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Abstract: Forests are facing various threats, such as drought, in the context of global climate change.
Canopy water content (CWC) is a crucial indicator of forest water stress, mortality, and fire monitoring.
However, previous studies on CWC have not adequately simulated forests with heterogeneous and
discontinuous canopy structures. At the same time, there is a lack of field validation. This study
retrieved the forest CWC across the contiguous U.S. (CONUS) with coupled radiative transfer
models (RTMs) and the random forest (RF) algorithm. A Gaussian copula and prior knowledge
were used for model parameterization. The results indicated that more accurate simulations of leaf
trait dependencies and canopy structure characteristics lead to better CWC inversion. In addition,
GeoSail, coupled with PROSPECT-5B, showed good performance (R2 = 0.68, RMSE = 0.15 kg m−2,
MAE = 0.12 kg m−2, rRMSE = 12.78%, Bias =−0.036 kg m−2) for forest CWC retrieval. Large variation
existed in forest CWC, spatiotemporally, and evergreen needle forest (ENF) showed strong CWC
capacity. This study underscores the suitability of 3D RTMs for inversing the parameters of forest
canopies.

Keywords: canopy water content; MODIS; random forest; copula; Google Earth Engine

1. Introduction

Canopy water content (CWC), the amount of water stored in the vegetation canopy,
is typically determined by multiplying the leaf water content by the canopy leaf area
index (LAI). This calculation incorporates information about the leaf water condition and
the canopy structure [1]. CWC is a critical parameter for assessing vegetation growth
and monitoring drought stress. It is influenced by soil water supply and atmospheric
demand [2]. Because of global climate change, drought events are becoming more frequent
and severe, and future projections suggest they may become even more extreme [3,4]. In
this context, the forest, as a critical component of terrestrial ecosystems, is facing severe
threats from drought, leading to increased mortality rates [5–7]. Therefore, monitoring
forest CWC using remote sensing technology can provide valuable insights into forest
growth, water stress status, and drought response [8].

Optical and microwave sensors can effectively detect forest CWC [9,10]. Vegetation
optical depth (VOD), retrieved from microwave emissions, is favored by many researchers
for large-scale studies related to water or biomass, as it is unaffected by weather conditions
and offers a short revisit period [11,12]. However, VOD provides vegetation information
on both water and biomass with low spatial resolution [2]. In contrast, optical sensors offer
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a higher spatial resolution. In optical remote sensing, water absorbs radiation across the
spectrum [13]. Additionally, the estimation of CWC generally relies on water-sensitive
bands, such as 970 nm, 1200 nm, 1450 nm, 1600 nm, 1940 nm, and 2500 nm [1,14].

Approaches to CWC derived from remote sensing can be categorized into the empiri-
cal statistical method, physical model inversion, and hybrid methods [15]. The empirical
statistical method estimates CWC by establishing regression relationships between field
observations and band reflectance or vegetation indices [16]. This method is easy to
understand and convenient to operate, but it relies on observational data and lacks gener-
alization [1]. The physical model determines the response of CWC to canopy reflectance
by simplifying the simulation of solar radiation and the transfer process in the soil–leaf–
canopy–atmosphere [17]. Therefore, the accuracy of the physical process description and
parameterization directly determines the result [18]. The radiative transfer model (RTM) is
a commonly used physical model for CWC inversion. Both SAIL (Scattering by Arbitrarily
Inclined Leaves) and GeoSail (a combination of SAIL and the Jasinski geometric model) be-
long to the RTM, and they generally simulate canopy spectrum characteristics by coupling
with the leaf PROSPECT model [13,19–21]. In nature, remote sensing inversion is typically
ill-posed. The ill-posed problem is characterized by using limited observations to estimate
the current state of a complex surface system, and the amount of data information is less
than the number of model parameters [22]. Therefore, challenges remain in the inversion of
RTMs given the complex physical process description, the large number of parameters to
be acquired, and the inherent ill-posed problem [23–25]. Hybrid-based approaches retrieve
CWC by combining statistical methods with RTM inversion [26]. Practical inversion algo-
rithms include iterative optimization [23], machine learning regression [26,27], and look-up
tables [28].

In CWC inversion, previous studies commonly employed PROSAIL (leaf PROSPEPCT
coupled with canopy SAIL) with unconstrained inputs, which may exacerbate the ill-posed
problem [29]. Additionally, validation is typically conducted within the crop, grass, or
shrub-covered area [1,15,30]. The development of plant trait datasets, such as Leaf Optical
Properties Experiment 93 (LOPEX93) [31], the ANGERS Leaf Optical Properties Database
(ANGERS) [32], the TRY database [33], and the National Ecological Observatory Network
(NEON) [34], enables the further alleviation of ill-posed problems by integrating field
observations with copula or ecological rule-based approaches. However, knowledge gaps
persist in forest CWC inversion because of the complex canopy structure and the scarcity
of field observations [21].

In recent years, Google Earth Engine (GEE) has experienced rapid growth and has
been widely utilized for vegetation, agricultural, urban, hydrological, and land cover appli-
cations [35]. GEE encompasses remote sensing datasets, such as the MODerate-resolution
Imaging Spectroradiometer (MODIS), Landsat, and Sentinel series, as well as meteoro-
logical and geophysical datasets [36,37]. Given its powerful computing performance and
its purpose in geospatial data analysis, GEE serves as an excellent tool for monitoring
long-term dynamic changes at various scales, from local to global [26,38].

In this study, our focus was on (1) parameterizing the model inputs with a Gaussian
copula and prior knowledge, (2) building a CWC-retrieving model via simulations and RF
regression, (3) evaluating the accuracy of CWC inversion based on field observations, and
(4) capturing spatiotemporal variation using the GEE and MODIS products. We strive to
provide a more efficient strategy for forest CWC inversion.

2. Materials
2.1. Study Area

We chose the contiguous U.S. (CONUS) as the study area because of the abundant
field data collected by NEON. As shown in Figure 1, the eastern region of the CONUS is
dominated by deciduous broad forests (DBFs), while the western region is characterized by
evergreen needle forests (ENFs). The total ENF, EBF, and DBF areas across the CONUS are
6.67 × 105 km2, 1.68 × 105 km2, and 2.11 × 106 km2, respectively. In evergreen forests, the
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dominant species include Abies balsamea, Abies lasiocarpa, Juniperus virginiana, Picea glauca,
Picea mariana, Pinus contorta, Pseudotsuga menziesii, Tsuga canadensis, etc. On the other hand,
Acer rubrum, Betula alleghaniensis, Carya tomentosa, Fraxinus americana, Liquidambar styraciflua,
Liriodendron tulipifera, Populus tremuloides, Quercus alba, and Ulmus americana, among others,
dominate deciduous forests [39].
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2.2. Field Observation Datasets
2.2.1. LOPEX93 Dataset

In 1993, a field campaign called the Leaf Optical Properties Experiment was imple-
mented by the Joint Research Centre (JRC) of the European Commission in Ispra, Italy [31].
During the experiment, participants collected approximately 70 leaf samples representing
more than 50 species from plants, crops, and trees at the JRC, and physical measurements
and biochemical analyses were conducted [31]. During the experiment, various biochemical
constituents such as leaf water, chlorophyll, lignin, cellulose, starch, and proteins (nitrogen)
were measured. Directional–hemispherical reflectance and transmittance were recorded
in the 400–2500 nm region [31]. The LOPEX93 database, created using this experiment’s
data, includes 330 records of biochemical constituents and leaf optics from 45 different
species. It covers a wide range of leaf traits [40]. The LOPEX93 database provides variables
such as leaf mass per area (LMA), equivalent water thickness (EWT), chlorophyll (Cab)
concentration, and carotenoid (Car) concentration. As a result, it has been extensively
utilized for parameterizing RTMs at the leaf scale [28,41–43].

2.2.2. ANGERS Dataset

ANGERS is a leaf optics dataset that connects leaf elements’ visible/infrared spec-
tral characteristics with biochemical analyses and physical measurements. It is part of
an experiment conducted by the National Institute for Agricultural Research in Angers,
France [32]. A total of 276 leaf samples, representing 39 different species, were collected
for this database. Physical measurements and biochemical analyses were performed on
these samples [32]. The ANGERS dataset contains directional–hemispherical reflectance
and transmittance (400–2450 nm) obtained using an ASD FieldSpec spectrometer. It also
includes measurements of biochemical constituents (water, carotenoid, chlorophyll, antho-
cyanin, etc.) obtained through biochemical analyses and physical measurements [32,43].
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The ANGERS dataset, often used with LOPEX93, is utilized to parameterize leaf-level
RTMs because both datasets provide the variables required by the models [28,41–43].

2.2.3. National Ecological Observatory Network (NEON)

The National Ecological Observatory Network (NEON), an observation facility funded
by the National Science Foundation, aims to collect long-term ecological data to enhance
understanding and forecast the effects of climate change and human activities on ecosys-
tems across the United States [34]. The NEON established 47 terrestrial sites, ranging from
deserts to tropical forests, equipped with the Terrestrial Instrument System, the Terrestrial
Observation System, the Aquatic Observation System, the Aquatic Instrument System, and
the Airborne Observation Platform [44].

The Terrestrial Observatory System determines the sampling frame at the site level
based on the plot type and taxonomic group. Spatial sampling uses three plot types: tower,
distributed, and gradient plots. Plots are selected using randomization, stratification, and
sample number optimization, guided by the National Land Cover Database (NLCD) [45].
In forest ecosystems, tower base plots measure 40 m × 40 m and are divided into four
20 m × 20 m subplots. Vegetation structure, leaf area index (LAI), herbaceous clip harvest,
plant diversity, and canopy foliar sampling were conducted in the core area. In contrast, soil
sampling was implemented in the high-impact area [46]. Physical, chemical, and stable iso-
tope data for plant foliage are measured through canopy sampling and analyses. Data such
as LMA, EWT, Cab, and Car are provided through the Plant Foliar Traits (DP1.10026.001)
data product [39].

The NEON provides Digital Hemispheric Photos (DHPs) for the Plot Vegetation data
product (DP1.10017.001) to estimate the leaf area index (LAI) or the plant area index at
the plot scale. The data product includes 180-degree images and metadata [47]. In the
designated LAI sampling plots, 12 DHP photo points are positioned on a square grid with
a spacing of four meters. The LAI of the plot was calculated as the average of the 12 points.
DHPs are collected from the leaf-out-to-senescence period with a five-year interval for
distributed plots and a two-week interval for towers [48].

A total of 1152 leaf samples from 195 evergreen, 134 deciduous, 24 mixed forest plots,
and 12 grass plots were used for RTM parameterization. In addition, calculated LAIs from
28 evergreen and 20 deciduous forest plots were used for validation, combined with EWT.

2.3. MODIS Products

Five MODIS products, namely, MCD43A4, MCD43A2, MOD10A1, MYD10A1, and
MCD12Q1, in version 6, available in GEE, were used for CWC retrieval in this study.

The MCD43A4 product contains seven bands (Table 1) and provides a 500 m daily
nadir bidirectional reflectance distribution function (BRDF) adjusted reflectance (NBAR). It
is produced based on 16-day composites [49]. With the BRDF, the reflectance is simulated
as it is obtained from a nadir view in the local afternoon. Therefore, view angle effects are
removed. In this study, all bands of the MCD43A4 were utilized as predictors for global
CWC retrieval.

Table 1. Spectral specifications of the MCD43A4 bands.

Band Wavelength

Nadir_Reflectance_Band1 620–670 nm
Nadir_Reflectance_Band2 841–876 nm
Nadir_Reflectance_Band3 459–479 nm
Nadir_Reflectance_Band4 545–565 nm
Nadir_Reflectance_Band5 1230–1250 nm
Nadir_Reflectance_Band6 1628–1652 nm
Nadir_Reflectance_Band7 2105–2155 nm
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The MCD43A2 is a quality dataset for BRDF and albedo. At the same time, it contains
information on land/water types and solar zenith angles for the MCD43A4 [50]. Here, we
used the “BRDF_Albedo_LandWaterType” band to mask the water area and employed
“BRDF_Albedo_LocalSolarNoon” to provide a solar zenith angle for pixel-based correction.

The MOD10A1 and MYD10A1 provide daily snow cover and snow albedo and related
quality assessments from Terra and Aqua, respectively. The 500 m snow cover data were
produced based on a normalized difference snow index mapping algorithm [51]. In this
work, the snow cover band was utilized to mask the snow-covered area.

The MCD12Q1 product is a MODIS land cover type product that provides six 500 m
annual land cover maps based on different classification schemes. It is produced using
MODIS Terra and Aqua reflectance and supervised classifications [52]. In this study, the
Annual Plant Functional Types classification was utilized, and the forest was divided into
evergreen needle, evergreen broad, deciduous needle, and deciduous broad.

3. Methods
3.1. RTMs Selection and Parameterization

As per the flowchart shown in Figure 2, the spectra of the forest canopy were simu-
lated using three leaf–canopy coupled radiative transfer models (RTMs): PROSPECT-5B
+ 4SAIL (PRO4SAIL), PROSPECT-5B + 4SAIL2 (PRO4SAIL2), and PROSPECT-5B + Geo-
Sail (PROGeoSail). These coupled RTMs were parameterized based on the integration of
observations and previous studies.
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The widely used PROSPECT-5 leaf optics model, developed based on the plate model,
simulates reflectance and transmittance in the 400–2500 nm spectrum range [19]. In this case,
the PROSPECT-5B version provided inputs for canopy RTMs, differentiating chlorophylls
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and carotenoids. The input variables include the leaf structure parameter and biochemical
content (LMA, EWT, Cab, Cbp, and Car). The 4SAIL (an optimized version of SAIL) canopy
bidirectional reflectance model, assuming horizontal uniformity, simulates the bidirectional
reflectance factor based on the scattering and absorption of four upward/downward
radiative fluxes [53].

Building upon the SAIL model, GeoSail incorporates the Jasinski geometric model to
calculate a scene’s illuminated and shadowed components separately [28]. GeoSail utilizes
the optical properties of canopy components to simulate scene reflectance for heterogeneous
and discontinuous forests. Within GeoSail, the reflectance and fraction of the illuminated
canopy, as well as the illuminated and shadowed background, are used to calculate the
forest canopy reflectance [20]

ρt = Cρc + Sρs + Bρb (1)

where ρt is the total forest canopy reflectance; C is the canopy fraction; S is the illuminated
background fraction; B is the shadowed background fraction; and ρc, ρs, and ρb are the
reflectance of the canopy, illuminated, and shadowed background, respectively.

Specifically, the shadowed canopy can be calculated when the solar zenith angle
exceeds the aspect angle and the crown shape is conical [20]:

ρt = (1− Cs)Cρc + Csρcτs + Sρs + Bρb (2)

where Cs is the fraction of the shadowed canopy, and τs is the canopy transmittance.
4SAIL2 is a 3D, hybrid, two-layer canopy radiative transfer model that adheres to

the four-stream concept. It incorporates the vertical leaf color gradient description, crown
clumping, and numerical robustness from GeoSAIL, FLIM, and SAIL++ [54], respectively.
Furthermore, extending a non-Lambertian soil BRDF model eliminated the limitation of
4SAIL2 to a Lambertian soil background. Thus, 4SAIL2 allows for modeling horizontal and
vertical heterogeneities, resulting in more realistic simulations of forest canopies [55].

In GeoSail, the representation of the forest understory utilized the simulated canopy
reflectance of grass instead of bare soil, as proposed by Quan et al. [28]. This replacement
enhanced the realism of the understory reflectance simulation. The bi-hemispherical
reflectance was employed, replacing the original Lambertian soil background, assuming
that the canopy predominantly intercepts direct radiation.

The parameterization of RTMs relied on prior knowledge derived from field observa-
tions and the literature, and more details are shown in Table S1.

3.2. Gaussian Copula

A Gaussian copula was utilized to model the dependencies between leaf traits and
constrain the parameterization of PROSPECT-5B. According to Sklar’s theorem [56], there
is a unique copula that holds for a multivariate absolutely continuous distribution [57]:

F
(

x1, . . . , xp
)
= C

(
F1(x1), . . . , Fp

(
xp
))

(3)

where F is a multivariate distribution function, C is a copula, and F1(x1), . . . , Fp
(

xp
)

are
univariate distribution functions (marginal distributions).

The Gaussian copula takes the form [58]

CGaussian (u) = ΦR

(
Φ−1(u1), . . . , Φ−1(up

))
(4)

where CGaussian is a Gaussian copula, ΦR is the joint standard normal cumulative distri-
bution function with positive definite covariance matrix R and zero mean, and Φ−1 is
the standard normal quantile function. All marginal distributions and positive definite
covariance matrixes allow for Gaussian copulas, and only pairwise dependencies were
considered [57].
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Gaussian copula modeling involves three steps: (1) calculating the univariate distri-
butions, (2) obtaining the covariance matrix, and (3) modeling the relationships between
variables using the copula function. The Gaussian copula was implemented using openturns
in Python 3.9.5 in this study. Additionally, the univariate distributions were estimated using
the Gaussian Kernel Density Estimation based on the data, and the covariance matrix was
calculated using the Pearson method. Figures 3 and S1 show the distribution of Gaussian
copula-based samples for trees and grass.
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3.3. RF-Based RTM Inversion

Random forest (RF) regression, a machine learning method, was employed for the
inversion of RTMs. RF can overcome the autocorrelation of variables and overfitting, and it
exhibits better prediction ability than a decision tree when dealing with many variables and
observations because of its hierarchical structures and insensitivity to outliers [59,60]. RF is
a combination of bagging algorithms and decision trees. It employs Bootstrap to extract n
samples and constructs a decision tree for each sample [59].

Seven MODIS bands, simulated by the RTMs, were chosen as features for training an
RF model. A 10-fold cross-validation was employed to evaluate the performance of the
RF-based inversion model, using model efficiency (R2), root-mean-square error (RMSE),
and mean absolute error (MAE) as criteria for assessing accuracy [61]. Lastly, the forest
CWC of the CONUS from 2017 to 2021 was generated in GEE using the RF model and
MODIS products.

3.4. Solar Zenith Angle Correction

The geometric position of illumination and observation directly influence the re-
flectance of the ground target [62]. Geometric and radiometric corrections are essential for
accurately retrieving land surface and vegetation parameters, particularly in time-series
studies [63]. Regarding the MCD43A4, the bands were adjusted to the nadir view and the
solar zenith angle at local noon. Thus, we employed the general method to correct the solar
zenith angle [64]:

NBARβ =
NBARα × cos β

cos α
(5)
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where NBARα and NBARβ are the reflectance before and after correction, while α and β
are the original and target solar zenith angles. In this work, the solar zenith angle is unified
to 30◦.

3.5. LAI Calculation from NEON DHPs

The GBOV (Ground-Based Observations for Validation) algorithm was employed to
calculate field LAI based on the DHPs provided by the NEON [65]. To calculate LAIs
from DHPs, the following steps were included: (1) image classification, (2) gap fraction
calculation, and (3) LAI estimation.

For upward-facing DHPs, the Otsu automatic thresholding method was applied to the
blue channel to classify the image cells as sky or vegetation canopy. Meanwhile, the image
cells’ background and vegetation canopy classification algorithm in downward-facing
DHPs followed Meyer and Neto [66]. The method extracts vegetation canopy cells using
two spectral indices: the excess green index (ExG, Equation (6)) and the excess red index
(ExR, Equation (7) [67]). An image cell is classified as a vegetation canopy when the ExG
is greater than the ExR. Otherwise, it is considered background. The ExG is calculated as
follows:

ExG = 2DNgreen − DNred − DNblue (6)

and the ExR takes the form of

ExR = 1.4DNred − DNgreen (7)

where DNred is the red channel, DNgreen is the green channel, and DNblue is the blue
channel.

Before gap fraction calculation, each image cell’s zenith and azimuth angles need to
be provided. The NEON DHPs were collected using a full-frame fisheye with a 180◦ field
of view (FOV). Thus, assuming the zenith angle (α) of the image center is 0◦, other cells can
be calculated as follows [67]:

α =

√
(x− xc)

2 + (y− yc)
2 180√

w2 + d2
(8)

where x and y are the coordinates of a cell with an unknown zenith angle, xc and yc are the
coordinates of the center cell, w is the image’s width, and d is the height of the image. All
these are expressed in pixels. The azimuth angle of a cell is calculated clockwise from the
image center.

The classified images were divided into 36 patches with a 10◦ interval of azimuth
angles to calculate the gap fraction. Only cells with zenith angles ranging from 52.5◦ to
62.5◦ were used to calculate the gap fraction of each patch. Therefore, the gap fraction, g f ,
was calculated based on the patch as follows [67]:

g f =
nbackground

ntotal
(9)

where nbackground and ntotal are the sky (or soil for downward images) cell amount and the
total cell amount within a patch, respectively.

Then, the plant area index (PAI) was calculated as

PAI =
−ln g f

0.93
(10)

following Lang and Yueqin [68], where ln g f is the mean of the natural logarithm of the
36 patches’ g f values. Finally, PAI was equal to LAI for the non-woody area, while the LAI
of the woody area was estimated according to

LAI = PAIup(1− β) + PAIdown (11)
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where PAIup was calculated from the upward DHPs, PAIdown was calculated from the
downward DHPs, and β is the area woody-to-total ratio. The means of β are 0.24, 0.16, and
0.18 for the deciduous forest, evergreen forest, and all [65], respectively.

3.6. Validation

The accuracy of CWC inversion was evaluated using NEON field observations. The
NLCD land cover data were used to filter the representative NEON plots because of the
difference in scale between the field plots and MODIS images. The criterion for screening
the plots is that, within a 500 m buffer, one land cover type should occupy more than 90%
of the area.

4. Results
4.1. Theoretical Performance of Coupled RTMs Inversion

The scatter plots between the predicted and model-set CWC values from the 10-fold
cross-validation showed the theoretical performance of the three RF-based CWC inversion
models. High model efficiency (R2), low error (RMSE, MAE, and rRMSE), and weak
bias (Bias) indicated that PRO4SAIL (R2 = 0.9, RMSE = 0.17 kg m−2, MAE = 0.1 kg m−2,
rRMSE = 3.78%, Bias = 0.002 kg m−2), PRO4SAIL2 (R2 = 0.88, RMSE = 0.17 kg m−2,
MAE = 0.1 kg m−2, rRMSE = 3.73%, Bias = 0.001 kg m−2), and PROGeoSail (R2 = 0.87,
RMSE = 0.18 kg m−2, MAE = 0.1 kg m−2, rRMSE = 4.08%, Bias = 0 kg m−2) had the
theoretical ability to capture variations in CWC between different forest canopies well
(Figure 4).
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4.2. Forest CWC Validation

The results of CWC validation, based on 48 NEON field observations collected at
different sites during the leaf-out-to-senescence period from 2017 to 2021, are displayed in
Figure 5. PRO4SAIL2 (R2 = 0.72, RMSE = 0.15 kg m−2, MAE = 0.12 kg m−2, rRMSE = 12.04%)
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and PROGeoSail (R2 = 0.68, RMSE = 0.15 kg m−2, MAE = 0.12 kg m−2, rRMSE = 12.78%)
had higher coefficients of determination and lower errors than PRO4SAIL (R2 = 0.51,
RMSE = 0.19 kg m−2, MAE = 0.14 kg m−2, rRMSE = 15.86%). PROGeoSail exhibited a
negative bias of −0.036 kg m−2, and PRO4SAIL2 was −0.081 kg m−2, while the bias of
PRO4SAIL was positive: 0.071 kg m−2. Weaker bias, a lower error, and a higher coefficient
of determination indicated that PROGeoSail had better accuracy.
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4.3. Spatiotemporal Variations in Forest CWC

Retrieval models were implemented in GEE using MODIS products to monitor spa-
tiotemporal variations in forest CWC across the CONUS. The monthly mean forest CWC
values from 2017 to 2021 were then generated (Figures 6, S2 and S3).
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Figure 6. Monthly mean CWC spatial distribution of the CONUS at 500 m resolution in 2017–2021
based on PROGeoSail inversion.

Spatially, CWC exhibited variations between different forest types. Lower CWC values
were observed in the DBF located in the eastern part of the CONUS, whereas higher CWC
values were generally found in the ENF in the western region. Additionally, CWC dynamics
varied with the month. As Figure 7 shows, throughout the year, forest CWC showed an
increasing trend from January to August, followed by a decreasing trend until December.
The DBF exhibited more significant seasonal variation compared with the ENF and the EBF.
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Figure 7. Monthly mean CWC of different forest types in 2017–2021 based on PROGeoSail inversion.

Furthermore, the three RTMs exhibited consistent spatial and temporal patterns.
However, the retrieved CWC from PRO4SAIL was higher than that of PRO4SAIL2 and
PROGeoSail, particularly in the ENF.
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5. Discussion

Leaf traits are correlated, and forest canopy structures are heterogeneous and dis-
continuous. The accurate simulation of leaf and canopy characteristics can improve the
accuracy of CWC inversion using coupled RTMs. Here, the 3D RTMs produced more
accurate CWC retrieval than 1D RTMs. Our results demonstrated better theoretical perfor-
mance than Campos-Taberner et al. [17] and superior validation accuracy compared with
Trombetti et al. [29] and García-Haro et al. [1].

The successful inversion of forest CWC can be attributed to two key improvements.
Firstly, in contrast to previous studies [21,29,69], we employed a Gaussian copula to con-
strain the leaf traits in the leaf-level RTM. This approach was adopted to alleviate the
well-known ill-posed inversion problem in remote sensing. Prior studies [23–25,70] have
highlighted the importance of constraining the fully independent variables using prior
information to mitigate this issue. Quan et al. [25] and Reyes-Muñoz et al. [27] employed
different methods to constrain the inputs of the RTMs for vegetation parameter inversion,
resulting in favorable outcomes. As demonstrated in Figures 3 and S1, the leaf traits exhibit
natural correlations with each other.

Secondly, a more accurate simulation of the forest canopy structure is needed. When
retrieving canopy parameters, the widely used SAIL (or 4SAIL) model is generally applied
to describe the canopy structure of grass, crops, shrubs, and forests [1,17,21,26,29,71] with-
out considering their differences. However, the forest canopy exhibits heterogeneity and
discontinuity, and modeling it solely with the turbid-based PROSAIL model may introduce
bias. 4SAIL2 incorporates horizontal and vertical heterogeneities to achieve more realistic
modeling by combining crown clumping and leaf color gradients [54]. GeoSail models
crown clumping using Jasinski’s parameterization [20]. Although including additional
parameters may exacerbate the ill-posed problem, 3D canopy RTMs constrained by prior
information, such as 4SAIL2 and GeoSail, are more suitable for forest modeling [28,55].

The forest CWC undergoes dynamic changes, particularly in the DBF. This variation
was also observed by Trombetti et al. [29]. According to this definition, the CWC is
determined by its EWT and LAI, both of which are influenced by plant phenology, climate,
soil moisture, and other factors [2,72,73].

Our results also revealed a spatial pattern of higher CWC in the ENF of the CONUS and
lower CWC in the DBF, which is consistent with the findings of Campos-Taberner et al. [17]
and Reyes-Muñoz et al. [27]. This pattern can be attributed to the significant difference in
leaf EWT, as indicated by field observations (Figures 5 and S4). However, the difference
in CWC between ENF and DBF is more pronounced than in previous studies [1,17,26,29].
This difference could be explained by the variations in the selection and parameterization
of RTMs [17], the inversion method [29,74], and remote sensing images [1,26]. Given the
limitations of the data, more research on this difference is needed in the future.

In our study, a few limitations and uncertainties remain in the following aspects:
Firstly, the field observations are limited and unevenly distributed in time and space.
There are 170, 226, and 989 leaf samples from trees from LOPEX93, ANGERS, and the
NEON, respectively, and the majority of these samples were obtained from deciduous trees.
Limited and uneven leaf samples may lead to bias in EWT distribution and eventually
affect the inversion of CWC. In addition, the NEON field observations of leaf traits and
DHPs were primarily collected from leaf-out to senescence [48]. In this study, only 48
field CWC measurements (28 evergreen and 20 deciduous) were available for accuracy
assessment, and there is a lack of observations for the winter period. Therefore, future
research should prioritize additional efforts in forest field validation.

Secondly, this study focused on simulating the canopy while neglecting the leaf.
PROSPECT-5, based on the plate model, was developed to simulate the reflectance and
transmittance of broad leaves [19]. Although numerous studies have demonstrated the
suitability of PROSPECT-5 for retrieving physiological parameters in coniferous species
[13,28,75], the use of LIBERTY to simulate the reflectance and transmittance of coniferous
species would provide greater robustness [76].
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Thirdly, the simulated reflectance of the grass canopy was used instead of bare soil.
This improvement can make the simulation of the forest more realistic [28]. However, the
ground cover of CONUS forests is usually dominated by herbaceous and shrub layers [77].
Further study on the influence of forest underlayer on the inversion of CWC is needed.

Finally, compared with 4SAIL, 4SAIL2 and GeoSail require more inputs, which exac-
erbates the ill-posed problem. In this study, we employed prior information to constrain
the inputs of the RTMs, including leaf-level parameters such as LAM, EWT, Cab, and Car,
as well as the canopy cover fraction at the canopy level. However, there remain several
independent parameters for the RTMs’ inputs. Thus, future research should aim to impose
further constraints on these free parameters based on additional prior information.

In this study, we estimated the forest CWC at a coarse spatial resolution. To study the
species-specific characterization of CWC, hyperspectral, LiDAR, terahertz technology, and
high-resolution images from unmanned aerial vehicles (cm to m level), Sentinel-2 (10 m),
and Landsat 8–9 (30 m) could be used [61,78].

6. Conclusions

In this study, we aimed to compare the performance of different RTMs and provide
an efficient strategy for forest CWC monitoring. A Gaussian copula and prior-knowledge-
constrained parameters were input into coupled RTMs, and RF regression was used to
retrieve forest CWC values across the CONUS. We found that accurately simulating the
characteristics of leaf traits and canopy structures can improve the accuracy of CWC
inversion. Additionally, 3D RTMs demonstrated better performance in retrieving forest
CWC. We found that forest CWC showed a dynamically changed spatiotemporal pattern,
and ENF had a strong CWC capacity. However, uncertainties still exist because of data
limitations and the ill-posed problem. Future research should focus more on simulating
forests with heterogeneous and discontinuous canopy structures and conducting field
validation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/f14071418/s1: Figure S1. Constrained random samples of herba-
ceous LMA, EWT, Cab, and Car based on field observations using a Gaussian copula for (a) LMA
vs. EWT; (b) LMA vs. Cab; (c) LMA vs. Car; (d) EWT vs. Cab; (e) EWT vs. Car; (f) Cab vs. Car.
Figure S2. Monthly mean CWC spatial distribution of CONUS at 500 m resolution in 2017–2021 based
on PRO4SAIL inversion; Figure S3. Monthly mean CWC spatial distribution of CONUS at 500 m
resolution in 2017–2021 based on PRO4SAIL2 inversion; Figure S4. Box plot for the EWT of NEON
field observations comparing deciduous and evergreen forests. The statistical significance is shown
by lowercase letters (a and b) at the level of p < 0.01 using one-way analysis of variance (ANOVA);
Table S1. Parameterization of RTM inputs for forest CWC inversion.
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