 6682 hectares (23.70%),
L. kaempferi covers 4063 hectares (14.41%), P. rigida covers 4342 hectares (15.40%), A. holophylla
covers 786 hectares (2.79%), Q. acutissima covers 296 hectares (1.05%), Quercus (aliena, den-
tata, serrata) covers 8309 hectares (29.46%), C. crenata covers 840 hectares (2.98%), and
R. pseudoacacia covers 180 hectares (0.64%).

In the Chuncheon region, the temperate forest cover primarily comprises eight tree
species: P. densiflora, P. koraiensis, L. kaempferi, Quercus mongolica, Quercus variabilis,
Castanea crenata, Betula platyphylla, and Quercus (aliena, dentata, serrata). These species collec-
tively occupy an area of 590 hectares within the Chuncheon region. Notably, P. densiflora
covers 82 hectares (13.90%), P. koraiensis covers 51 hectares (8.64%), L. kaempferi covers
47 hectares (7.97%), Quercus mongolica covers 291 hectares (49.32%), Quercus variabilis covers
54 hectares (9.15%), Castanea crenata covers 6 hectares (1.02%), Betula platyphylla covers
40 hectares (6.78%), and Quercus (aliena, dentata, serrata) covers 19 hectares (3.22%). It is
worth mentioning that the selected tree species in Gwangneung and Chuncheon regions
used in this study collectively represent over 90% of the total forest area found throughout
South Korea [32].

2.4. Architecture of Convolutional Neural Networks (CNNs) for Tree Species Classification

Deep learning algorithms utilize artificial neural networks to perform “end-to-end”
learning, where the computer autonomously extracts the necessary features for data anal-
ysis. This stands in contrast to traditional machine learning techniques that require re-
searchers to manually understand data characteristics and extract features. As the amount
and complexity of data used for analysis increase, the strength of end-to-end deep learning
is maximized.

U-net is a convolutional neural network architecture that is an extension of the CNNs
architecture with minor modifications. It not only performs classification but also incor-
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porates the segmentation technique, allowing for the delineation of the corresponding
boundaries of the classification target [33].

Figure 2 illustrates the network architecture, depicting how the model processes a
single patch. The U-Net architecture is designed for a single-class training workflow for
explanatory purposes. It consists of five levels and 27 convolutional layers, with each
level representing a different pixel resolution of the model. The architecture comprises
a contracting path and an expansive path. The contracting path follows the conven-
tional architecture of a convolutional network, involving the repeated application of two
3 × 3 convolutions, each followed by a rectified linear unit (ReLU), and a 2 × 2 max pooling
operation with stride 2 for downsampling. At each downsampling step, the number of
feature channels is doubled. In the expansive path, each step involves upsampling the
feature map, followed by a 2 × 2 convolution that halves the number of feature channels.
This is followed by concatenation with the corresponding cropped feature map from the
contracting path, two 3 × 3 convolutions, each followed by a ReLU. Cropping is necessary
to account for the loss of border pixels in each convolution. The final layer employs a
1 × 1 convolution to map each component feature vector to the desired number of classes.
The output is a class activation raster, which is then converted into a mask and compared to
the mask band of the label raster. In general, when performing machine learning, the initial
learning rate is set differently, considering the size of the target area and the resolution
of the input data. Research is being conducted to determine the optimal learning rate, as
demonstrated by [34]. However, to objectively determine the appropriate learning rate for
accurate modeling depending on the detection target and the target area, separate analysis
is required. The training and the validation and testing areas were divided into sizes of
70% and 30%, respectively, in relation to the total study area.

Figure 2. The architecture of U-net-based CNNs.
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2.5. Accuracy Assessment for CNNs Model

To assess the accuracy of tree species classification, True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) were calculated. TP represents the areas
where the forest type map and the CNNs model both correctly identify the same tree
species. FN represents the cases where the forest type map and the CNNs model both
incorrectly identify different tree species compared to the reference data. Using TP, TN, FP,
and FN values, accuracy, precision, recall, f 1 score, and Intersection over Union (IoU) were
computed (Equations (1)–(5)).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

f1score =
Precision × Recall
Precision + Recall

(4)

IoU =
Precision × Recall

Precision + Recall − (Precision × Recall)
(5)

Accuracy, although it can be overly reliant on the accuracy of a specific class due to
imbalances in the input data, measures the overall correctness of the classification. Precision
represents the performance of the model in correctly identifying the relevant objects, while
recall represents the model’s ability to find all relevant instances. By averaging these metrics,
their dependency on specific classes is reduced. The f1 score is designed to prevent accuracy
from being inflated by high values of either precision or recall. It is the harmonic mean of
precision and recall [35]. Additionally, IoU calculates the ratio of overlapping regions to the
total area and serves as a metric to determine the success of detecting individual objects in
object detection tasks [36].

3. Results
3.1. CNNs-Based Tree Species Classification Using Multi-Temporally Integrated Satellite Imageries

Scenarios 4 and 6, which showed the highest accuracy in previous study using the
random forest model [8], were selected for tree species classification by running U-net-
based convolutional neural networks (CNNs). To perform tree species classification under
the optimal conditions, CNNs were operated by adjusting each parameter. The patch
size was compared by setting it to 304 × 304 and 784 × 784, considering the size of the
study area and the spatial resolution of satellite imageries, and the epoch was run up to
50 times from 20 in increments of 10. The patches per image were increased from 100 in
consideration of the epoch and executed up to a value of 250. The blur distance ranged
from a minimum of 1 to a maximum of 8, class weights ranged from a minimum of 0 to
a maximum of 3, and a loss weight of 0.5 was set considering the characteristics of the
forests and the resolution of the satellite imageries. Through 72 experiments, in which each
parameter was adjusted, it was confirmed that there was a variability in accuracy of less
than 1% at most, regardless of how much the other parameters were adjusted within the
range, except for the patch size and epoch.

The precision, which is the user accuracy of the batch and epoch statistics, indicates
how well the training is performed. In both scenarios 4 and 6, the training user accuracy was
the highest, with a value of over 87% in a patch size of 784 with epoch 50 in Gwangneung
and Chuncheon regions. In both regions, it was observed that when the patch size was set
to 304, the learning rate of CNNs was relatively slow in terms of batch and epoch accuracy,
precision, and recall. Additionally, the loss value decreased unstably, confirming that the
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patch size was not large enough to perform the classification (Figures A1–A4). This means
that a patch size of 304 is not sufficient to describe the combinations of the input dataset
utilized in this study. However, when the patch size was 784, it was confirmed that training
was rapidly performed in a batch size of less than 1000 and with epoch 5. It appears
that various data augmentation methods, such as rotation and flip, were performed at an
appropriate patch size.

In the Gwangneung region, the performance of tree species classification varied
depending on the patch size and scenarios. When a patch size of 304 was used in scenario
4, the recall values ranged from 14.0% to 42.3% across different epochs. In contrast, a patch
size of 784 achieved a consistently high classification accuracy, ranging from 59.0% to 90.5%,
even without considering vegetation indices. Similarly, in scenario 6 with a patch size of
304, the recall values ranged from 16.3% to 47.7%. However, the accuracy significantly
improved with a patch size of 784, ranging from 40.0% to 82.0%, surpassing the accuracy
obtained with a patch size of 304 (Table 2). These findings indicate that a patch size of
304 may not be suitable for accurate tree species classification in scenarios 4 and 6. In
scenarios 4 and 6, in epochs of 20 and 30 and of patch size 304, the misclassification of
needle-leaved trees (i.e., P. rigida and L. kaempferi) was remarkably high in the Gwangneung
region. This suggests that it is more difficult to perform classification on needle-leaved tree
species. As observed in the study by [14], the lower accuracy of the needle-leaved trees
classification can be attributed to the similarity in spectral characteristics among different
coniferous species.

Table 2. Epoch validation statistics of tree species classification using CNNs at the last epoch in the
Gwangneung region.

Scenario Patch Size Epoch Validation
Accuracy

Validation
Loss

Validation
Precision

Validation
Recall F1 Score IoU

4

304

20 0.909 2.951 0.313 0.140 0.097 0.107
30 0.923 3.656 0.291 0.226 0.127 0.146
40 0.940 3.594 0.431 0.312 0.181 0.221
50 0.964 1.443 0.652 0.423 0.257 0.345

784

20 0.971 0.951 0.792 0.590 0.338 0.511
30 0.981 0.434 0.847 0.785 0.407 0.688
40 0.981 0.726 0.877 0.704 0.391 0.641
50 0.993 0.100 0.906 0.905 0.453 0.827

6

304

20 0.901 6.091 0.211 0.163 0.092 0.101
30 0.952 1.385 0.657 0.339 0.224 0.288
40 0.951 1.831 0.586 0.429 0.248 0.329
50 0.966 1.215 0.656 0.477 0.276 0.382

784

20 0.948 3.132 0.687 0.400 0.253 0.338
30 0.981 0.351 0.874 0.772 0.410 0.695
40 0.992 0.166 0.909 0.884 0.448 0.812
50 0.988 0.303 0.880 0.820 0.424 0.738

Moreover, as the loss value increases, a decrease in the validation accuracy can be
expected. This observation is supported by the narrowing difference between the recall and
precision when the accuracy is high. Notably, the validation accuracy for a patch size of 784
with an epoch of 50 was comparable to the highest training accuracy achieved (Figure 3a).

In the Chuncheon region, the results diverged from those observed in the Gwangneung
region, primarily due to the increased patch size, from 304 to 784. When utilizing a patch
size of 304 in scenario 4, the recall values ranged from 40.2% to 57.5% across different
epochs. However, a patch size of 784 consistently achieved high classification accuracy,
ranging from 85.1% to 91.0%, even without considering vegetation indices. Similarly, in
scenario 6 with a patch size of 304, the recall values ranged from 37.8% to 84.4%. Notably, a
substantial improvement in accuracy was observed when the patch size was increased to
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784, ranging from 89.1% to 92.1%, surpassing the accuracy attained with a patch size of
304 (Table 3). Unlike the Gwangneung region, the inclusion of vegetation indices further
enhanced the accuracy in the Chuncheon region. This is likely because the Chuncheon
region is a well-managed plantation area where individual tree species at the stand level
are better maintained compared to the Gwangneung region, leading to clearer variations in
vegetation indices and an improved classification performance (Figure 3b).

Figure 3. Tree species classification map using CNNs with highest accuracy in both regions. (a) Gwangne-
ung region, scenario 4, patch size: 784, epoch: 50, recall: 0.905; (b) Chuncheon region, scenario 6,
patch size: 784, epoch: 50, recall: 0.921.

The validation statistics for all epochs consistently showed a stable increase in perfor-
mance when using a patch size of 784 and performing at least 30 epochs. However, with a
patch size of 304, the tree species classification was not effective even after 20 epochs. On
the other hand, for larger areas such as Gwangneung, the classification accuracy improved
from epoch 30 onwards. In the case of a quarter-sized region such as Chuncheon, proper
classification was achieved starting from epoch 40 (Figures A5–A9). The Gwangneung
region exhibited the highest recall value of 90.5% in scenario 4, employing a patch size of
784 and epoch 50, without considering vegetation indices. Similarly, in the Chuncheon
region, scenario 6 demonstrated the highest recall value of 92.1%, utilizing all input datasets
with the same patch size and epoch (Tables 2 and 3, Figure 3).

We have classified a total of 13 tree species, and the classification for species beyond
these is not yet available. The entire tree species present in the Korean forest map amounts
to a total of 50. In the future, there are numerous additional tree species that need to
be included in the classification, and to accomplish this, we believe that we will require
supplementary input data.
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Table 3. Epoch validation statistics of tree species classification using CNNs at the last epoch in the
Chuncheon region.

Scenario Patch Size Epoch Validation
Accuracy

Validation
Loss

Validation
Precision

Validation
Recall F1 Score IoU

4

304

20 0.935 2.527 0.649 0.402 0.248 0.330
30 0.945 2.663 0.701 0.451 0.274 0.378
40 0.961 0.974 0.749 0.701 0.362 0.568
50 0.952 2.113 0.762 0.575 0.328 0.487

784

20 0.985 0.412 0.844 0.851 0.424 0.735
30 0.989 0.276 0.887 0.890 0.444 0.799
40 0.990 0.332 0.913 0.827 0.434 0.767
50 0.992 0.180 0.926 0.910 0.459 0.848

6

304

20 0.945 2.442 0.617 0.378 0.234 0.306
30 0.961 1.433 0.768 0.556 0.323 0.476
40 0.973 0.832 0.878 0.715 0.394 0.650
50 0.984 0.309 0.895 0.844 0.434 0.768

784

20 0.991 0.198 0.911 0.891 0.450 0.820
30 0.989 0.213 0.883 0.886 0.442 0.793
40 0.992 0.194 0.917 0.890 0.452 0.824
50 0.993 0.126 0.926 0.921 0.462 0.858

3.2. Identifying the Topographic Factors Associated with Tree Species Misclassification

In this study, a comprehensive analysis of topographic factors, including elevation,
slope, and aspect, was conducted to investigate the reasons for misclassified tree species.
Both the true and false points of classification were extracted and compared statistically
(Table 4). The average elevation was found to be 246.77 m for true classifications and
219.58 m for false classifications, indicating an average elevation difference of 27.19 m.
The misclassified areas exhibited relatively lower topography. Similarly, the average slope
was 15.98◦ for true classifications and 20.10◦ for false classifications, representing a mean
difference of 4.12◦. The misclassified areas displayed relatively higher slope values. This
can be attributed to the effect of the valley topography characterized by low elevation and
steep slopes. It was observed that misclassifications were higher in patch size 304 compared
to patch size 784, and as the epoch increased, the influence of topographic factors decreased.
This suggests that misclassifications can be partially corrected through parameter tuning.
However, it also emphasizes the need for the appropriate topographic correction of the
satellite imageries prior to analysis in forested areas.

Regarding aspect, the azimuth was categorized into eight divisions: north, northeast,
east, southeast, south, southwest, west, and northwest. The distribution of each azimuth
category was quantitatively analyzed as a percentage of the total area. The cases with
an accurate classification were predominantly observed in the southeast, west, and east
directions. In contrast, the false classification cases were mainly distributed in the northwest,
southwest, and west directions. Notably, a significant concentration of misclassifications
occurred towards the west, possibly influenced by shadows originating from the west due
to the revisit time of RapidEye and Sentinel-2 satellites to our study sites, estimated to be
around 11:00 am.

These findings highlight the influence of topographic factors on the accuracy of
tree species classification. The variations in elevation, slope, and aspect play a crucial
role in distinguishing between the true and false classifications. The results suggest that
areas with lower elevations and steeper slopes are more prone to misclassifications, while
the distribution of shadows, particularly originating from the west, can also impact the
classification accuracy.
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Table 4. Statistics based on topographic factors in relation to true/false classification results.

Elevation True (Meter) False (Meter)

Min 62.00 62.00
Max 608.00 608.00
Avg 246.77 219.58
Std 99.83 78.61

Slope True (degree) False (degree)

Min 0.00 0.00
Max 41.68 45.04
Avg 15.98 20.10
Std 6.44 6.50

Azimuth True (Percentage) False (Percentage)

North 5.64 7.20
Northeast 12.45 9.79

East 15.02 9.57
Southeast 18.11 10.81

South 9.36 8.86
Southwest 9.92 19.67

West 15.07 13.81
Northwest 14.43 20.29

4. Discussion

The limited scope of the target area can significantly affect the accuracy of tree species
classification using U-net-based CNNs. Although U-net models have shown promising
results in various applications, their performance in specific regions may have certain
limitations. One of the main challenges is the availability and representativeness of the
training data. If the training dataset predominantly consists of samples from a particular
geographic region or lacks diversity in terms of tree species composition, the model may
struggle to generalize well to new and unseen areas.

To overcome this limitation and improve the performance of U-net models, several
approaches can be considered. Firstly, expanding the training dataset to include a more
diverse range of samples from different regions can enhance the model’s ability to capture
variations in tree species characteristics. This may involve collecting additional ground
truth data or leveraging existing datasets from a broader geographic extent. Secondly,
incorporating transfer learning techniques can be beneficial. By pretraining the U-net
model on a larger and more diverse dataset, such as a national tree species dataset, and
then fine-tuning it with region-specific data, the model can leverage the knowledge gained
from broader contexts while adapting to the specific characteristics of the target region.
In our further study, the second approach will be employed to expand the target area,
continuously adding target tree species to improve the model. In addition, careful selection
of the patch size for analysis is crucial. While larger patch sizes can capture more contextual
information and potentially improve accuracy, they may also introduce challenges in terms
of computational resources and processing time. It is essential to consider the available
hardware resources and computational constraints when determining the optimal patch
size. Striking a balance between accuracy and the practical limitations is crucial to ensure an
efficient and effective analysis. In conclusion, while U-net-based CNN models show great
potential for tree species classification, their performance in specific regions can be limited
by the narrow scope of the target area. By addressing challenges related to the training data
representation, incorporating transfer learning techniques, and carefully selecting patch
sizes, the accuracy and generalizability of U-net models can be enhanced, enabling a more
robust and accurate tree species analysis in restricted geographic regions.

A comparison with other relevant studies conducted in different geographical and
climatic conditions than our study sites was performed (Table 5). The classification accuracy
of tree species varied across tropical, temperate, and boreal climates, given the diverse
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distribution of species and variations in density and growth characteristics. Considering
these biomes, the achieved classification accuracy in our study provides valuable insights
into the performance of our proposed approach. The varying environmental factors, species
composition, and growth patterns across different climates necessitate a thorough evalua-
tion of the classification accuracy to understand the effectiveness and generalizability of our
methodology in various ecological settings. Such an analysis strengthens the robustness of
our findings and facilitates better-informed decision making for forest management and
conservation efforts worldwide.

In this study, we successfully classified a total of 13 tree species with remarkably high
accuracy, particularly when compared to previous research endeavors. Notably, even stud-
ies [37,38], which utilized similar models and climates, exhibited discrepancies in accuracy
when compared to our findings. The observed variations in accuracy can be attributed
to several factors, including the incorporation of texture information and vegetation in-
dices derived from satellite bands as inputs, as well as differences in the preprocessing
techniques applied to the satellite imageries. These discrepancies highlight the significance
of leveraging advanced data processing and feature extraction methodologies in improving
the classification outcomes. Moreover, other studies [39–41], while applying different
classification models, encountered challenges in achieving comparable accuracy, especially
in tropical climates. The complex and diverse vegetation growth conditions in tropical
regions present unique challenges for an accurate tree species classification. Factors such
as species diversity, variations in vegetation patterns, and environmental heterogeneity
can all contribute to the lower accuracy observed in studies conducted in tropical climates.
On the other hand, studies [42,43] focused on boreal climates, characterized by lower tree
densities compared to the temperate and tropical climates. As such, the accuracy achieved
in these studies was found to vary depending on the specific classification model utilized.
Notably, study [43] demonstrated a remarkably high accuracy, but it is essential to interpret
this finding with caution, as the classification focused on vegetation layers from a broader
land cover perspective, rather than the precise identification of individual tree species.

Our research stands out for its exceptional accuracy in tree species classification,
reflecting the successful incorporation of advanced techniques such as texture analysis
and vegetation indices. The observed variations in accuracy across different climates and
models highlight the importance of considering diverse environmental factors and employ-
ing sophisticated modeling approaches to optimize tree species classification in various
ecosystems. Such insights contribute to the advancement of remote sensing applications in
forestry and environmental management, allowing for more informed decision making in
sustainable forest conservation and resource management practices.

The tree species classification algorithm developed in this study aims to provide forest
analysis ready data (F-ARD) for the upcoming agricultural and forestry satellite, the com-
pact advanced satellite 500 (CAS500-4), scheduled to launch in 2025 in South Korea. The
algorithm serves as a baseline at the current stage, recognizing the need for a further vali-
dation of its performance and an additional verification of the variables used. Integrating
the algorithm with CAS500-4 holds significant potential for enhancing the forest analysis
capabilities in South Korea. By leveraging the satellite’s advanced imaging capabilities
and incorporating the developed tree species classification algorithm, valuable insights
into the country’s forest resources and their dynamics are expected to be obtained. How-
ever, it is crucial to acknowledge the inherent limitations and challenges associated with
the algorithm’s application in specific target areas. Factors such as regional variations in
tree species composition, forest structure, and environmental conditions can influence the
algorithm’s performance. Therefore, further validation efforts are required to ensure its reli-
ability and accuracy across diverse geographic regions within South Korea. The algorithm’s
contribution lies in establishing a baseline for tree species classification and providing a
starting point for the development of forest analysis products using CAS500-4 imagery. Its
results serve as a foundation for future refinements and improvements, enabling the opti-
mization of the algorithm’s performance through ongoing research and validation. As the
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agricultural and forestry satellite CAS500-4 is launched and operationalized, collaboration
between the algorithm’s development team and CAS500-4 mission stakeholders will play a
vital role. Through continued partnerships, the algorithm can be refined, validated, and
further optimized to meet the specific requirements and objectives of CAS500-4’s forest
analysis applications. Therefore, while this study’s tree species classification algorithm
presents a significant opportunity for forest analysis using CAS500-4’s F-ARD, it is crucial
to acknowledge the need for an ongoing validation, addressing the regional limitations, and
a further verification of the variables utilized. The algorithm’s results provide a baseline
that can be built upon and refined, contributing to the advancement of forest analysis
capabilities in South Korea and serving as a stepping stone for future developments in the
field of satellite-based forestry monitoring and assessment.

Table 5. Comparison of user accuracy with respect to biomes in current and previous studies.

Biomes User Accuracy Model Type of Dataset Number of Tree Species Sources

Temperate climates 0.905–0.921 U-net CNNs Satellite with
multispectral bands 13 This study

Temperate climates 0.733 U-net CNNs Satellite with
multispectral bands 9 [37]

Temperate and
tropical climates 0.865 U-net CNNs Satellite with

multispectral bands 1 [38]

Tropical climates 0.576 CNNs Satellite with
multispectral bands 1 [39]

Tropical climates 0.752 CNNs Aerial photographs with
multispectral bands 9 [40]

Tropical climates

0.756 XGB

Satellite with
multispectral bands 9 [41]

0.526 GNB

0.770 RF

0.768 GB

0.769 LR

0.663 KNN

0.826 SVM

0.813 MLP

0.800 LGBM

Boreal climates

0.703 RF

Airborne hyperspectral
and LiDAR

4 [42]
0.824 SVM

0.688 LGBM

0.817 ANNs

Boreal climates

0.970 CNNs

Satellite with
multispectral bands 1 [43]

0.840 AB

0.850 GNB

0.900 RF

0.930 KNN

0.910 QDA

CNNs: convolutional neural networks; AB: adaptive boosting classifier; GNB: naïve Bayes classifier; RF: random
forest, KNN: k-nearest neighbors; QDA: quadratic discriminant analysis; SVM: support vector machine; LGBM:
light gradient boosting; ANNs: artificial neural networks; XGB: extra gradient boosting; GB: gradient boosting;
LR: logistic regression; MLP: multi-layer perceptron.
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5. Conclusions

U-net-based CNNs are able to learn specific features of the species from satellite im-
ageries, whereas their end-to-end learning capabilities make the extensive pre-processing
of remote sensing data obsolete and simplify the widespread applications. This study
demonstrates the potential of the concerted use of satellite imageries and CNNs, providing
promising future perspectives for forest-type maps. The results of this study on tree species
classification showed an improvement in accuracy of approximately 6% compared to the
research conducted by [8] using a random forest model in the same region. Tree species
information usually requires large-scale data with high accuracy, for which field-based
methods might be too labor-intensive, whereas commonly used machine learning ap-
proaches, such as RF, might not be accurate enough. When compared to the studies [37–43],
our research achieved a commendable performance in tree species classification despite the
temperate climate conditions. These tentative conclusions await further refinement and
correction in the light of further research. However, this study has some shortcomings that
require further improvement. For example, with the input of additional tree species and
more complex heterogeneous forests, misclassification will still occur, and the appropriate
input set configuration and accuracy need to be further improved. Accordingly, research
should be pursued with the goal of classifying all tree species throughout South Korea with
a high accuracy. In future research, it is necessary to further improve the method and build
a more accurate estimation model by adding more input variables, such as topography,
climate factors, RADAR, and LiDAR in various ecosystems and standing conditions. To
further verify the feasibility of this method, more experiments and tests will need to be per-
formed by broadening the study area. However, these limitations are expected to improve
the performance of the model to a level that can be used in the field of forestry if a large
amount of training data for each tree species is continuously accumulated and applied to
the classification model.
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Appendix A

Figure A1. Epoch validation statistics for scenario 4 in the Gwangneung region, considering variations
in patch size and epoch. PS: Patch Size, NE: Epoch.
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Figure A2. Epoch validation statistics for scenario 6 in the Gwangneung region, considering variations
in patch size and epoch. PS: Patch Size, NE: Epoch.
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Figure A3. Epoch validation statistics for scenario 4 in the Chuncheon region, considering variations
in patch size and epoch. PS: Patch Size, NE: Epoch.
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Figure A4. Epoch validation statistics for scenario 6 in the Chuncheon region, considering variations
in patch size and epoch. PS: Patch Size, NE: Epoch.
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Figure A5. Tree species map for the Gwangneung region based on scenario 4, considering variations
in patch size and epoch.

Figure A6. Tree species map for the Gwangneung region based on scenario 6, considering variations
in patch size and epoch.
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Figure A7. Tree species map for the Chuncheon region based on scenario 4, considering variations in
patch size and epoch.

Figure A8. Tree species map for the Chuncheon region based on scenario 6, considering variations in
patch size and epoch.
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Figure A9. Zoomed-in version of the tree species classification results for the Gwangneung region,
highlighting areas of misclassifications and providing an explanation for the observed discrepancies.
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