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Abstract: Camellia oleifera, a woody plant indigenous to China, is primarily utilized for the production
of cooking oil. However, it is frequently afflicted by anthracnose, a highly detrimental disease
that leads to significant annual losses. Colletotrichum fructicola is the predominant etiological agent
responsible for anthracnose in Ca. oleifera. Additionally, our investigation has revealed that a bZIP
transcription factor CfHac1 in C. fructicola governs the pathogenicity and response to endoplasmic
reticulum stress. In this study, we conducted an investigation of the role of the CfPDI1 gene in
C. fructicola, which was significantly downregulated in ∆Cfhac1 under endoplasmic reticulum stress.
The CfPDI1 gene was deleted, resulting in reduced vegetative growth, conidiation, appressoria
formation, and appressorium turgor generation. Furthermore, it was observed that the ∆Cfpdi1
mutant exhibited impaired responsiveness to endoplasmic reticulum stresses, and the expression of
UPR-related genes in C. fructicola was influenced by CfPdi1. Cytological investigations indicated that
CfPdi1 is localized in the endoplasmic reticulum. Further analysis revealed that the ∆Cfpdi1 mutant
displays significantly reduced pathogenicity in Ca. oleifera. Taken together, this study illustrated
crucial functions of CfPdi1 in development, response to ER stress, autophagy, and pathogenicity
in C. fructicola.
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1. Introduction

Camellia oleifera is a major tree species grown for producing edible oil, and it is com-
monly affected by anthracnose, which is one of the most destructive diseases [1]. Col-
letotrichum, a genus of plant pathogenic fungi, is among the top 10 causative agents of
anthracnose, affecting almost every crop [2]. Our previous research has identified the
Colletotrichum gloeosporioides complex as the primary pathogen responsible for anthrac-
nose in Ca. oleifera, and Colletotrichum fructicola is the dominant pathogen [1]. We have
demonstrated that the CfSet1 and CfVps35 genes were involved in pathogenicity in C. fruc-
ticola [3,4]. As reported by Li et al. [5], it was shown that CfVps39, a constituent of the
homotypic fusion and vacuole protein sorting (HOPS) complex, exerts regulatory con-
trol over the endoplasmic reticulum (ER) pressure stress response and pathogenicity in
C. fructicola. Additionally, Zhang et al. [6,7] demonstrated that the histone acetyltransferase
CfGcn5 plays a pivotal role in modulating the responses to ER stress and pathogenicity.
Notwithstanding this awareness, the fundamental pathogenic mechanisms of C. fructicola
remain largely ambiguous, impeding significantly the prevention and control of Ca. oleifera
anthracnose.
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Previously, our team conducted an investigation of CfHac1, a bZIP transcription
factor in C. fructicola, and discovered its involvement in regulating pathogenicity and the
endoplasmic reticulum’s stress response [8]. Subsequently, we conducted a transcriptome
analysis of a ∆Cfhac1 mutant strain under ER stress induced by dithiothreitol, which
revealed a significant decrease in the A04491 gene. It was an objective in this study to
explore the function of the A04491 gene and identify a potential target for the development
of novel fungicides. The results may also lay the foundation for future breeding to improve
the disease resistance of Camellia.

2. Materials and Methods
2.1. Strains and Culture Conditions

The wild-type strain of C. fructicola utilized in this study was the CFLH16 strain, which
was isolated from Ca. oleifera [1]. All strains were cultivated on either potato dextrose
agar (PDA) or minimal medium (MM), at a temperature of 28 ◦C, under conditions devoid
of light. For the extraction of conidia, DNA, RNA, and protein, the culture strains were
subjected to liquid potato glucose broth medium (PDB).

2.2. Gene Deletion and Complementation

The coding region of CfPDI1 was replaced with the HPH gene according to the ho-
mologous recombination principle. The one-step replacement strategy of targeted gene
deletion was employed, as previously described [9]. Complementation was achieved by
introducing the constructed pYF11:: CfPDI1 vectors into protoplasts of specific mutant
strains. The primers sequences are listed in Supplementary Table S1.

2.3. Phenotypes Analysis

Growth rates were measured according to the method described by Zhang et al. [6].
To quantify sporulation, the CFLH16, ∆Cfpdi1, and ∆Cfpdi1/CfPDI1 were cultured in PDB
at 28 ◦C and 160 r/min for three days. Sporulation was determined by using a hemo-
cytometer. Appressorium formation was observed for 12 h post-inoculation (hpi), and
appressorium turgor was evaluated using cytorrhysis assays, as previously described by
Howard et al. [10]. Specifically, appressoria at 12 hpi were incubated in 2.0 M glycerol for
10 min, and the proportion of collapsed appressoria was recorded [11]. To assess stress
sensitivity, the aforementioned strains were cultivated on PDA medium supplemented
with an ER stress inducer (DTT, DL-Dithiothreitol, Solarbio: 3483-12-3) for a duration of
three days. Conidia suspensions (1 × 105/mL) of strains were inoculated on leaves of
Ca. oleifera. The experiments were performed in triplicates and repeated three times.

2.4. Observation of Fluorescence Fusion Proteins in C. fructicola

The gene encoding CfPdi1 was amplified with A04491-9F/A04491-10R primers from
the wild-type genomic DNA and fused with GFP in a Xho1-linearized pYF11-GFP con-
taining a bleomycin resistance gene. The ER-localized protein gene LHS1 was amplified
through PCR using a primer set (LHSRFPF/LHSRFPR) and fused with RFP in a Xho1-
linearized pYF11-RFP containing a hygromycin resistance gene. Two types of plasmids
were co-transformed into ∆Cfpdi1 protoplasts via PEG-mediated methods. Fluorescence
signals in the hyphae tip were observed using a fluorescence microscope.

2.5. qRT-PCR and Identification of Target Gene

Total RNA was reverse-transcribed into cDNA using reverse transcription kit (Vazyme).
A qRT-PCR was conducted on an ABI Quant Studio 3 with the application of primers, and rela-
tive gene expression was standardized by using ACTIN gene. All experiments were replicated
at least thrice, with each replication consisting of three independent biological replicates.
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2.6. Autophagy Induction and Western Blotting Assays

To elucidate the association between CfPdi1 and the autophagy process, CFLH16 and
∆Cfpdi1 strains were subjected to genetic modification with the GFP-CfATG8 gene and
subsequently cultivated in liquid CM medium for a duration of 48 h. The mycelia were
washed with ddH2O and then treated with MM-N for 5 h. The western blotting analysis
was conducted following the methodology described in our previous publication [7].

2.7. Statistical Analysis

The statistical data were presented as means ± standard deviation and subjected to a
one-way analysis of variance (ANOVA) using Duncan’s new multiple range test, with a
significance level of p < 0.01.

3. Results
3.1. Identification of CfPdi1 in C. fructicola

The analysis of transcripts demonstrated a significant decrease in the expression of
the A04491 gene in the ∆Cfhac1 mutant according to our previous expression data [12].
The qRT-PCR results indicated a significant increase in the expression of A04491 in the
wild-type strain following exposure to DTT, while its expression was downregulated in the
untreated or DTT-treated mutant strain ∆Cfhac1 (Figure 1). The results demonstrated that
the CfHac1 plays a role in governing the expression of the A04491 gene in C. fructicola.
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Figure 1. The expression levels of the A04491 in ∆Cfhac1 were analyzed using a qRT-PCR. Different
lowercase letters (a–d) indicate significant difference (p < 0.01).

The A04491 gene had a total length of 1578 bp and was responsible for encoding a
protein consisting of 518 amino acids. Through domain prediction analysis, it was deter-
mined that the gene contained three thioredoxin domains (Figure 2A). A04491 produces
amino acids that are orthologous to ScPdi1 in S. cerevisiae (NP_009887.1), hence being
designated CfPDI1. The amino acid sequence of CfPdi1 was utilized to retrieve the amino
acid sequences of homologous proteins from other species through the NCBI database and
used to construct a bootstrap neighbor-joining phylogenetic tree (Figure 2B). The results of
this study demonstrated a significant degree of similarity between the CfPdi1 protein of
C. fructicola and the ChPdi1 protein of C. higginsianum while exhibiting a comparatively
lower level of similarity with the ScPdi1 protein of S. cerevisiae. This result reveals that the
PDI1 gene is relatively evolutionarily conserved among fungi.



Forests 2023, 14, 1597 4 of 10

Forests 2023, 14, x FOR PEER REVIEW 4 of 10 
 

 

lower level of similarity with the ScPdi1 protein of S. cerevisiae. This result reveals that the 

PDI1 gene is relatively evolutionarily conserved among fungi. 

 

Figure 2. Phylogenetic analysis and domain prediction of A04491. (A): The domain prediction of 

A04491. (B): Based on the amino acid sequence, the phylogenetic tree was constructed by MEGA 7.0 

using N-J method with 1000 bootstrap replicates. 

The gene knockout strategy for CfPDI1 is depicted in Supplementary Figure S1A. 

PCR verification findings indicate that the wild-type genome exhibits a single detectable 

band when utilizing A04491-7F/A04491-8R primers targeting the gene of interest while no 

band is observed in the mutant counterpart. The Pdi1-5F/H855R primers successfully 

identified a singular band that was amplified through PCR in the mutant strain. Con-

versely, no band was observed in both the CFLH16 and ΔCfpdi1/CfPDI1, suggesting the 

successful knockout of the CfPDI1 gene in C. fructicola (Supplementary Figure S1B). Con-

sequently, we obtained the mutant ΔCfpdi1. In order to validate the mutant phenotype 

resulting from the deletion of CfPDI1, the ΔCfpdi1 was restored to its original state by 

introducing a native copy of CfPDI1 from the wild type, which encompassed a 1.5 kb pro-

moter region. 

3.2. CfPdi1 Is Localized in the ER 

Lhs1 serves as a marker located in the endoplasmic reticulum (ER) [13]. To investi-

gate the subcellular distribution of CfPdi1 in C. fructicola, we constructed two expression 

vectors containing fluorescence fusion proteins (PDI1-GFP and LHS1-RFP) and subse-

quently co-transformed them into the ΔCfpdi1 strain. The co-localization of green fluores-

cence signals from Pdi1-GFP and red fluorescence signals from Lhs1-RFP (Figure 3) sug-

gests that CfPdi1 is localized within the ER. 

Figure 2. Phylogenetic analysis and domain prediction of A04491. (A): The domain prediction of
A04491. (B): Based on the amino acid sequence, the phylogenetic tree was constructed by MEGA 7.0
using N-J method with 1000 bootstrap replicates.

The gene knockout strategy for CfPDI1 is depicted in Supplementary Figure S1A. PCR
verification findings indicate that the wild-type genome exhibits a single detectable band
when utilizing A04491-7F/A04491-8R primers targeting the gene of interest while no band
is observed in the mutant counterpart. The Pdi1-5F/H855R primers successfully identified
a singular band that was amplified through PCR in the mutant strain. Conversely, no band
was observed in both the CFLH16 and ∆Cfpdi1/CfPDI1, suggesting the successful knockout
of the CfPDI1 gene in C. fructicola (Supplementary Figure S1B). Consequently, we obtained
the mutant ∆Cfpdi1. In order to validate the mutant phenotype resulting from the deletion
of CfPDI1, the ∆Cfpdi1 was restored to its original state by introducing a native copy of
CfPDI1 from the wild type, which encompassed a 1.5 kb promoter region.

3.2. CfPdi1 Is Localized in the ER

Lhs1 serves as a marker located in the endoplasmic reticulum (ER) [13]. To investigate
the subcellular distribution of CfPdi1 in C. fructicola, we constructed two expression vectors
containing fluorescence fusion proteins (PDI1-GFP and LHS1-RFP) and subsequently co-
transformed them into the ∆Cfpdi1 strain. The co-localization of green fluorescence signals
from Pdi1-GFP and red fluorescence signals from Lhs1-RFP (Figure 3) suggests that CfPdi1
is localized within the ER.
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Figure 3. Subcellular localization of Pdi1 and Lhs1 in Colletotrichum fructicola. The endoplasmic
reticulum is indicated by white arrows. Bar = 5.0 µm.

3.3. CfPdi1 Is Involved in the Development of C. fructicola

The findings of this study demonstrate a significant reduction in the colony diameters
of ∆Cfpdi1 compared to CFLH16 and ∆Cfpdi1/CfPDI1 (p < 0.01), suggesting that the CfPDI1
gene plays a role in the regulation of growth (Figure 4A). Additionally, the ∆Cfpdi1 exhibited
a significantly lower production of conidia compared to the CFLH16 and ∆Cfpdi1/CfPDI1
(Figure 4B). The rate of appressoria formation of ∆Cfpdi1 was less than 50%, which was
significantly lower compared to those of the CFLH16 and ∆Cfpdi1/CfPDI1 (above 70%,
p < 0.01) (Figure 4C).
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Figure 4. CfPdi1 is involved in growth, sporulation, appressoria formation, and appressorium turgor
generation. The figure shows the statistical analysis of the mycelial growth rate (A), conidia forma-
tion rate (B), appressorium rate (C), and appressorium collapse rate (D). Error bars are ±standard
deviation; different lowercase letters (a,b) indicate significant difference (p < 0.01).

At 2 M glycerol, the appressorium collapse rate was around 50% in the ∆Cfpdi1
compared to 25% in the WT and ∆Cfpdi1/CfPDI1 (Figure 4D). These results illustrate
the importance of CfPdi1 in vegetative growth, conidiation, appressoria formation, and
appressorium turgor generation.
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3.4. CfPdi1 Is Essential for Pathogenicity

The results of pathogenicity testing showed that the disease areas of the ∆Cfpdi1
mutant were significantly smaller than those of the CFLH16 and ∆Cfpdi1/CfPDI1 strains on
both wounded and unwounded leaves (Figure 5A–C). These outcomes suggest that CfPdi1
plays a crucial role in the pathogenicity of C. fructicola.
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Figure 5. Pathogenicity test. (A): Uninjured and injured leaves of the tea-oil tree were subjected to
inoculation with conidial suspensions containing WT, ∆Cfpdi1, and ∆Cfpdi1/CfPDI1. (B,C): Statistical
analysis of the disease lesion areas. CK: ddH2O. Bars represent standard errors from three inde-
pendent experiments, each performed in replicates. Different lowercase letters indicate significant
difference (p < 0.01).

3.5. CfPdi1 Participates in the Responses to ER Stresses

Recent research has demonstrated that pathogens are also subjected to endoplasmic
reticulum (ER) stress originating from the host during the course of infection [14,15]. In
order to ascertain the UPR function of CfPdi1 in response to ER stress, we conducted
measurements of the growth of ∆Cfpdi1 on media inducing ER stress (7.5 mmol/L or
10.0 mmol/L DTT). The inhibition rate of ∆Cfpdi1 exhibited a significant increase when sub-
jected to treatment with 7.5 mM DTT in comparison to both the CFLH16 and ∆Cfpdi1/CfPDI1
(Figure 6A,B). A similar outcome was observed upon elevating the DTT concentration to
10.0 mM. These results suggest that CfPdi1 participates in the responses to ER stress.
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Figure 6. ER stress sensitivity testing of CfPDI1 gene-deletion mutants and expression level analysis of
four UPR-related genes in C. fructicola. (A): The growth of the wild-type strain (CFLH16) and CfPDI1
deletion mutant (∆Cfpdi1) and complemented strain (∆Cfpdi1/CfPDI1) on PDA plates containing
DTT. (B): Statistical analysis of the growth inhibition rate of three strains. (C): qRT-PCR verification
of the expression levels of four UPR-related genes in ∆Cfpdi1. Bars represent standard errors from
three independent experiments, each performed in replicates. Different lowercase letters indicate
significant difference (p < 0.01).

3.6. The Expression of UPR-Related Genes Was Influenced by CfPdi1

Considering that CfPdi1 participates in the responses to ER stress, we measured the
expression levels of four genes coding for unfolded protein response components [16] in
the aerial hypha of C. fructicola. The expression levels of LHS1 (a heat shock protein 70),
KAR2/BIP (an ER molecular chaperone), SCJ1 (a chaperone dnaJ 2), and SIL1 (a nucleotide
exchange factor) were significantly downregulated in ∆Cfpdi1 (Figure 6C). The findings of
this study indicate that CfPdi1 has a significant impact on the regulation of UPR-related
genes in C. fructicola.

3.7. The CfPdi1 Positively Regulates Autophagy Process

Western blotting results showed that the ∆Cfpdi1 mutant exhibited a notably dimin-
ished relative ratio of free GFP compared to the WT in both non-induction and after 5 h of
MM-N treatment (Figure 7), thereby corroborating the decreased autophagy level in the
∆Cfpdi1 mutant. The findings of this study indicate that CfPdi1 plays a crucial role in the
process of autophagy.
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Figure 7. CfPdi1 positively regulates autophagy. The proteolysis of GFP-CfAtg8 was analyzed using
Western blotting. The upper lanes indicate the presence of full GFP-CfAtg8 (46 kDa) while the
lower lanes indicate the presence of free GFP (26 kDa). The extent of autophagy was determined by
quantifying the proportion of free GFP in relation to the combined amount of intact GFP-CfAtg8 and
free GFP.

4. Discussion

The endoplasmic reticulum is an essential organelle that performs critical functions in
protein folding and processing, which are indispensable for the virulence and development
of fungi. The accumulation of misfolded or unfolded proteins, as well as the dysregulation
of sterols or lipids, can lead to ER stress and affect the expression of specific genes, resulting
in unfolded protein responses (UPR) [16]. The CfVAM7 gene plays a crucial role in regulat-
ing the responses of C. fructicola to ER stress and virulence [17]. Specifically, in P. oryzae,
the involvement of four ER proteins, namely PoSpf1, PoPmt4, PoLhs1, and PoErr1, has
been observed in the penetration of plants and the branching of invasive hyphae [14,18–20].
The absence of the ER molecular chaperone PoLHS1 led to a shortage in sporulation and
appressorium-mediated penetration. Likewise, the deletion of the ER retention receptor
PoERR1 resulted in the mutant’s incapacity to penetrate plants and its inability to generate
disease lesions on wounded leaves. In P. oryzae, Spf1, a P5 type ATPase localized in the ER,
is essential for fungal development and virulence due to its participation in ER functions.
The indispensability of ScPdi1 for cellular growth and the oxidation process of secretory
proteins cannot be overstated [21]. Furthermore, in Ustilago maydis, the pivotal role of
Pdi1 in regulating fungal colonization within host tissues is crucial for virulence [22]. In
the present study, we characterized the essential roles of an ER-localized protein disulfide
isomerase, Pdi1, in fungal development, response to ER stress, and virulence in C. fructicola.

The UPR is orchestrated to mitigate ER stress through the upregulation of ER chaper-
one protein transcription. In the present study, it was observed that the expression levels
of the molecular chaperones KAR2, LHS1, SCJ1, and SIL1 were markedly reduced in the
∆Cfpdi1 strain, indicating that the elimination of the CfPDI1 gene resulted in an impaired
UPR. The findings of our study suggest that the PDI1 gene plays a crucial role in the
modulation of UPR-associated genes, and additional research is required to elucidate the
underlying regulatory mechanisms. In addition, we found that the CfPDI1 gene exerts reg-
ulatory control over autophagy. However, additional investigation is required to elucidate
the association between autophagy and endoplasmic reticulum stress.

5. Conclusions

In brief, the functions of Pdi1, a protein disulfide isomerase localized in the endoplas-
mic reticulum, were investigated in C. fructicola through functional genomics assays. Our
findings indicate that CfPdi1 plays a crucial role in fungal development, response to ER
stress, autophagy, and pathogenicity. The findings of our study offer a promising avenue
for the advancement of novel fungicides that specifically target Pdi1.
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