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Abstract: The spatial pattern of Weizi settlements features distinct regional characteristics. Moreover,
it contains profound wisdom in terms of traditional construction; therefore, studies on its association
with the microclimate have important implications for improving the quality of human settlements. In
the present study, Guanweizi Village in the Xinyang City of Henan Province was used as an example
to analyze and evaluate the thermal comfort of green spaces. The impact of peripheral water bodies
on the thermal comfort of outdoor green spaces in the settlement was studied, and the association
between the components of outdoor green spaces and physiological equivalent temperature as an
indicator of thermal comfort was explored. Further, factors negatively affecting the thermal comfort
of green spaces were analyzed through the grid method. Thermal comfort in the Weizi settlement
is somewhat correlated with the coverage of water bodies, roads, soil, greening, and buildings.
Increasing the water area and creating multi-level greening spaces are effective measures to improve
the thermal comfort of green spaces in the settlement. Our findings provide a theoretical basis and a
pioneering example for future practices of environment design for human settlements.

Keywords: traditional settlements; ENVI-met; green spaces; outdoor environment; thermal comfort;
regional characteristics

1. Introduction

During rapid urbanization, the spatial patterns of traditional settlements in many
areas, being unable to adapt to the development needs of modern life, have been seriously
damaged by rampant and extensive rural reconstruction [1]. Moreover, many environmen-
tal problems are arising from urbanization, such as a rise in temperature and heat waves, a
drop in temperature and cold waves, air pollution, meteorological disasters, and ecosystem
degradation [2]. These increasingly severe problems [3,4] have seriously compromised the
quality and regional characteristics of traditional human settlements [5–7].

As green spaces in settlements are intended for activities closely related to daily life,
their safety and comfort are gradually attracting attention. As such, the construction of
the living environment is no longer merely intended to create comfortable living spaces
inside buildings for people, but rather to create comfortable, safe, and healthy spaces
outside of buildings for peoples’ interactions, from a human-centered and perception-based
perspective [8]. As the outdoor climate directly affects human perception, the thermal
environment outside building spaces has garnered much research attention.
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Previous studies on factors influencing the thermal environment outside building clus-
ters have primarily focused on the spatial form, building layout, street space, underlying
surface, green space, water body, and thermal comfort. Consequently, relevant progress
has been made. First, the impact of spatial form on the thermal environment has been
explored. For instance, Wang et al. studied thermal environment mitigation strategies for
urban buildings of different densities in Toronto, and found that sunshine duration and
average radiation play important roles in urban thermal comfort [9]. In another study,
Zhou et al. explored the impact of urban spatial form on air temperature and proposed that
building shading can effectively improve the thermal environment [10]. Further, Huang
et al. studied the relationships among urban form, weather factors, and thermal comfort
and observed that weather factors affect thermal comfort in urban environments [11]. Sub-
sequently, Sun et al. studied the impacts of building density, floor area ratio, and green
space ratio on the urban thermal environment and showed that an urban form significantly
affects the thermal environment; in addition, increases in the building density increased the
land surface temperature, while increased floor area and green space ratios decreased the
land surface temperature [12]. Recently, Wu et al. studied the correlation between village
morphological factors and water-cooling values and proposed that a higher water body rate
and green space ratio, and a lower surrounding building density, can improve the cooling
effect of water bodies [13]. Second, the impacts of building layout on the thermal environ-
ment have been studied. For instance, Jung et al. used an orthogonal experimental design
to improve the urban microclimate and showed that the building coverage rate, building
interval, and azimuth angle affect the outdoor thermal environment [14]. In another study,
Liu et al. evaluated the impact of building layout on the thermal environment in residential
districts and demonstrated that the temperature significantly differed across various build-
ing layouts [15]. Third, the impacts of street space on the thermal environment have been
assessed. For instance, Du et al. studied the impact of street direction, street aspect ratio,
and pavement material on the thermal environment in the street area [16], and Shao et al.
studied the impact of street landscape on the thermal environment [17]. Fourth, some stud-
ies explored the impact of the underlying surface on the thermal environment. Specifically,
Tsoka et al. studied different intervention schemes for the thermal environment with urban
morphological characteristics in Thessaloniki, including microclimate parameters, such as
earth surface and air, and average radiant temperature distribution. The authors reported
significant reductions in the surface temperature by replacing conventional coatings with
cooling materials featuring a higher albedo and emissivity [18]. Further, Kurazumi et al.
studied the impact of the thermal environment in rural and suburban outdoor spaces
on the human body, and proposed green space and water surface as natural factors that
help reduce air temperature [19]. Recently, Xin et al. studied typical rural settlements in
the Guanzhong Region and, using field measurements and ENVI-met data simulation,
analyzed the dynamic changes in the thermal environment in rural areas. The authors
used the root mean square error (RMSE) and mean absolute percentage error (MAPE) to
verify the simulation model and physiological equivalent temperature (PET) to evaluate
the outdoor thermal environment. They proposed that trees can significantly improve the
outdoor thermal environment. In 1978, Hoppe et al. introduced meteorological factors,
clothing, human activities, and human body parameters and proposed PET as an indicator
of thermal comfort [20,21]. PET measures thermal comfort according to the energy balance
of the human body. It is impacted by air temperature, wind speed, humidity, and average
radiation temperature and can reflect thermal comfort more directly and comprehensively.
PET is a meteorological indicator in a real sense and a comprehensive outdoor thermal
comfort indicator, which can be used to evaluate the thermal environment in different
seasons and under diverse climatic conditions [22,23]. Many recent studies have shown that
thermal comfort could be greatly improved by optimizing the physical urban environment.
For instance, Andreou et al. discussed the impacts of street structure, form, and ground
reflectance on thermal comfort and proposed that the thermal comfort of the street micro-
climate is better in traditional urban areas than in modern urban clusters. Kariminia et al.



Forests 2023, 14, 1501 3 of 16

studied the thermal comfort and outdoor space utilization of urban squares and proposed
that tourists are more sensitive to temperature changes than to other microclimatic factors,
and that better air circulation and water evaporation can significantly increase thermal
comfort [24,25].

In contrast, recent research findings on the thermal environment of outdoor green
spaces in rural areas have been relatively limited, particularly those on the impact of
water areas on microclimates in rural settlements. In addition, previous studies have
mostly focused on the heat island effect of land settlements or the thermal comfort of
settlements neighboring water on only one side. Weizi settlements, as a form of rural
settlement surrounded by water on all four sides, are different from land settlements and
settlements neighboring water on only one side. They are built based on the production
and living experience of local residents. Through the literature review, we noted this
research gap in previous studies. Rural areas are likewise subject to environmental-change-
induced climatic impact. In some areas, due to the extensive reconstruction of traditional
settlements, the spatial characteristics, as well as the ecological and environmental balance
of the settlements, are damaged, resulting in frequent occurrences of problems, such as
dust and droughts. In the face of modernization, these settlements are facing increasing
climate-related challenges. In response to these climatic and environmental problems and
their impacts in rural areas, the Fifth Plenary Session of the 19th CPC Central Committee
held in 2020 placed strong emphasis on the goal of improving the rural living environment.
In this context, it is of great importance and practical significance to rationally reconstruct
and revitalize traditional settlements, as well as to evaluate and optimize the thermal
environment of existing outdoor green spaces in traditional settlements. Previous studies
on the microclimate of rural environments have mostly been based on the influence of
natural water bodies on the microclimate, while areas of water within Weizi have been
artificially constructed around the settlement. In the present work, we aim to determine
whether such purposeful construction can regulate a microclimate. The significance of the
present study lies in our finding that areas of water in Weizi do indeed exert a regulatory
effect on the microclimate, although there is still room for optimization. The novelty of
this research lies in the verification and analysis of thermal comfort in a rural settlement
surrounded by water on all four sides.

Based on the impact that areas of water have on the microclimate of traditional villages,
the present study evaluated the thermal comfort of outdoor green spaces and used local
traditional construction experience to improve and create an outdoor environment with
good thermal comfort. Using Guanweizi Village—a typical Weizi settlement in South
Henan, China—as an example, we simulated the thermal environment of the settlement
through field mapping of the village layout and ENVI-met modeling, and calculated PET
with BIO-met. By maintaining the traditional residential building style, we analyzed
the impact of peripheral water bodies on thermal comfort in the settlement. Finally, we
proposed strategies to improve the thermal environment of Weizi settlements, providing
a reference for the ecological revitalization and sustainable development of traditional
villages [26–29].

2. Materials and Methods
2.1. Case Study Area

Guanweizi Village is located in the Yanhe Township of Guangshan County in Xinyang
City, Henan Province, China. Surrounded by water bodies, the settlement has a square overall
layout, demonstrating a typical settlement form with local characteristics (Figures 1 and 2).
The village is surrounded by water bodies, which not only serve irrigation and cultivation
purposes, as well as laundry cleaning and rainwater drainage functions, but also play roles
in terms of defense and fire protection. More importantly, from the ecological perspective,
they protect the whole area against floods and purify the settlement to some extent. In
addition, together with plants, streets, and courtyard spaces, these water bodies regulate
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and improve the thermal environment in the settlement, which was precisely the focus of
the present study.

Figure 1. Scope of the case study area (map snapshot and photograph obtained by the author).
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Figure 2. Photographs of the measurement points.

Four measuring points were selected in the present study, which reflected the envi-
ronmental characteristics of the Guanweizi settlement. Point 1 was located at the main
entrance road of the settlement, near peripheral water bodies and surrounded by multi-
level greening and many trees. Point 2 was located at the settlement center, near the largest
water body inside the settlement. Point 3 was located at the main traffic hub within the
settlement, away from the internal water bodies. Point 4 was located at the secondary
entrance and exit of the settlement, also near the peripheral water bodies, but with fewer
trees and greening clusters than those at point 1. Each point is described in Table 1 and
shown in Figures 1 and 2.

Table 1. Description of measuring points.

Measuring Point Description

1 At the main entrance road of the settlement, near peripheral water bodies and surrounded by
multi-level greening and many trees

2 Near water bodies at the settlement center

3 At the main road intersection at the settlement center, away from the internal water bodies

4 At the secondary entrance and exit of the settlement, near peripheral water bodies, but with
fewer greening clusters and trees
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2.2. Thermal Comfort Research Methodology
2.2.1. Low-Altitude Photogrammetry

Six control points for photography were evenly distributed in the survey area of
Guanweizi Village, with 3D coordinates measured using RTK and orthophotographs ob-
tained using a DJI UAV (Phantom 4RTK). The aerial photographs were collaged using
Pix4Dmapper, and ground elevation was extracted using ArcGIS. The processed orthopho-
tos were then imported into CASS, and ground objects were drawn. Finally, the elevation
data were imported into CASS (Figure 3), which showed that the Weizi settlement is on
flat land.
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2.2.2. ENVI-Met Software for Data Simulation

ENVI-met, a piece of software developed by Bruse and Fleer in 1998, is currently
updated to version 5 [30]. Based on the principles of thermodynamics and hydromechanics,
this software dynamically simulates interactions between the surface and plants in small-
scale human settlements with air [26].

In the present study, simulations for Guanweizi Village were conducted using ENVI-
met to obtain the distribution of PET, as the thermal comfort indicator, in the green spaces
of the settlement [31].

2.2.3. PET as the Thermal Comfort Indicator

In the present study, PET was selected as the thermal comfort indicator, which refers
to the corresponding temperature when the skin and body temperatures reach the same
thermal state as that of the typical indoor environment in a given indoor or outdoor
environment [12,15,32]. With reference to the corresponding relationship between PET
and human thermal perception evaluation (Table 2) [16], as well as the dynamic ENVI-
met-based simulation of the thermal environment in the village, the correlations between
various spatial components of the Guanweizi settlement and the thermal comfort indicator
PET were comprehensively analyzed [33].
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Table 2. Physiological equivalent temperature (PET) and the corresponding human thermal sensation.

PET (◦C) ≤4 4–8 8–13 13–18 18–23 23–29 29–35 35–41 ≥41

Thermal sensation Very cold Cold Cool Slightly
cool Neutral Slightly

warm Warm Hot Very hot

Physiological stress
level

Extreme
cold stress

Strong
cold stress

Moderate
cold stress

Slight cold
stress No Slight heat

stress
Moderate
heat stress

Strong heat
stress

Extreme
heat stress

2.2.4. Grid Analysis

The grid method is primarily applied to urban planning, landscape design, and
architectural design. Typically, large-scale grids are used for urban planning, landscape
planning, and landscape ecological evaluation, while medium-to-small-scale grids are used
for graphic and architectural design [17].

Guanweizi Village is nearly 304 m long from the east to west and 300 m long from
the north to south. Therefore, in the present study, the settlement was divided using
grids measuring 38 m × 37.5 m into 64 grid units in total (Figure 4), and the coupling
relationships between the spatial components of Guanweizi Village (including the water
body, road, greening, soil, and building coverage) and PET were discussed in detail on the
basis of medium- and small-scale grids.

Figure 4. Grid of Guanweizi Village.

2.3. ENVI-Met-Based Thermal Environment Simulation
2.3.1. Measurement of Thermal Environment-Related Indicators in Guanweizi Village

According to the climatic characteristics of Xinyang City, the hottest months are June
and July. The data were measured during 08:00 and 17:00 at an interval of 1 h on 21 June
2021, a clear day with moderate wind but no clouds. Air temperature and relative humidity
were measured at 1.5 m above the ground level (around the head and neck of an adult) and
recorded at an interval of 1 min in accordance with ISO 7726, using the UT332+ temperature
humidity meter (air temperature range: 20 ◦C~70 ◦C, precision: ±0.2 ◦C; relative humidity
range: 0%~99% RH, precision: ±2% RH).
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2.3.2. Verification of ENVI-Met Simulation Results

In the present study, RMSE and MAPE were used to verify the simulation results [20,34],
as shown in Equations (1) and (2):

RMSE =

√
Σn

i=1(Xobs,i−Xmodel,i)
2

n
(1)

MAPE =
1
n

Σn
i=1
|Xobs,i−Xmodel,i|

Xobs,i
× 100% (2)

where Xobs indicates the measured data, Xmodel indicates the simulated data, and n indicates
the times of measurement.

Since solar radiation and temperature are closely correlated and air temperature di-
rectly affects PET, the correlation between air temperature and PET is the strongest [18].
Therefore, this verification primarily focused on error analysis of the measured and sim-
ulation data of air temperature and relative humidity. As is shown in Table 3, the air
temperature RMSE ranged between 1.20 ◦C and 1.51 ◦C, and the relative humidity RMSE
ranged between 2.01% and 2.31% [35]; MAPE ranged between 3.44% and 5.92%, which
was less than 10% [36]. This indicates a relatively small error between the measured data
and the simulation data, meaning that the model can effectively simulate the thermal
environment of the village [37,38].

Table 3. Goodness-of-fit analysis of the measured and simulated data.

Meteorological
Parameters

Evaluation
Indicators Point 1 Point 2 Point 3 Point 4

Air temperature RMSE (◦C) 1.51 1.34 1.40 1.20
MAPE (%) 5.92 4.72 5.29 4.22

Relative
humidity

RMSE (%) 2.31 2.19 2.13 2.01
MAPE (%) 3.70 3.60 3.47 3.44

2.3.3. ENVI-Met Modeling Parameter

ENVI-met was used to model the Guanweizi Village settlement, with grid resolutions
set at dx = 2 m, dy = 2 m, and dz = 2 m (dx and dy are horizontal resolutions, and dz is a
vertical resolution). The simulation period was set between 18:00 20 June and 24:00 21 June,
with data collected from 13:00 to 15:00, 21 June. According to the actual temperature and
seasonal characteristics, the thermal environment in this period varied greatly, with the air
temperature reaching the highest at 15:00. Therefore, simulated data during this period
were selected for analysis. The simulation parameters are set out in Table 4.

Table 4. The basic parameters of the simulation experiment.

Parameters Parameter Values

Simulation settings
Total simulation time (h)

Output time interval (min)
Number of grids (X × Y × Z)

30
60

233 × 231 × 15

Initial parameter setting

Simulation start date
Simulation start time

Initial temperature (◦C)
Wind speed at 10 m (m/s)
Wind direction at 10 m (◦)

Relative humidity at 2 m (%)
Specific humidity at 2500 m (g/kg)

20 June 2021
18:00
25.2
2.4

202.5 S-W
56
7
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2.3.4. ENVI-Met-Based PET Calculation

The location for the calculation was set at 114.87◦ E and 31.78◦ N, and the time was set
between 18:00 20 June and 24:00 21 June, 2021. During the calculation, the heat resistance
of clothing for a summer outing was set to be 0.5 clo, activity level was 120 W, and human
parameters were a standard male body shape (175 cm tall, 75 kg, and aged 35 years). During
field measurement, the weather was clear with no clouds; thus, cloud cover was set to 0.

A PET distribution map at 1.5 m above the ground was created using BIO-met. Accord-
ing to the measured data, the temperature peaked at around 15:00; thus, PET distribution at
this time was used for analysis. To test the reliability of the simulation data, we compared
it with measured data (Figure 5) and used MAPE and RMSE for verification.
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3. Results
3.1. PET Simulation

As is shown in the PET distribution map of Guanweizi Village (Figure 6, left), at 15:00,
when air temperature peaked, the PET in green spaces in the village center surrounded
by circular water bodies ranged between 34.1 ◦C and 39.3 ◦C. This was accompanied by
a warm thermal perception, but generally had good thermal comfort. The lowest PET
was below 34.1 ◦C, which appeared in the area surrounded the water bodies and in the
shaded region of some buildings, accompanied by a warm thermal perception. The PET
values of the hardened road (with a hard concrete pavement) and dense building areas
were higher, ranging between 41.9 ◦C and 47.1 ◦C, accompanied by a very hot thermal
perception; however, the lowest PET ranged between 34.1 ◦C and 36.7 ◦C, recorded within
a very small area of a shadow of a building.
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Figure 6. Distribution of physiological equivalent temperature (PET) values at 15:00 on 21 June 2021
(with water bodies on the left and without water bodies on the right).

3.2. Correlation between Spatial Components and PET

Guanweizi Village was divided into 64 grids, each with a total area of 1425 m2.
Simultaneously, building, greening, road, water, and soil coverage of each grid were
calculated. The summarized data, as well as PET values at 15:00, calculated based on the
ENVI-met simulation, were used as the basic database of spatial components and thermal
comfort of Guanweizi Village (Table 5) [39].

Table 5. Grid database of spatial components and physiological equivalent temperature (15:00) for
Guanweizi Settlement.

Grid No. Water Body
Coverage

Road
Coverage

Bare Soil
Coverage

Greening
Coverage

Building
Coverage

PET (◦C)
Value

1 35.8% 0.0% 64.2% 0.0% 0.0% 39.8

2 49.7% 0.0% 29.0% 21.3% 0.0% 36.4

3 70.1% 0.0% 22.7% 7.2% 0.0% 37.0

4 64.6% 0.0% 35.4% 0.0% 0.0% 37.2

5 60.3% 0.0% 39.0% 0.0% 0.7% 37.6

6 56.4% 0.0% 35.9% 6.8% 0.9% 36.7

7 69.6% 0.0% 29.7% 0.7% 0.0% 36.0

8 46.3% 0.0% 47.0% 6.7% 0.0% 37.8

9 53.4% 0.0% 46.6% 0.0% 0.0% 36.4

10 22.1% 0.0% 23.0% 34.0% 20.9% 36.8
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Table 5. Cont.

Grid No. Water Body
Coverage

Road
Coverage

Bare Soil
Coverage

Greening
Coverage

Building
Coverage

PET (◦C)
Value

11 0.0% 4.9% 34.9% 0.0% 60.2% 38.2

12 0.0% 10.8% 28.6% 50.9% 9.7% 36.3

13 0.0% 11.0% 26.3% 50.4% 12.3% 36.8

14 0.0% 9.9% 32.2% 22.7% 35.2% 39.8

15 0.0% 2.6% 21.3% 34.7% 41.4% 37.8

16 72.9% 0.0% 13.0% 13.1% 1.0% 36.7

17 51.1% 0.0% 48.9% 0.0% 0.0% 37.5

18 1.6% 0.0% 14.2% 63.8% 20.4% 36.2

19 0.0% 17.2% 42.6% 6.0% 34.2% 38.9

20 0.0% 12.9% 34.8% 13.5% 38.8% 38.6

21 0.0% 0.0% 28.4% 25.2% 46.4% 39.1

22 0.0% 0.0% 8.4% 68.9% 22.7% 37.3

23 0.0% 8.8% 32.4% 38.6% 20.2% 38.4

24 49.4% 5.4% 38.7% 1.3% 5.2% 36.7

25 55.2% 0.0% 44.8% 0.0% 0.0% 36.5

26 0.0% 8.9% 20.1% 55.0% 16.0% 36.0

27 10.2% 13.0% 44.8% 18.0% 14.0% 38.4

28 10.7% 12.3% 45.1% 1.5% 30.4% 38.9

29 48.4% 10.8% 10.4% 17.9% 12.5% 37.0

30 12.0% 11.7% 32.1% 8.7% 35.5% 37.9

31 0.0% 1.6% 4.1% 67.3% 27.0% 36.5

32 56.0% 7.5% 35.4% 0.0% 1.1% 36.5

33 45.1% 1.7% 47.3% 5.9% 0.0% 37.4

34 0.0% 10.3% 27.8% 45.6% 16.3% 38.2

35 18.7% 0.0% 9.1% 70.1% 2.1% 37.0

36 2.9% 0.0% 21.5% 35.1% 40.5% 38.6

37 70.1% 0.0% 19.9% 4.0% 6.0% 36.8

38 36.5% 7.9% 31.0% 11.0% 13.6% 37.2

39 0.8% 24.2% 32.7% 4.2% 38.1% 37.4

40 55.9% 11.4% 32.7% 0.0% 0.0% 37.9

41 56.9% 9.3% 28.1% 0.0% 5.7% 36.6

42 0.0% 0.0% 20.2% 51.6% 28.2% 36.2

43 0.0% 0.0% 14.2% 85.8% 0.0% 36.0

44 0.0% 0.0% 52.3% 5.9% 41.8% 39.9

45 0.0% 13.6% 41.2% 11.9% 33.3% 37.7

46 0.0% 9.5% 30.2% 28.6% 31.7% 37.5

47 16.6% 12.3% 22.8% 28.8% 19.5% 37.8

48 54.8% 0.0% 45.2% 0.0% 0.0% 37.5

49 79.8% 5.7% 11.0% 0.0% 3.5% 37.4

50 6.3% 7.3% 41.3% 0.0% 45.1% 38.6

51 21.9% 14.4% 26.9% 0.0% 36.8% 38.3

52 24.6% 9.5% 41.2% 0.0% 24.7% 38.0

53 2.5% 9.8% 23.9% 42.4% 21.4% 38.2

54 1.5% 0.0% 0.0% 95.5% 3.0% 35.7
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Table 5. Cont.

Grid No. Water Body
Coverage

Road
Coverage

Bare Soil
Coverage

Greening
Coverage

Building
Coverage

PET (◦C)
Value

55 32.4% 0.0% 6.8% 60.8% 0.0% 35.9

56 33.2% 0.0% 66.8% 0.0% 0.0% 36.6

57 24.2% 0.0% 75.8% 0.0% 0.0% 39.2

58 36.6% 0.0% 63.4% 0.0% 0.0% 39.1

59 74.1% 0.0% 25.9% 0.0% 0.0% 37.4

60 75.7% 0.0% 24.3% 0.0% 0.0% 36.5

61 72.9% 0.0% 27.1% 0.0% 0.0% 36.6

62 56.1% 0.0% 43.9% 0.0% 0.0% 37.2

63 76.6% 0.0% 23.4% 0.0% 0.0% 36.8

64 26.8% 0.0% 73.2% 0.0% 0.0% 37.2

In the present study, the basic grid data (Table 5) were imported into SPSS, and Pearson
correlation analysis was conducted between the PET and the basic spatial components of
the Guanweizi settlement, including the water, road, bare soil, greening, and building cov-
erage (Table 6). The PET was negatively correlated with water and greening coverage, and
positively correlated with road, soil, and building coverage. By comparing the correlation
coefficients, the order of correlation strength was as follows: greening coverage > water
coverage (slight difference) in the case of negative correlations, and building coverage > bare
soil coverage > road coverage in the case of positive correlations.

Table 6. Pearson correlation analysis between grid analysis data of settlement space components and
the corresponding physiological equivalent temperature (PET).

Water Body
Coverage

Road
Coverage

Bare Soil
Coverage

Greening
Coverage

Building
Coverage

Pearson correlation between
settlement space components and PET

r
Sig.

−0.328 **
0.008

0.281 *
0.024

0.481 **
0.000

−0.331 **
0.007

0.494 **
0.000

** Correlation significant at the 0.01 level (two-tailed); * correlation significant at the 0.05 level (two-tailed).

3.3. Impact of Water Bodies on the Thermal Environment

To verify the impact of water bodies around the village on the thermal environment,
along with the original model, another copy was created. The copy had only one variable
(excluding water bodies around the village), while the other parameters remained consistent
with those in the original model. The simulation results were as follows.

According to the data measured at 15:00 on 21 June 2021, during summer, the PET in
green spaces at the village center with water bodies ranged between 36.7 ◦C and 39.3 ◦C,
accompanied by a warm thermal perception. In contrast, that in the green spaces without
water bodies ranged between 40.3 ◦C and 42.8 ◦C, accompanied by a very hot thermal per-
ception. From the comparison between scenarios with and without water bodies, the PET
values around the water bodies and inside the settlement were reduced by approximately
5 ◦C, on average, and the air temperature was reduced by approximately 3 ◦C, on average,
in the presence of water bodies (Figures 6 and 7). However, with water bodies around the
settlement, the PET values outside the water bodies increased (south and west sides in
figures on the left). As is shown in Figure 6, the PET in greening areas at the edge of the
water bodies ranged between 34.1 ◦C and 36.7 ◦C, while those in areas without greening
ranged between 36.7 ◦C and 39.3 ◦C, reaching the high values shown in blue.
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4. Discussion

Our literature review revealed that previous studies have mostly focused on the
heat island effect of land settlements or the thermal comfort of settlements neighboring
water on only one side. For example, Kurazumi et al. studied the relationship of effective
temperature (ET), an indicator for the evaluation of outdoor space thermal environments,
with human physiological and psychological responses, through subject experiments in
2019. By studying the influence of the thermal environment on the human body in rural
and suburban outdoor spaces, natural elements such as green space and water surfaces
have been proposed as conducive to reducing air temperature [19]. In 2013, Theeuwes et al.
mitigated the heat island effect by introducing open surface water into urban design. By
using the WRF mesoscale meteorological model, an idealized circular city was designed. It
was concluded that the cooling effect of a water body depends nonlinearly on the partial
water coverage, area and distributed wind direction of individual lakes in a city [40]. Sayad
et al. proposed two solutions to improve urban thermal comfort through an ENVI-met
simulation experiment in 2021: increasing the vegetation ratio relative to air flow and
increasing the water surface area within the outdoor space [41]. The combined effect of the
increased vegetation ratio and linear water bodies provides the best solution for achieving
the optimal thermal comfort level in an outdoor space. In 2022, Wu et al. studied the
spatial and temporal distribution characteristics of the water temperature cooling value
in Zhoutie Town of Yixing City through field measurement, numerical simulation, etc.
They analyzed the correlation between the village morphology and water-cooling value,
proposing that the increase in water and greening ratio and the decrease in surrounding
building density was conducive to enhancing the water-cooling effect [13]. The above
literature only employed a limited number of methods, such as effective temperature
evaluation, ideal model construction, field measurement, and digital simulation, to study
the influence of an area of water on an outdoor thermal environment. However, this study
more systematically adopted the actual measurement, digital simulation, PET outdoor
thermal environment evaluation, and grid-based correlation analysis of the experimental
data. In addition, the above literature mainly focused on the study of natural water areas,
while we focused on artificial areas of water in the particular form of Weizi settlements.
This was based on our years of team research on Weizi settlement morphology, since there
have been very few studies on Weizi settlements in China.

Based on ENVI-met simulation results, the impact of peripheral water bodies on the
thermal comfort of settlements was analyzed. This clearly showed a direct regulatory
effect of water bodies on PET and air temperature. Therefore, water bodies can effectively
improve the local microclimate and, consequently, PET [42]. Accordingly, an increased
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water body area can favorably improve the PET and air temperature of Weizi settlements.
This is because, although water bodies can effectively reduce the surrounding temperature
and increase relative humidity and wind speed, due to heat ventilation, air temperature
drops to some extent, thereby increasing PET. With less greening in the south and west
and more in the north and east, PET did not increase in the north and east, indicating that
waterfront spaces combined with green shade can significantly reduce PET [43].

However, simulation results also indicated that the local temperature around water
bodies may increase due to solar refraction. Moreover, Pearson’s correlation analysis
revealed that, under these circumstances, PET is negatively correlated with greening
coverage [44,45]. Therefore, PET may be reduced by combining waterfront spaces and
green shade to avoid a local high temperature around the water bodies.

Furthermore, the simulated data showed relatively higher PET values in hard concrete
pavement, soil, and dense building areas. This is a result of an increased air temperature
due to increased heat radiation from the hard concrete pavement, soil, and building surfaces.
Therefore, building density should be adjusted through the reasonable use of hard paving,
and the high building density in some areas should be appropriately reduced to improve
the local microclimate [46].

Based on grid data and Pearson correlations between PET and the coverage of water
bodies, greening, roads, soil, and buildings, a PET ranging between 34 ◦C and 36 ◦C is
typically accompanied by good thermal comfort due to the relatively higher water body
and greening coverage. However, a PET exceeding 36 ◦C is generally accompanied by
poor thermal comfort due to the relatively higher road, soil, and building coverage. Hence,
the rational design of water bodies and greening coverage would be an effective means to
increase the thermal comfort of Weizi settlements.

The present study has certain limitations as it only focused on a Weizi settlement
surrounded by water on all four sides without analyzing partially enclosed settlements,
such as those surrounded by water on only two or three sides. According to the current
research findings, it is expected that an uneven distribution of the cooling effect will be
seen in Weizi settlements surrounded by water on only two or three sides, compared with
those surrounded by water on all four sides. This incomplete selection of typical settlement
samples is a limitation of this study. More settlements featuring different enclosure types
will be selected to conduct further research on the influence of the degree of water enclosure
on thermal comfort. In addition, the air speed and average radiation temperature will
also be incorporated into field measurements in our subsequent study to obtain more
scientific data.

5. Conclusions

In the present study, fundamental data of air temperature, relative humidity, and
solar radiation were obtained through field measurements in Guanweizi Village. Further,
ENVI-met was used for simulation, and the distribution results of PET, a thermal comfort
indicator, were obtained for Guanweizi Village on the summer solstice.

Based on the results of fundamental data analysis, grid units with better thermal
comfort were concentrated near water bodies or greening clusters. Thus, water and green-
ing coverage are the major factors affecting the thermal comfort of spaces in Guanweizi
settlement. Water bodies in Guanweizi Village can regulate air temperature and relative
humidity in surrounding areas, thereby playing pivotal roles in improving the thermal
comfort of the settlement.

Furthermore, the coupling relationships between the components of settlement spaces
and PET values were summarized. On this basis, three suggestions regarding the strategy
for improving the thermal comfort of Weizi settlements are summarized below:
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1. Increasing air humidity and reducing air temperature: the area of water bodies and
greening should be increased, and the area of bare soil should be reduced within the
settlement area, where thermal comfort is poor.

2. Reducing thermal radiation: green plants should be grown on both sides of hardened
roads in the settlement to increase shading and reduce solar thermal radiation; hard
concrete pavement should be minimized and planting or permeable bricks should
be used [47]. Green plants should be grown on both sides of roads, and surface
phytoplankton should be increased to reduce the reflection of solar radiation [48,49].

3. Reducing high temperatures at the boundary of water bodies: multi-level greenery
should be added around water bodies inside and outside the settlement, such as tall
trees to shade the water bodies and thus reduce high temperatures at their boundary.

The significance of the present study lies in the site-specific consideration of the
relationship between human settlements and water when designing settlements to create
spaces with relatively comfortable microclimates. This work can provide a reference and
inspiration for future research on the design of water-adaptive spaces in the context of
human settlements.
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