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Abstract: Tree-ring blue intensity (BI) has been widely applied for temperature reconstructions in
many regions around the globe. However, it remains untested in the southeastern Tibetan Plateau (TP)
where a large number of ancient trees are distributed. In this study, we developed earlywood blue
intensity (EWBI), latewood blue intensity (LWBI), and delta blue intensity (∆BI) chronologies based
on tree-ring samples collected from Abies spectabilis at two sites in the southeastern TP. Our results
reveal that the EWBI and ∆BI chronologies correlated negatively with temperature parameters and
LWBI chronology correlated positively with temperature parameters, respectively. Among them, the
LWBI chronology was identified most suitable for reconstructing the mean temperature in August. A
linear regression model was developed for the August temperature reconstruction, which accounts for
34.31% of the observed variance in the period of 1954–2017. The reconstruction, spanning 1789–2017,
is highly consistent with other tree-rings based temperature reconstructions from the neighboring
regions. Our findings reveal a potential linkage between the August temperature anomaly in the
southeastern TP and the Atlantic Multidecadal Oscillation (AMO), which suggests that the AMO
fingerprint in the region is not just evident in winter but also in summer.

Keywords: tree-ring; blue intensity; august temperature; southeastern Tibetan Plateau; Atlantic
Multidecadal Oscillation

1. Introduction

The Tibetan Plateau (TP), known as the “third pole” [1], plays a vital role in regulating
atmospheric circulations in both East Asia and South Asia due to its substantial thermal
and mechanical impacts [2,3]. Instrumental climate data have presented a rapid warming
on the TP over the past six decades that surpasses the global average warming rate [4,5].
This remarkable warming has contributed, to a certain extent, to the accelerated glacier
melting [6] and land degradation in the region [7]. Nevertheless, our understanding
of temperature change on the TP remains limited because of the scarcity of long-term,
high-resolution climate records.

Tree-rings have played a key role in paleoclimate reconstructions spanning the past
centuries to millennia, owing to their precise dating, annual resolution, and extensive
geographical distribution [8–10]. In recent years, there have been many tree-ring based
temperature reconstructions focusing on the TP owing to the dramatic temperature increase
in the region [11–16]. However, most of the tree-ring based temperature reconstructions
are developed from relatively high-elevation regions on the TP. This is because tree-ring
formation is primarily controlled by temperature at high-elevation sites, whereas by precip-
itation or a combination of temperature and precipitation at low-elevation sites [17]. As
a result, fewer tree-ring based temperature reconstructions have been conducted for the
relatively low-elevation regions on the TP, especially for summer temperature.
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Numerous studies have attempted to maximize the temperature signals derived from
tree-rings by utilizing various types of parameters. It has been established that tree-ring
density generally exhibits higher sensitivity to temperature compared to other tree-ring
parameters [18,19]. Accordingly, the maximum latewood density (MXD) of tree-rings has
been employed for the summer temperature reconstructions [16,20]. Nonetheless, the X-ray
method, which is the testing method of tree-ring density, has disadvantages such as the
cumbersome and lengthy measurement process [21], which leads to relatively less work
based on tree-ring density.

McCarroll et al. (2002) introduced a swift and easily accessible method for obtaining
microdensitometric data utilizing reflected light rather than X-ray radiation. This innovative
technique allows for the quantification of lignin concentration, commonly identified as
blue intensity (BI) [22]. In the past two decades, the BI technology has been widely applied
in climate reconstructions in Europe [23–25], North America [26,27], and Australia [28].
Among them, latewood blue intensity (LWBI) has shown the capability to replace MXD
in the reconstruction of summer temperature [29–31]. Up to date, the BI-based tree-ring
studies have rarely been carried out in China. Among the first attempts, Cao et al. (2022)
found for the first time that the earlywood blue intensity (EWBI) and latewood blue
intensity (LWBI) in southeast China have distinct climate signals [32], which have been
further explored for temperature reconstruction [33]. Nonetheless, previous BI studies
were mostly carried out in high or low altitude areas, and its effectiveness in the low-
elevation regions of the TP remains unknown. Therefore, this study aims to establish the
first BI-based chronologies using tree-rings collected from two sites of Abies spectabilis on
the southeastern TP. The BI chronologies will be assessed for their sensitivity to climate
factors as well as the potential for climate reconstruction.

2. Materials and Methods
2.1. Study Area

Our two sampling sites are located in the central part of the Hengduan Mountains
on the southeastern TP (Figure 1, Table 1), with elevations ranging from 4100 m to 4200 m
above sea level (a.s.l). The study area is jointly influenced by the East Asian monsoon
and the South Asian monsoon, with precipitation mainly concentrated in May to August.
Based on observations from the nearest meteorological station (Deqin, 28.48◦ N, 98.92◦ E,
3319 m a.s.l) during the period 1954–2017, the highest temperature and precipitation are
both found in July, with an average value of 12.7 ◦C and 133 mm, respectively (Figure 2a).
The temperature has shown a remarkable increasing trend over the past 60 years (Figure 2b),
while precipitation and the self-calibrating Palmer Drought Severity Index [34,35] have
displayed a weak decreasing trend (Figure 2c,d).
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ples were refluxed in solvents of ethanol in a water bath (120 °C) for approximately 48 h 
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Table 1. Location of the tree sites and the nearest meteorological station.

Site Latitude Longitude Elevation (m) Species Cores/Trees

HLM 29.27◦ N 98.67◦ E 4160 Abies spectabilis 64/30
JYV 28.48◦ N 98.58◦ E 4200 Abies spectabilis 52/26

Deqin 28.48◦ N 98.92◦ E 3319
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Figure 2. (a) Monthly distribution of mean temperature and total precipitation based on climate data
from Deqin meteorological station. Temporal variability of (b) annual mean temperature, (c) annual
total precipitation, and (d) annual mean scPDSI during the period 1954–2017.

2.2. Tree-Ring Data

We collected tree-ring samples from living A. spectabilis trees in the Hongla Mountain
(HLM) and Jiaying Village (JYV) sites on the southeastern TP (Figure 1). A total of 116 cores
from 56 trees were retrieved from the two sites, with at least two cores taken from each
tree at a height of 1.3 m above the ground. The tree core samples were brought back to the
lab, air-dried, mounted, and polished following the standard methods of dendrochronol-
ogy [36]. As there exists a visible color difference between heartwood and sapwood of A.
spectabilis, the tree cores were pre-treated with resin extraction. Tree core samples were
refluxed in solvents of ethanol in a water bath (120 ◦C) for approximately 48 h [32]. The
samples were sanded using sandpapers from 300 grit, to 600 grit, to 1200 grit. This process
ensures a smooth and flat surface on the core samples, thereby enhancing the quality
of the scanned images [37]. The samples were scanned with a flatbed scanner (Epson
PerfectionV800 photo) that was calibrated with SilverFast Ai Studio (Version 8.8) software.
The color was calibrated with Kodak (Advanced Color Calibration Target IT8.7/2). The
samples were subsequently scanned at 4800 dpi resolution. To minimize any potential dis-
tortions caused by ambient light, a specially designed box with a black-lined inner surface
was employed during the scanning procedure [38]. For the measurement of tree-ring width
(TRW), earlywood blue intensity (EWBI), and latewood blue intensity (LWBI), we utilized
the image analysis software CooRecorder 9.3 [39]. To distinguish the boundaries between
earlywood and latewood within annual rings (Figure 3), we relied on the distinct color
transition resulting from the variations in tracheid cell size and cell wall thickness. The
tree-ring series were rigorously cross-dated through visual comparison of their growth
patterns and statistically validated using the program COFECHA [40]. Ultimately, a subset
of 108 cores with robust inter-series correlation and long timespan were selected for the
extraction of EWBI and LWBI (Figure 3).
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Figure 3. The measurement process of (a) earlywood blue intensity (EWBI) and (b) latewood blue
intensity (LWBI) of A. spectabilis. The black “+” denotes the growth ring boundary and the green “+”
denotes the earlywood and latewood boundary. The number on the lower right of “+” denotes the
annual ring number; the year value denotes the age; the number after “B” indicates the BI value of
the measured area.

In order to achieve color data, we employed the “mean of sorted pixels” approach,
specifically calculating the mean of the 15 percent darkest pixels for the latewood parameter
and the mean of the 80 percent lightest pixels for the earlywood parameter [38]. With an
increase in the density of tree-rings, the absorption of BI intensifies, leading to a decrease in
the reflectance of BI at the surface of the tested sample cores. Consequently, we observed a
negative correlation between BI and tree-ring density [41]. To streamline further analysis,
we utilized formula (1) for the purpose of conversion:

BI(adj) = 2.56 − BI/100 (1)

In the formula, BI represents the original value of blue intensity for a specific year. The
constant 2.56 is employed to ensure that BI(adj) does not fall below 0, considering that all BI
values range between 0 and 255. It is worth noting that this conversion step is optional and
serves as an output feature of CooRecorder 9.3 [38]. After the conversion, the tree-ring BI
exhibits a positive correlation with its density.

In addition, the EWBI records were taken away from the LWBI records to generate
the delta blue intensity (∆BI) data [41]. To remove age-related growth trend, the tree-ring
series were detrended conservatively by fitting a negative exponential curve or linear line
of any slope using the ARSTAN program [42]. The standard chronology was developed
by averaging the individual sequences with the bi-weight robust mean method for each
tree-ring parameter (Figure 4). The reliable portion of each chronology was determined
using the subsample signal strength (SSS) value of 0.85 [43]. Statistics of TRW, EWBI, LWBI,
and ∆BI chronologies are shown in Table 2.
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Figure 4. The TRW, EWBI, LWBI, and ∆BI chronologies developed in this study. The gray shaded
area at the bottom denotes tree cores numbers through time. The arrow indicates the starting year
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straight line denotes the mean of each chronology.

Table 2. Statistics of the four types of tree-ring chronologies used in this study.

Statistic TRW EWBI LWBI ∆BI

Mean sensitivity (MS) 0.180 0.026 0.024 0.028
Standard deviation (SD) 0.194 0.111 0.167 0.041

First-order autocorrelation (AC1) 0.848 0.828 0.742 0.555
Correlation for all cores (r1) 0.359 0.142 0.240 0.135

Correlation between trees (r2) 0.131 0.129 0.170 0.138
Correlation within trees (r3) 0.189 0.109 0.165 0.134
Signal-to-noise ratio (SNR) 11.891 4.447 6.363 6.949

Expressed population signal (EPS) 0.922 0.816 0.864 0.874
First year SSS > 0.85 1757 1807 1789 1783

2.3. Climate Data

Monthly temperature and precipitation records from the Deqin meteorological station
during the period 1954–2017 were obtained from the China Meteorological Data Network
(http://data.cma.cn/, accessed on 1 June 2021). Furthermore, the Climatic Research Unit
(CRU) temperature and self-calibrating Palmer Drought Index (scPDSI) datasets, available
at a spatial resolution of 0.5◦ × 0.5◦, were utilized [34,35]. The scPDSI is derived from
observed precipitation and temperature-driven water balance model and calibrated to local
climate conditions. We acquired four gridded scPDSI data nearest to the two sampling
sites (Figure 1, Table 1). These data were averaged to generate a time series reflecting
drought conditions in the study area. To investigate the potential impact of large-scale

http://data.cma.cn/
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ocean-atmospheric circulation on regional climate, we examined the linkage of tree-rings
to the Atlantic Multidecadal Oscillation (AMO) using the instrumental data [44].

2.4. Statistical Methods

In order to assess the climate–growth relationships, we calculated the Pearson’s cor-
relations between TRW, EWBI, LWBI, and ∆BI chronologies and monthly temperature,
precipitation, scPDSI from previous November to current September. The first-order differ-
ences of each chronology and climate factors were also calculated to eliminate the impact
of the long-term trend on the climate–tree growth relationship. The climate variable that ex-
hibited the highest correlation with the tree-ring chronology was chosen for reconstruction
with a linear regression model [45]. The reliability of the reconstruction model was assessed
through a split-sample calibration and verification approach [46], employing statistical
parameters such as the reduction of error (RE), coefficient of efficiency (CE), and the sign
test (ST). In addition, the multi-taper method (MTM) spectral analysis was conducted in
order to identify the periodic variations of the reconstructed series [47].

3. Results

The reliable portion of the TRW, EWBI, LWBI, and ∆BI chronologies spans the past
261 (1757–2017), 211 (1807–2017), 229 (1789–2017), and 234 (1787–2017) years, respectively
(Figure 4). Significant correlations (p < 0.01) of TRW chronology with temperature are found
in current April (r = 0.38) and August (r = 0.34) (Figure 5a). However, the first difference of
TRW chronology only exhibits significant negative correlation (r = −0.28, p < 0.05) with
June temperature (Figure 6a). Significant negative correlations of EWBI chronology with
temperature are found in all months investigated, but all the correlations become non-
significant for the first-difference series (Figures 5b and 6b). Significant negative correlation
is also found between ∆BI chronology and temperature in current June (r = −0.51; p < 0.01),
yet the correlation becomes non-significant for the first-difference series (Figures 5d and 6d).
In contrast, the positive correlations of LWBI chronology with temperature are significant
for both raw and first-difference series in current July to September (Figures 5c and 6c),
suggesting that the LWBI chronology contains the strongest and most reliable temperature
signals among the four types of the chronologies.

All the four chronologies exhibit generally weak correlations with precipitation, de-
spite the marginally significant correlations (p < 0.05) that are found with TRW chronology
in current May, EWBI and ∆BI chronologies in current June, and LWBI chronology in
current August. These results suggest that precipitation has rather weak influence on tree
growth at our sampling sites. On the other hand, both TRW and EWBI chronologies show
significant positive correlations with the scPDSI in several months, suggesting that they
might be good parameters to reflect moisture condition at the sampling sites. Nonethe-
less, the highest correlation is found between LWBI chronology and August temperature
(r = 0.59), and the correlation between their first-difference series is still significant (r = 0.44)
(Figures 5c and 6c).

Considering that the highest correlation is found between LWBI chronology and
August temperature, a linear regression model was developed between them for recon-
struction (Figure 7a). The reconstruction accounts for 34.31% of the variance during the
common period of 1954 to 2017 and exhibits good agreements with the observed August
temperature at both high-frequency and low-frequency bands (Figure 7b). The RE and CE
values are both positive, demonstrating the reliability of the reconstruction model (Table 3).
The ST values are all significant above the 99.9% confidence level, further validating the
accuracy of the reconstruction. We reconstructed the temporal changes in August tempera-
ture from 1789 to 2017 based on this model (Figure 7c). Based on the threshold value of two
standard deviations from the mean (mean ± 2σ), we identified nine extremely warm (1831,
1851, 1866, 1937, 1945, 2003) and four extremely cold (1817, 1893, 1961, 1962) years in the re-
construction. Based on the 10-year low-pass filter of the reconstruction series, five extremely
warm (1799–1807, 1822–1842, 1848–1875, 1927–1950, 2002–2010) and four extremely cold
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(1789–1798, 1808–1821, 1887–1926, 1954–1976) epochs, defined as at least nine persistently
warm/cold years, were further identified in the reconstruction. Spatial correlations of
the observed and reconstructed August temperature with the gridded CRU temperature
data show that our reconstruction can represent large-scale temperature change on the
southeastern TP (Figure 8). Comparisons of our reconstruction in this study with other
independent tree-ring-based temperature series from neighboring regions showed good
agreement in the relatively warm and cold intervals, despite that our reconstruction is
more similar to the tree-ring density reconstruction than the tree-ring width reconstructions
(Figure 9). The MTM spectral analysis revealed that the temperature reconstruction exhibits
several significant cycles at 2–4 years and 68–73 years (Figure 10).
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(grey) and its 10-year low-pass filter (red). Horizontal dashed line denotes two standard deviations
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Table 3. Calibration and verification statistics of the reconstruction.

Calibration
(1954–1985)

Verification
(1986–2017)

Calibration
(1986–2017)

Verification
(1954–1985)

Full Calibration
(1954–2017)

R 0.414 0.641 0.641 0.414 0.586
R2 0.172 0.410 0.410 0.172 0.343
CE - 0.410 - 0.172 -
RE - 0.821 - 0.761 -

Sign
test 19+/13− *** 28+/4− *** 21+/11− *** 27+/5− *** 22+/42− ***

*** p < 0.001.
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Figure 9. Comparison of the August temperature reconstruction with three tree-ring based tem-
perature reconstructions in the nearby regions. (a) The annual mean temperature reconstruction
on the southeastern TP [12], (b) the summer mean temperature reconstruction in the Bhutanese
Himalaya [48], (c) the August mean temperature reconstruction from this study, and (d) late summer
temperature reconstruction in Sygera Mountain, southeastern TP [49]. Reconstructions in (a,b) are
based on tree-ring width, whereas reconstruction in (d) is based on tree-ring density. The blue and
red shadings denote the common cold and warm periods, respectively.
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4. Discussion
4.1. Climate–Growth Relationships

The TRW and EWBI chronologies exhibit high correlations with the scPDSI (Figures 5
and 6), probably reflecting the impacts of drought conditions on tree growth during the
early stage of the growing season at the sampling sites. Prior to the arrival of the monsoon
rainfall, severe drought conditions can delay the lignification process in conifer trees, and
even disrupt or temporarily halt tree cambium activity [50,51]. Consequently, trees are
prone to forming narrow or even absent rings during drought events, resulting in low
earlywood density [52]. In contrast, the LWBI chronology exhibits high correlations with
temperature in summer. With abundant precipitation in summer, high summer temperature
leads to the formation of larger cells and increased deposition of cell wall materials. As
a result, there will be a large increase in the latewood density in such years [41,53,54].
Additionally, high summer temperature promotes an extended growing season, facilitating
greater lignification in trees and the accumulation of additional lignin [55]. Both factors
contribute to an increase in LWBI values.

4.2. Two Centuries of August Temperature on the Southeastern TP

Based on the climate–growth relationships, the temporal changes in August temper-
ature on the southeastern TP was reconstructed from 1789 to 2017 (Figure 7c). Spatial
correlation analysis reveals that our reconstruction can represent large-scale temperature
change on the southeastern TP (Figure 8). To further validate our reconstruction and assess
its large-scale representativeness, we compared the reconstruction with three temperature
reconstructions from nearby regions, including an annual mean temperature reconstruction
on the southeastern TP, a summer mean temperature reconstruction in the Bhutanese
Himalaya, and a late summer temperature reconstruction in the Sygera Mountain on
the southeastern TP [12,48,49]. These reconstructions show highly consistent warm and
cold variations over their common periods, such as in 1808–1821, 1927–1950, 1951–1976,
2002–2010 (Figure 9). The extremely cold event in 1817 may be associated with the cooling
effect caused by the eruption of Mount Tambora in 1815. This cooling event is widely doc-
umented in tree-ring records on the southeastern TP [56]. Our reconstruction shows that
the longest warm epoch was from 1848 to 1875, which was also found in the temperature
reconstructions in Chamdo County [18,57] and the Gaoligong Mountain [11,16] on the
southeastern TP. Historical documents indicated an abnormally cold climate in Lhasa and
Tibet during the early 1900s [58], which aligns with the cold period in our temperature
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reconstruction from 1886 to 1927. Furthermore, the rapid warming since the 1960s in
our reconstruction was also evident in other temperature series (Figure 9). Nonetheless,
our reconstruction exhibits higher similarity to the tree-ring density reconstruction [49]
than the tree-ring width reconstructions [12,48]. Notably, both our reconstruction and
the tree-ring density reconstruction indicated a cooling trend from the 1870s to the 1890s,
whereas the tree-ring width reconstructions suggest a warming trend (Figure 9). This
divergence could be attributed to the amplified seasonal temperature differences over this
period [59], wherein the reconstructions based on LWBI and MXD predominantly reflect
the summer temperature, whereas the tree-ring width based reconstructions reflect winter
or year-round temperature.

4.3. Linkage of August Temperature with the AMO

The Atlantic Multidecadal Oscillation (AMO) denotes the oscillatory rhythm between
periods of heightened and subdued states in the North Atlantic sea surface temperatures
(SSTs), manifesting at approximate intervals of 60 to 80 years [60–63]. This phenomenon
has played a crucial role in modulating the temperature fluctuations in the Northern
Hemisphere during the 20th century [62]. The warm/cold periods of AMO are generally
consistent with the positive/negative temperature anomalies across Europe [64] and East
Asia [63]. The notable cycle of 68–73 years in our temperature reconstruction corresponds
to the oscillation period observed in the SST variations in the North Atlantic [60–63]. Spatial
correlation analysis also reveals strong positive correlations between August temperature
on the southeastern TP and the SSTs in the North Atlantic (Figure 11). Moreover, our
reconstruction demonstrates a significant positive correlation (r = 0.53, p < 0.001) with the
observed AMO index during the period 1870–2017 (Figure 12). Together, these results
support the notion that multidecadal temperature variations on the southeastern TP may
be modulated by the AMO, with warm temperatures occurring during the positive phase
of the AMO. Nonetheless, previous studies generally indicated the potential linkage of the
AMO with winter temperature on the southeastern TP [12,13,63,65]. Our results indicate
that the AMO influence on temperature on the southeastern TP is evident not only in winter
but also in summer.
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Figure 12. Comparison of the temperature reconstruction with the observed AMO index during the
period 1870–2017. Bold curve denotes 10-year low-pass filter of each series. All series are standardized
over their common period for direct comparison.

5. Conclusions

This study utilized the BI technique to extract density-related information from A.
spectabilis trees in the southeastern TP. Our results indicate that the TRW and EWBI param-
eters exhibit high sensitivity to drought conditions, whereas the LWBI parameter is more
sensitive to summer temperature. Therefore, LWBI is a potential parameter that can be
used for summer temperature reconstructions on the southeastern TP. Using this approach,
we reconstructed the August temperature variability over a period of 229 years on the
southeastern TP. The reconstruction reveals several major warm and cold periods that
are highly consistent with previous ring-width or maximum density-based temperature
reconstructions in the region. Our results also reveal a potential linkage of the temperature
reconstruction with the AMO, suggesting that the AMO affects not only winter but also
summer temperatures over the past centuries on the southeastern TP.
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