
Citation: Deng, L.; Chen, B.; Yan, M.;

Fu, B.; Yang, Z.; Zhang, B.; Zhang, L.

Estimation of Species-Scale Canopy

Chlorophyll Content in Mangroves

from UAV and GF-6 Data. Forests

2023, 14, 1417. https://doi.org/

10.3390/f14071417

Academic Editors: Helmi Zulhaidi

Mohd Shafri

Received: 17 May 2023

Revised: 30 June 2023

Accepted: 5 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Estimation of Species-Scale Canopy Chlorophyll Content in
Mangroves from UAV and GF-6 Data
Liangchao Deng 1,2,3, Bowei Chen 1,2,* , Min Yan 1,2, Bolin Fu 3 , Zhenyu Yang 2,3,4, Bo Zhang 2,3

and Li Zhang 1,2,*

1 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100094, China; d18277754458@163.com (L.D.); yanmin@aircas.ac.cn (M.Y.)

2 International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China;
yzyloloo@gmail.com (Z.Y.); zhangbo203@mails.ucas.ac.cn (B.Z.)

3 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China;
fubolin@glut.edu.cn

4 School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China
* Correspondence: chenbw@aircas.ac.cn (B.C.); zhangli@aircas.ac.cn (L.Z.); Tel.: +86-18672318985 (B.C.);

+86-18600132968 (L.Z.)

Abstract: The growth of mangroves is inhibited due to environmental degradation, and changes in
the growing health of mangrove forests cause changes in internal physicochemical parameters. The
canopy chlorophyll content is an important indicator to monitor the health status of mangroves. We
study the effective inversion data sources and methods of mangrove health indicator parameters to
monitor the health of mangrove ecosystems in typical areas of Beibu Gulf, Guangxi. In this study, we
evaluated the capability of UAV, GF-6 data, and machine learning regression algorithms in estimating
mangrove species-scale canopy chlorophyll content (CCC). Effective measures for mangrove pest and
disease pressure, Sporobolus alterniflorus invasion, and anthropogenic risk are also explored, which
are important for mangrove conservation and restoration. (1) We obtained several feature variables
by constructing a combined vegetation index, and the most sensitive band of mangrove CCC was
selected by the characteristic variable evaluation, and the CCC model at the mangrove species-scale
was evaluated and validated. Through variable preferences, the feature variables with the highest
contribution of Avicennia marina, Aegiceras corniculatum, Kandelia candel, and a collection of three
categories of species in the UAV data were indices of RI35, MDATT413, RI35, and NDI35. (2) Random
Forest, Gradient Boosting Regression Tree, and Extreme Gradient Boosting were evaluated using the
root-mean-square error and coefficient of determination accuracy metrics. Extreme Gradient Boosting
regression algorithms were evaluated for accuracy. In both UAV data and GF-6, RF achieved optimal
results in inverse mangrove Aegiceras corniculatum species CCC, with higher stability and robustness
in machine learning regressors. (3) Due to the sparse distribution of Kandelia candel in the study
area and the low spatial resolution of the images, there is an increased possibility that individual
image elements contain environmental noise, such as soil. Therefore, the level of CCC can effectively
reflect the health status of mangroves and further reflect the increased possibility of the study area
being exposed to risks, such as degradation. The establishment of the current protected areas and
restoration of degraded ecosystems are effective measures to cope with the risks of mangrove pest and
disease stress, invasion of Sporobolus alterniflorus, and anthropogenic activities, which are important
for the protection and restoration of mangroves. This study provides an important data reference
and risk warning for mangrove restoration and conservation.

Keywords: mangrove; canopy chlorophyll content (CCC); machine learning regression (MLR);
unmanned aerial vehicle (UAV) imagery; Gaofen-6 (GF-6) satellite imagery
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1. Introduction

Mangroves are salt-tolerant woody plant communities consisting of evergreen trees
and shrubs, distributed in tropical and subtropical coastal intertidal and inlet estuaries.
Mangrove wetlands are one of the most important blue carbon ecosystems in the world,
with many ecological values, such as preventing shoreline erosion, sequestering carbon,
and maintaining biodiversity [1,2]. Compared to other terrestrial vegetation, the unique
structural morphology and biological and physiological characteristics of mangroves allow
them to grow in extreme environments, such as salinity, high temperatures, strong winds,
high tides, high sedimentation, and anaerobic soils [3]. Despite the many ecosystem services
that mangroves can provide, the health of mangrove forests is threatened by natural factors,
such as strong winds, pests, diseases, fouling organisms, invasive alien species, and the
overexploitation of mangrove wetlands by humans in blind pursuit of economic benefits,
leading to land use conversion to aquaculture, agriculture, and urban development, and
the global extent of mangrove forests is rapidly degrading [4]. The Beibu Gulf in Guangxi
is a vital distribution area for mangrove forests in China. Compared with the terrestrial
forest, the mangrove community in Beibu Gulf of Guangxi has a single structure and low
insect diversity, which makes it difficult for pests to be effectively restrained due to the
small number of natural enemies, while the introduced exotic species, such as Sporobolus
alterniflorus and other organisms, directly endanger the ecosystem health of mangroves.
Canopy chlorophyll content (CCC) is related to the vegetation light capture, photosynthesis
rate, and other physiological processes, and can reflect the overall health of mangrove
forests [5]. Therefore, long-time series, high accuracy, and large-scale canopy chlorophyll
content mapping are important for mangrove health monitoring and risk assessment. For a
long time, little attention has been paid to the health of mangroves in Beibu Gulf, Guangxi.
The inversion of canopy chlorophyll content, which is an important indicator for assessing
the health of mangroves, still needs to be studied in depth.

Canopy chlorophyll content (CCC) can be calculated from the product of leaf
chlorophyll-a content (LCC) and leaf area index (LAI) [6,7]. Most traditional estimates of
the chlorophyll content and leaf area index at the leaf level are based on ground-based
measurements, and although this method is the most accurate estimation, it is often time-
consuming and destructive to the plant, and it is difficult to obtain the spatial variability of
LAI and LCC on a large scale [7,8]. Remote sensing technology with remote sensing image
sensors mounted on airborne and satellite-based platforms is a long-time, large-scale, fast,
and efficient method to directly measure vegetation LAI and chlorophyll compared to tra-
ditional ground-based measurement methods [9–11]. Extracting the chlorophyll content of
the canopy from remotely sensed data is complex, and for this reason, the effects of canopy
structure, background noise, and geometry should be considered [12,13]. The purpose of
constructing vegetation indices (VIs) is to minimize the influence of environmental noise
on the estimation of vegetation parameters through the combination of spectral bands and
to improve the sensitivity of spectral features to vegetation characteristics [14,15]. However,
for the inversion of vegetation species-scale parameters, the spatial resolution of the images
is particularly important, and Sentinel-2 data are slightly lacking. The multispectral remote
sensing data acquired by the satellite-based platform have some limitations in estimating
vegetation parameters. Firstly, satellite-based high-resolution images are more costly to
acquire, but still cannot meet the demand of spatial resolution of images for precision
forestry; especially for the inversion of mangrove species-scale, it is slightly weak [11]. Sec-
ond, satellite-based multispectral images are limited by the re-entry cycle of the mounted
platform, which makes it difficult to obtain cloud-free remote sensing images at a specific
time, and the Unmanned aerial vehicle (UAV) platform can theoretically make up for the
limitations of the satellite-based equipment [16,17]. UAVs can effectively eliminate the
influence of environmental noise, such as other vegetation species and the background,
due to their very high spatial resolution and the ability to adjust the flight path according to
the angle of solar incidence [11]. UAV remote sensing technology can collect a wide range
of spatial information in a shorter period to improve field efficiency, while maintaining
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high accuracy and spatial resolution, and UAV images have been studied as the core data
for collecting vegetation biophysical and chemical parameters [11,18,19]. For example,
tree species, height, canopy diameter, and above-ground biomass (AGB) forest survey
data acquired by UAV with the motion structure and multi-view stereo photogramme-
try program (UAV-SfM) can complement and eventually replace traditional forest survey
techniques [20–23]. UAV multispectral imagery has been demonstrated to be highly re-
liable in estimating vegetation biochemical parameters [10,24–26]. The Gaofen-6 (GF-6)
satellite data, a Chinese first Gaofen satellite for precision agricultural observation, provide
reflectance information sensitive to vegetation parameters. GF-6 data was used, for exam-
ple, as a practical input to PROSAIL models and different machine learning regression
algorithms for simulating spectral reflectance when inverting (it means estimation and
retrieval) vegetation LAI [27]. The GF-6 multispectral data with spatial resolution up to
2 m and a wavelength range consistent with UAV data can be used as a satellite-based data
source for species-scale parameter inversion of mangroves. At present, the reliability of
using UAV and GF-6 multispectral data as a data source for the inversion of mangrove
species-scale canopy chlorophyll content still needs to be further explored [28].

Currently, empirical remote sensing estimates of vegetation biophysical parameters are
mainly divided into parametric and non-parametric regression methods. The reflectance
in the red-edge region (wavelengths in the range of 680–750 nm) is considered the best
remote sensing characterization indicator of chlorophyll concentration, and therefore, the
direct statistical relationship between vegetation chemistry and specific reflectance, i.e., the
parametric regression relationship, can be established using remote sensing measurements
to model the spatial variation of the chlorophyll concentration on a large scale [9,29]. Empir-
ical modeling approaches often establish relational expressions by comparing vegetation-
specific spectral features and selecting the best vegetation index with vegetation parameters,
and this approach has been successfully applied to various vegetation canopies [7,30–34].
Among the empirical statistical regression models, vegetation index parameter regression
models are widely used. For example, a high correlation between the vegetation index
and chlorophyll was observed in crop development stage monitoring, with spectral in-
dices showing high sensitivity to chlorophyll content in forest vegetation at both the leaf
(R2 = 0.72; p < 0.001) and canopy (R2 = 0.78; p < 0.001) levels [35,36]. Compared to paramet-
ric regression methods based on vegetation indices, red-edge locations, or spectral integrals,
machine learning regression (MLR) algorithms produce adaptive and robust relationships
that can handle the strong nonlinear relationship between biophysical parameters and
observed reflected radiation in a function-dependent manner [37,38]. Machine learning
regression algorithms are widely used in the estimation of vegetation parameters, such
as chlorophyll concentration, due to their high assessment accuracy and stability [39–46].
For the estimation of vegetation parameters, various MLR algorithms have been shown
to be more effective than parametric methods with linear models. The Random Forest
(RF), Gradient Boosting Regression Tree (GBRT), and Extreme Gradient Boosting (XGBoost)
algorithms are common machine learning regression algorithms and have been shown
to be beneficial tools for estimating vegetation parameters [9,41,47,48]. Machine learning
regression algorithms have the potential to invert mangrove CCC with stronger model
generalization relative to general parametric regression methods; however, the applicabil-
ity of RF, GBRT, and XGBoost algorithms in mangrove CCC estimation, especially at the
species-scale, is still very limited.

The current studies for mangrove canopy chlorophyll content, especially the applica-
tion of UAV data and GF-6 satellite data at the species-scale, are relatively few. From the
perspective of spatial and aerial platforms, the selection of UAV and GF-6 data can balance
cost and efficiency for decision-makers. The usefulness of different machine learning algo-
rithms in estimating canopy chlorophyll content under different circumstances (different
data, different species-scale) is dissimilar. The current applications of machine learning
algorithms on different remote sensing data still need to be further explored. By comparing



Forests 2023, 14, 1417 4 of 26

the performance of distinct machine learning regressors, the best inversion model can be
selected to improve the inversion accuracy of mangrove CCC.

With the use of mangrove UAV and GF-6 multispectral images, the study in this paper
aims to construct a species-scale CCC model of mangroves using the MLR technique. The
objectives of this study were (1) to investigate the capability of UAV and GF-6 multispectral
data for inversion of mangrove canopy chlorophyll content in the mangroves; (2) to identify
the bands and vegetation indices in UAV and GF-6 data that are sensitive to mangrove CCC;
(3) to compare the accuracy of UAV data and GF-6 remote sensing images for inversion
of three different mangrove species; (4) to quantify the optimal machine learning model
in this area and using this method to guide the future mangrove health condition and
monitoring, for conversion and restoration. This study provides a new idea for mangrove
health monitoring by estimating the physicochemical parameters of mangroves. It provides
a vital data reference for mangrove restoration and conservation in the Beibu Gulf region
of Guangxi, China. Meanwhile, it provides risk warnings for mangrove ecosystems to
facilitate rapid response and decision-making for mangrove conservation and restoration.

2. Materials and Methods
2.1. Study Area

The study area is located in Shajiao village (SJ) (Figure 1) along the Dafeng River in
the middle zone of Beibu Gulf, Guangxi, with the geographical coordinates of 108◦48′15′′

E~108◦52′15′′ E, 21◦37′00′′ N~21◦38′20′′ N, which belongs to a subtropical monsoonal
maritime climate. It is located at the confluence of the estuary of the Dafeng River and the
inlet of the sea, where three typical mangroves are mainly distributed: Avicennia marina
(AM), Aegiceras corniculatum (AC), and Kandelia candel (KC). The area of mangrove forest
in the study area is about 1.28 km2. Most of the mangrove forests in the area are natural
and dominated by shrubland, and white bone loam is the dominant population in the
area. In addition, the pest and disease stress and the invasion of Sporobolus alterniflorus in
the area have led to changes in leaf traits, which are important factors causing mangrove
degradation and threatening the health of the mangrove ecosystem.

2.2. Datasets
2.2.1. Field Measurements

To obtain accurate canopy chlorophyll content values and UAV image datasets, the
experiment collected 228 sample squares from 8 January 2021 to 14 January 2021 in our
study area, with the following specific requirements for data collection: (1) to avoid the
influence of human factors, the survey site is 30 m away from the shore; (2) the size of
each sample plot was as close to a 10 m × 10 m square as possible, and existing studies
have shown that a 10 m × 10 m sample plot is the best scale for estimating LCC and
LAI [11,49]; (3) in the study area, we collected 85, 62, and 44 sample plots of Avicennia
marina (AM), Aegiceras corniculatum (AC), and Kandelia candel (KC) species, respectively,
each with a sample plot size of 10 m × 10 m; (4) LAI data of mangroves were measured
using the LAI-2200 Plant Canopy Analyzer instrument.

The LCC data of mangrove leaves were measured with the Chlorophyll Meter SPAD-
502 Plus instrument (Table 1), and the geographical locations of the collected ground
points were recorded with the CNOOC V90 GNSS RTK. There was a significant correlation
between SPAD values and chlorophyll content in the forest; therefore, SPAD values can
effectively reflect the leaf chlorophyll content variation in mangroves [15]. The LAI-2200
Plant Canopy Analyzer is considered as an ideal tool for measuring LAI in the field [50].
The Hi-Target V90 GNSS RTK handbook differential mode has centimeter-level positioning
accuracy and can provide accurate location information for each mangrove plot. The
measured parameters are shown in Table 1.



Forests 2023, 14, 1417 5 of 26
Forests 2023, 14, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 1. Location of study area and distribution of measured points. (a,b) The location of Guang-
xi Province, China, and the coastal zone in the study. (c) The map of mangrove extent in Sajiao vil-
lage, a typical study area in Beibu Gulf, Guangxi, with a false color image from the combination of 
bands 4, 3, and 2 of GF-6; black vector linear elements mark the mangrove extent in the typical 
study area, and green dot elements mark the distribution of ground collected data. (d) The false 
color image of Landsat 8 OLI sensor in the Beibu Gulf area of Guangxi, with red vector border 
marking the mangrove area range. 

2.2. Datasets 
2.2.1. Field Measurements 

To obtain accurate canopy chlorophyll content values and UAV image datasets, the 
experiment collected 228 sample squares from 8 January 2021 to 14 January 2021 in our 
study area, with the following specific requirements for data collection: (1) to avoid the 
influence of human factors, the survey site is 30 m away from the shore; (2) the size of 
each sample plot was as close to a 10 m × 10 m square as possible, and existing studies 
have shown that a 10 m × 10 m sample plot is the best scale for estimating LCC and LAI 
[11,49]; (3) in the study area, we collected 85, 62, and 44 sample plots of Avicennia marina 
(AM), Aegiceras corniculatum (AC), and Kandelia candel (KC) species, respectively, each 
with a sample plot size of 10 m × 10 m; (4) LAI data of mangroves were measured using 
the LAI-2200 Plant Canopy Analyzer instrument. 

Figure 1. Location of study area and distribution of measured points. (a,b) The location of Guangxi
Province, China, and the coastal zone in the study. (c) The map of mangrove extent in Sajiao village, a
typical study area in Beibu Gulf, Guangxi, with a false color image from the combination of bands 4,
3, and 2 of GF-6; black vector linear elements mark the mangrove extent in the typical study area,
and green dot elements mark the distribution of ground collected data. (d) The false color image
of Landsat 8 OLI sensor in the Beibu Gulf area of Guangxi, with red vector border marking the
mangrove area range.

Table 1. Statistics of LAI and LCC values derived from field measurements in the study area.

Measured
Parameters Tree Species Number of

Samples
Mean
Value

Standard
Error of
Mean

Numerical
Range

LAI

AM 85 1.87 0.05 [0.93, 3.04]
AC 62 2.60 0.08 [1.26, 4.03]
KC 44 1.96 0.07 [0.94, 3.00]

AM + AC + KC 191 2.14 0.04 [0.93, 4.03]

LCC (SPAD)

AM 85 45.82 0.40 [38.70, 57.00]
AC 62 45.71 0.62 [31.90, 53.80]
KC 44 58.26 0.64 [48.30, 71.50]

AM + AC + KC 191 49.93 0.48 [31.90, 71.50]
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Table 1. Cont.

Measured
Parameters Tree Species Number of

Samples
Mean
Value

Standard
Error of
Mean

Numerical
Range

LAI × LCC
(SPAD)

AM 85 86.24 2.75 [39.50, 164.16]
AC 62 120.07 4.58 [40.19, 192.45]
KC 44 114.76 5.15 [52.36, 183.76]

AM + AC + KC 191 107.02 2.52 [39.50, 192.45]
AM + AC + KC: a collection of AM, AC, and KC species samples.

2.2.2. UAV and GF-6 Data Pre-Processing

To ensure the accuracy of the inversion of the mangrove canopy chlorophyll content,
the UAV data were collected at the same time as the ground truth data. The DJI Matrice
200 (M200) UAV used in the experiment is equipped with the MicaSense RedEdgeTM

(MicaSense, Inc. Located in Seattle, WA, USA) multispectral sensor, which can provide
blue (band1: 460–510 nm), green (band2: 545–575 nm), red (band3: 630–690 nm), red-edge
(band4: 712–722 nm), and NIR (band5: 820–860 nm) multispectral sensors. During the
operation, the flight altitude was set to 100 m, and the overlap rate of both the heading and
side direction was set to 80%. Before takeoff, the radiation calibration was performed by
using the standard calibration plate, and the ground absolute reflectance image with better
than 0.07 m spatial resolution was finally obtained by processing with Pix4Dmapper v4.5.6
software and ENVI5.6 software (Figure 2).
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Figure 2. UAV images and field photos of AM, AC, and KC: (a), (b) and (c) indicate AM, AC, and KC
photographs taken in the field; (d) is a photo of the UAV taking off; (e), (f) and (g) denote the AM,
AC, and KC multispectral photographs taken by the UAV, respectively; (h) is a multispectral image
of mangroves throughout the study area, and the red squares from left to right are shown enlarged in
(e), (f), and (g) respectively.
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The reflectance information of GF-6 satellite data is sensitive to vegetation parameters,
such as LAI and LCC, and is suitable for estimating parameters related to vegetation growth
to monitor vegetation health, so this paper will use GF-6 satellite data to estimate mangrove
canopy chlorophyll content information [51–54]. GF-6 data were acquired through the
China Resources Satellite Center (http://www.cresda.com, URL (accessed on 21 October
2022)), and the images were acquired on 2 January 2021. GF-6 data are equipped with
an 8-band CMOS detector, and the satellite is equipped with 2 m panchromatic and 8 m
spatial resolution multispectral high-resolution cameras, which can provide blue (band1:
450–520 nm), green (band: 520–600 nm), red (band3: 630–690 nm), NIR (band4: 760–900 nm),
and Pan (p: 450–900 nm). In order to obtain accurate multispectral reflectance information
with high resolution of subsatellite image elements, GF-6 data were pre-processed with
radiometric calibration and atmospheric correction, and the multispectral and panchromatic
images were aligned with the positioning information provided by GNSS RTK, and fused
into 2 m spatial resolution using the Gram–Schmidt Pan Sharpening tool of ENVI 5.6. data
containing all multispectral information.

2.3. Methods

RF, GBRT, and XGBoost algorithms are robust in quantitative inversion and are widely
used in the estimation of mangrove parameters [15,47,55,56]. In this paper, the feature
variables (reflectance bands or combined vegetation indices sensitive to CCC obtained
after correlation analysis and feature variable selection) are used as input parameters for
the machine learning regression algorithm, with CCC as the target variable. In this study,
we attempted to invert mangrove CCC values using UAV and GF-6 data combined with
random forest (RF), gradient boosting (GBRT), and extreme gradient boosting (XGBoost)
algorithms to map mangrove CCC by combining UAV and MLR, GF-6, and MLR models,
respectively. The overall method flow is shown in Figure 3.
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2.3.1. Combined Vegetation Indices

To make full use of the reflectance information provided by UAV multispectral to
establish the narrow-band combined vegetation index associated with mangrove CCC,
the Band Math tool of ENVI5.6 was used to calculate the Ratio index (RI), Normalized

http://www.cresda.com
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difference index (NDI), the ratio of single-band reflectance to the product of two bands
reflectance (RSTI), and the Modified Datt index (MDATT), of which 74 and 30 combined
vegetation indices were calculated for UAV and GF-6 data, respectively (Table 2). The
indices were selected by the feature variables to filter the most sensitive VIs to the CCC of
mangroves.

Table 2. Formula of combined vegetation indices.

Vegetation Index Formula Reference

Ratio index (RI) RI (Rλ1, Rλ2) = Rλ1/Rλ2 [57]
Normalized difference index (NDI) NDI (Rλ1, Rλ2) = |Rλ1 − Rλ2|/(Rλ1 + Rλ2) [57]
The ratio of single-band reflectance

to the product of two bands
reflectance (RSTI)

RSTI (Rλ1, Rλ2, Rλ3) = Rλ1/(Rλ2 × Rλ3) [58]

Modified Datt index (MDATT) MDATT (Rλ1, Rλ2, Rλ3) = (Rλ1 − Rλ2)/(Rλ1 − Rλ3) [59]
Rλ1, Rλ2, and Rλ3: correspond to the band names corresponding to λ1, λ2, and λ3 (450–900 nm) wavelengths of
the multispectral data, respectively.

2.3.2. Machine Learning Regression Algorithms

Random Forest (RF) is a very representative Bagging integration algorithm, where all
its underlying evaluators are decision trees, and its main purpose is to make predictions on
new data points by performing voting [60]. A decision tree is a tree-like structure in which
each internal (non-leaf) node is labeled with a test for some attribute; for each possible test
result, there is an arc leading to a unique (child) node, and each leaf node of the tree is
labeled with the value to be predicted [61]. For a forest of regression trees, the resulting
predictions are usually formed by averaging the individual predicted values [62,63].

The gradient boosting (GBRT) algorithm is a robust regression algorithm that inte-
grates many regressors, and its main idea is to build a new regression tree in the direction
of decreasing the gradient of the loss function based on the results of the previous regres-
sion tree [64]. The key approach of angle boosting is to increase the approximation of the
residuals in the tree algorithm with the help of negative gradient values of the loss function
and then fit the regression tree [65]. The GBRT model has no restrictions on any input data
assumptions and has better predictive performance and stability than a single decision tree
by integrating the algorithm [66].

The extreme gradient boosting (XGBoost) algorithm is a scalable tree-boosting method
by creating several decision trees that are made using the prediction errors and residuals
of previous tree models, rather than averaging over independent trees [67]. However,
compared to simple gradient boosting algorithms, the XGBoost algorithm differs in that the
process of adding weak learners is not performed individually and takes a multi-threaded
approach that makes proper use of the machine′s CPU cores, resulting in faster speeds and
better performance [68].

2.3.3. Improvement of Model Parameters

The optimal parameters of the machine learning regression models were determined
using the grid search method. The model tuning was performed in the Tensorflow 2.0
environment using the GridSearchCV function of the Python 3.7.10 software, and the
optimal parameters for each model were finally traversed as follows: the number of
decision trees (n_estimators) for the RF model was 250, the minimum number of samples
(min_samples_split = 4) required for the internal nodes in the division n_estimators = 150,
max_depth = 1, min_samples_split = 5 for GBRT model, n_estimators = 100, max_depth = 1
for XGBoost model, and n_estimators = 100, max_depth = 1 for XGBoost model.

2.3.4. Accuracy Metrics

For the accuracy assessment of the inversion process, the study data were divided
into a training set and a test set in the ratio of 7:3. The training set is used to train and
evaluate the overlaid machine learning regression model, and the test set is mainly used as
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validation data to evaluate the accuracy of the prediction maps. In this paper, the coefficient
of determination (R2) is used to test how close the dataset is to the fitted regression line
and to evaluate the predictive performance of the regression model. The root-mean-square
error (RMSE) tests the correlation between predicted and measured chlorophyll values.

In this paper, the coefficient of determination (R2) can reflect the degree of fit between
the estimated values of the RF, GBRT, and XGBoost models and the ground truth through
the regression relationship, to judge the ability of each machine learning regression model
to invert the mangrove CCC. The expression of R2 is shown in Equation (1).

R2 = 1−SSE
SST

= 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(y− yi)

2
(1)

where R2 is the coefficient of determination of the measured and predicted values in
estimating the mangrove canopy chlorophyll content, SSE is the sum of the squared
residuals of the predicted mangrove canopy chlorophyll content and each of the input
measured values, SST is the sum of the squared deviations of the mean of the input
measured values of the mangrove canopy chlorophyll content and each of the input
measured values, ŷi is the input measured data of the canopy chlorophyll content, yi is the
measured value of each input, and y is the mean value of each input measured value.

The estimated value of CCC is compared to the actual measured value using the
root-mean-square error (RMSE), which is a measure of the deviation between the predicted
value of CCC (obtained by inversion of a machine learning regression model) and the actual
ground measurements [69]. The RMSE can characterize the degree of curve fit between
the predicted and measured values, and is used to measure the accuracy of the model
prediction; the smaller the RMSE value, the higher the accuracy of the prediction. The
expression of RMSE is shown in Equation (2).

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
(2)

where RMSE is the root-mean-square error between the predicted value and the ground
truth values when inverting the mangrove canopy chlorophyll content, n is the total number
of data input test data or training data when estimating the mangrove canopy chlorophyll
content, ŷi is the predicted values of the mangrove canopy chlorophyll content test data or
training data, and yi is each test data or training data input.

3. Results
3.1. Correlation Analysis to Obtain the Sensitivity of Vegetation Indices to CCC

To determine the correlation between the feature variables extracted from each im-
age and the CCC of mangroves, the top 12 correlation indices of each mangrove species from
UAV and GF-6 data were intercepted and plotted in the correlation heat map
(Figures 4 and 5) and the semicircle pie chart (Appendix A).

The feature indices calculated from UAV airborne multispectral images had a higher
correlation with the CCC of each type of mangrove species, and the sensitivity was generally
higher than that of GF-6 satellite data. The correlation coefficients of RI35 and NDI35 with
the CCC of AM were the highest, with a correlation coefficient of 0.803; the correlation
coefficients of RSTI413 and MDATT413 with the CCC of AC were both 0.891, with the
highest sensitivity; the correlation coefficients of NDI35 and RI35 with the CCC of KC were
the highest, with a correlation coefficient of 0.7. The highest correlation coefficients were
0.766. RSTI324 and RSTI412 feature indices of GF-6 data had the highest correlation with
the CCC of AM and AC, with correlation coefficients of −0.774 and 0.798, respectively. The
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feature index with the highest correlation between GF-6 and the CCC of KC was RSTI214,
with a correlation coefficient of only −0.461, which had a low sensitivity.
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numbers “23”, “25”, and “213” mean the name of the band corresponding to the combined vegetation
index, such as NDI23, which represents the combined vegetation index consisting of band 2 and band
3 in UAV data.

Among the inversions of all mangrove species, the NDI23 and RI23 characteristic
indices of UAV data had the highest correlation coefficients of −0.737 for CCC of man-
groves, while the optimal feature variables in GF-6 data were RSTI312, NDI23, and RI34,
with correlation coefficients of −0.488, −0.484, and 0.480, respectively, with correlation
coefficients less than 0.5, with low sensitivity.

3.2. Feature Importance Assessment to Obtain Optimal Feature Variables

To select the best parameters to participate in model training, the importance ranking
of the feature variables in the UAV and GF-6 data needs to be obtained. The Scikit-learn
machine learning library for Python provides feature selection methods that can be used
to output feature importance scores. This is done through the SelectFromModel class,
which uses a (machine learning regression) model that transforms the dataset into a subset
with selection elements. In this paper, the XGBoost model trained on the training set was
selected for feature variable selection, and the feature variables that contributed most to
the CCC inversion results of mangrove AM, AC, KC, and AM + AC + KC species in the
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UAV and GF-6 data were selected by evaluating the importance scores, and the importance
scores of each feature variable are shown in Figure 6, and Appendix B.
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(1) In the UAV data. The feature variables RI35, RI23, and NDI35 contributed the most
to the inversion of CCC of AM mangrove species, with importance scores of 8.509, 8.391,
and 8.108, respectively; MDATT413, RSTI413, and RSTI213 had the highest importance
scores in the inversion of CCC of AC species with 9.349, 9.032, and 8.045, respectively; RI35,
NDI35, and NDI25 had importance scores of 6.920, 6.780, and 6.233, respectively. RI35,
NDI35, and NDI25 with importance scores of 6.920, 6.780, and 6.233, respectively, were the
best feature variables for inversion of CCC of KC mangrove species. The most sensitive
characteristic indices for canopy chlorophyll content among AM + AC + KC species were
NDI35, RI35, and RI23, with characteristic importance scores of 10.035, 9.950, and 9.923,
respectively.

(2) In the GF-6 images. The feature variables with the highest contribution to the
inversion of the CCC of AM mangrove species were RSTI324, RI34, and NDI34, with
importance scores of 9.419, 8.988, and 8.846, respectively; the importance scores of the
B4 NIR band, NDI14, and RI14 feature indices were 7.512, 7.341, and 7.322, respectively,
which were the best feature variables for the inversion of the CCC of AC. The importance
scores of RSTI124, RSTI214, and RSTI324 were only 2.420, 2.355, and 2.340, respectively.
The importance scores of NDI23, RI34, and RSTI312 in AM + AC + KC species were 10.827,
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8.149, and 7.289, respectively, which were the optimal feature variables for the inversion of
AM + AC + KC.
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Figure 6. Stacked bar charts of the importance scores of feature indices in UAV, and GF-6 data.
(a) Importance scores of UAV and GF-6 data in AM; (b) Importance scores of UAV and GF-6 data in
AC; (c) Importance scores of UAV and GF-6 data in KC; (d) Importance scores of UAV and GF-6 data
in AM + AC + KC.

3.3. Accuracy Analysis to Obtain Optimal Model Algorithms and Data for Estimation

In this paper, the training and validation sets were divided into the ratio of 7:3, and the
validation samples of AM, AC, and KC mangrove species CCC were predicted by the RF,
GBRT, and XGBoost models, respectively, and the fitness of each machine learning model
for mangrove species was judged by the degree of the curve fit and accuracy assessment
metrics, such as R2 and RMSE (Figures 7 and 8).

(1) AM species. There is an optimal fit between the estimated and predicted values of
RF and GBRT. The R2, RMSE, and r estimated by the RF regression model of UAV are 0.764,
17.762 SPAD, and 0.874, respectively, and the inversion accuracy of the GBRT regression
model of GF-6 is R2 = 0.624, RMSE = 21.498 SPAD, r = 0.790; at points 4 and 25 of the fitting
curve between the predicted and measured values of UAV data, the fitting effect of the
RF regressor is significantly better than that of the GBRT and XGBoost algorithms, and
from the accuracy assessment index, the R2 of the RF regressor compared to GBRT and
XGBoost is improved by 0.158 and 0.120, and the RMSE was reduced by 4.697 and 2.987
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SPAD, respectively. In the GF-6 data, the difference in the fitting effect of the estimated
values of GBRT and the RF regressor to the measured results was smaller, and the fitting
effect of the GBRT algorithm was better than the XGBoost algorithm at points 3 and 23, and
the R2 was improved by 0.064 and the RMSE was reduced by 2.403 SPAD; the fitting effect
of the RF model curve in UAV was better than that of the GBRT model for GF-6 data at the
point numbers 16 to 23.
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(2) AC species. The RF model in UAV and GF-6 data had the highest fitting accuracy
with R2 and RMSE of 0.801, 15.452 SPAD and 0.649, 20.187 SPAD, respectively; in UAV
data, the fitting accuracy of the RF regression model was generally better than that of GBRT
and XGBoost, with R2 improved by 0.134, 0.228, and RMSE improved by 3.932, 6.8493.718
SPAD, respectively. In the GF-6 data, the overall effect of the RF fitted curve was better
than GBRT and XGBoost, and in the accuracy index, the R2 and RMSE of the RF regressor
improved by 0.056, 1.594 SPAD; compared to the XGBoost model, R2 improved by 0.035
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and RMSE decreased by 0.200 SPAD. In the fitted curves of the RF regression model for
UAV and GF-6 data, the fitting effect of UAV data was significantly better than that of GF-6
data for the 6 to 12 point positions.

(3) KC species. The GBRT model fitted best in the UAV data, with R2 of 0.737 and
RMSE of 18.282 SPAD, while the GF-3 data had very low correlation between the feature
variables and CCC, resulting in poor fitting of each model, which could not effectively
invert the CCC of mangrove KC species. The fitting effect of the fitted curve of the GBRT
model was better than that of the RF and XGBoost models in general, with an increase
of 0.073 in R2 and a decrease of 0.8031 SPAD in RMSE compared to the RF model, and
an increase of 0.122 and 1.745 SPAD in R2 and RMSE accuracy compared to the XGBoost
model, respectively.

(4) AM + AC + KC species. The RF model has a better fit in the inversion. Among
the prediction fitting curves of each model for UAV data, RF had the best overall fitting
accuracy, which was significantly better than the GBRT and XGBoost models at point 5. The
RMSE of the RF model was 0.940 SPAD lower than GBRT and 2.537 SPAD lower than the
XGBoost model. In GF-6 data, due to the feature variables having low species correlation
for AM + AC + KC, resulting in the lower fitting accuracy of each model prediction to the
measured data, the R2 of the optimal model RF was 0.277 and RMSE was 32.202 SPAD.

The CCC results of the inversion of the optimal machine learning regression model se-
lected among mangrove species were compared with the measured data by one-dimensional
linear regression analysis to compare the inversion accuracy among multiple sources of
data and mangrove species, as shown in Figure 9.
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The CCC values of mangroves in the study area ranged from 0 to 223.165 SPAD, 
mainly distributed in the range of 120–150 SPAD, which accounted for 35.9% in the 
whole study area. Overall, the CCC was high throughout the study area, but local areas 
still faced mangrove health problems: (1) Large traces of vines were found at the dead 
mangrove in Figure 10a, and animals, such as goats, were occasionally found to gnaw at 
the mangrove in the area; (2) Figure 10b belonged to artificially planted seedlings, and 
the local management took measures to restore the area where the mangrove was dam-
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Figure 9. Accuracy of optimal machine learning regression models for inversion of mangrove CCC
in UAV and GF-6 data. (a) Prediction accuracy of UAV data feature variables in AM; (b) Prediction
accuracy of UAV data feature variables in AC; (c) Prediction accuracy of UAV data feature variables in
KC; (d) Prediction accuracy of UAV data feature variables in AM + AC + KC; (e) Prediction accuracy
of GF-6 data feature variables in AM; (f) Prediction accuracy of GF-6 data feature variables in AC;
(g) Prediction accuracy of GF-6 data feature variables in KC; (h) Prediction accuracy of GF-6 data
feature variables in AM + AC + KC.

In the accuracy comparison between UAV and GF-6 data, the accuracy of UAV data
was significantly better than the inversion accuracy of GF-6 data. In the inversion of CCC
for AM species, the R2 of UAV data combined with the optimal model improved by 0.140,
and the RMSE decreased by 3.736 SPAD than that of GF-6 data; in the inversion of CCC
for AC species, the R2 of UAV data improved by 0.125, and the RMSE decreased by 4.735
SPAD than that of GF-6 data; for KC species, the R2 was 0.737, and RMSE was 18.288 SPAD,
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while the GF-6 data’s could not effectively invert the mangrove CCC, with R2 < 0.3 and
RMSE > 29 SPAD. Based on the inversion results for all mangrove species, the UAV data
still achieved high accuracy, with R2 = 0.594 and RMSE = 23.384 SPAD, while the GF-6 data
had the lowest precision, with RMSE > 32 SPAD.

In the accuracy comparison among AM, AC, and KC species, AC species achieved
the best results, with R2 > 0.80 and 0.64 in the inversion results of UAV and GF-6 data,
respectively; KC species had the lowest accuracy of CCC estimation, with RMSE > 29 SPAD
for GF-6 data, which could not effectively invert the mangrove CCC, and after integrating
all species, the accuracy of inversion was lower than that of single mangrove species. Based
on the estimation results of AM + AC + KC optimal machine learning in the UAV data, the
mangrove CCC inversion equation was obtained as follows.

CCC(AM+AC+KC) = 0.588x + 44.630 (3)

where x is the set of predicted values output by the joint UAV data and the optimal machine
learning regression model.

3.4. Mapping of Mangrove Canopy Chlorophyll Content

The mangrove UAV CCC habitats in a typical study area SJ were mapped according to
the relationship of Equation (3) (Figure 10). As the color deepens (yellow color transitions
to dark blue), the value of CCC becomes larger. The overall distribution of CCC values in
the study area shows lower CCC values in the nearshore, offshore, and near-river areas,
and the transition from low–high–low CCC values from the nearshore to offshore direction.
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The CCC values of mangroves in the study area ranged from 0 to 223.165 SPAD,
mainly distributed in the range of 120–150 SPAD, which accounted for 35.9% in the whole
study area. Overall, the CCC was high throughout the study area, but local areas still faced
mangrove health problems: (1) Large traces of vines were found at the dead mangrove in
Figure 10a, and animals, such as goats, were occasionally found to gnaw at the mangrove in
the area; (2) Figure 10b belonged to artificially planted seedlings, and the local management
took measures to restore the area where the mangrove was damaged with artificially
planted seedlings; (3) Figure 10c,d were under the stress of Sporobolus alterniflorus, and the
vigorous Sporobolus alterniflorus occupied the living space of the mangrove outside the tidal
flats. The CCC values of mangroves in these areas are low, so the magnitude of CCC values
can reflect the health of mangroves, while the likelihood of their habitats being at risk is
mapped when the CCC values are low.

4. Discussions
4.1. Spectral Characteristics and Vegetation Indices Sensitivity of Mangrove CCC

The chlorophyll content is one of the important factors affecting the intensity and rate
of photosynthesis, and different spectral ranges have a large impact on mangrove physiol-
ogy [70]. For example, in the blue band, the chlorophyll and carotenoid absorption ratio is
the largest and has the greatest effect on photosynthesis, while in the red band, chlorophyll
absorption is low and has a significant effect on photosynthesis and photoperiodic effects.
Mangroves have different characteristics in the spectra of different species, and these optical
feature differences can be used for quantitative inversion among species. From the UAV
orthorectified and GF-6 remote sensing images, the mangrove images and spectral features
between different species are obvious, among which the differences in features between
different species in the UAV images are especially obvious. The GF-6 images cannot show
detailed information of interspecies differences well due to the low resolution, but it can be
found to have the ability to separate AM, AC, and KC through the spectral curve (Table 3),
thus enabling quantitative inversion at the species-scale. In the canopy spectra of different
types of healthy mangrove forests, the spectral curves generated by different optical sensors
conform to the typical vegetation spectral reflectance characteristics, and there are obvious
differences between AM, AC, and KC species in UAV and GF-6 images at the canopy level.
The differences between mangrove species in the near-infrared band are more obvious.

The visible band of the vegetation reflectance spectrum is characterized by strong
absorption of red and blue light by chlorophyll a and weak reflection of green light, while
in the near-infrared band, the reflectance increases sharply due to multiple reflections of the
leaves, which is due to the cessation of chlorophyll absorption above 700 nm and increased
scattering by the leaf structure, while within the red-edge band (680–750 nm), there is a
clear chlorophyll a absorption valley, forming a typical spectral characteristic curve [71,72].
Combined with the experimental field measurements, the mean magnitude of CCC content
for each mangrove species was CCCAC > CCCKC > CCCAM, and because the canopy of AC
species has a higher chlorophyll content, it exhibits stronger reflectance in the near-infrared
and green-band spectral ranges. In the spectral curves of KC species, a significant difference
was observed in the spectral curves of GF-6 when compared with UAV data. Soil influence
is prevalent in partially vegetated canopies, where soils are known to have lower reflectance
in the NIR band, and GF-6 has lower spatial resolution than UAV data, which increases the
possibility that individual image elements contain environmental noise, and the presence
of soil factors in GF-6 data causes the spectral profiles of AC species to exhibit significant
differences that largely affect the inversion results [73–75]. The reason that the GF-6 data
could not effectively invert the CCC of KC species also lies in the fact that the plants of
KC species in the study area are short and sparsely distributed (Figure 2h), and emphasis
should be placed on avoiding these areas if the spatial resolution of the images used is low
during the field experiment.
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Table 3. Interpreted signatures and spectral characteristics of AM, AC, and KC.

Sensor
Types

Measured
Points

Image Characteristics
(RGB)

Interpretation
Features

Species
Type Spectral Curves

UAV
MicaSense

RedEdgeTM

(0.07 m)

85
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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4.2. Optimal Inversion Model for Mangrove CCC 
In the results of the mangrove optimal model evaluation, all three machine learning 

regression models effectively estimated the mangrove CCC, and as seen in Figure 8 and 
Figure 9, although the values predicted by the four models have relatively high con-
sistency, the stability and robustness of the RF and GBRT models are significantly better 
than the XGBoost algorithm in terms of predictive power performance. The RF and 
GBRT algorithms are widely used because of their advantages [76–79]. Unlike the stand-
ard regression tree, where each node is created using the best partition between all vari-
ables, RF has a randomly selected subset of variables at the nodes, with the specific size 
of the subset being the parameter Mtry [77]. Although this approach seems contradicto-
ry, it has the relatively best performance compared to GBRT and XGBoost in combining 
UAV data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to in-
vert mangrove AC species for accuracy estimation. In the comparison of model accuracy 
for predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has 
the best prediction performance, which is because the GBRT model is more suitable for 
the prediction of small datasets [80]. Although the XGBoost algorithm has been further 
enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion 
of regular terms in the objective function, support for parallelism, and automatic pro-
cessing of missing values, it is prone to overfitting problems, meaning that the model is 
too accurate and can effectively predict existing data, but cannot reliably predict future 
data [66]. In the inversion of CCC of mangrove species with few samples, the RF and 
GBRT algorithms are effective in avoiding overfitting to some extent. 

For the inversion of some mangrove species, we found that the accuracy of the RF 
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through 
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 
11c) were fitted to the training data during the model training. For the training data, the 
matched points of both GBRT and XGBoost can be connected to a line. Although the cor-
relation coefficient reaches 1, the results in the final test are contrary to the training re-
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When estimating vegetation parameters, the red-edge and near-infrared bands are
critical when considering the most sensitive bands. It has been shown that the NIR band
is more sensitive to the chlorophyll content of vegetation, while the 850 nm reflectance
as the NIR reference band is more sensitive to the chlorophyll content than the 750 nm
reflectance [44,72]. According to the experimental results, the red-edge and near-infrared
band indices consisting of the red-edge band and near-infrared, etc. contributed more to
the CCC inversion results for each mangrove species. The UAV data, RI35, MDATT413, and
NDI35 bands consisting of the near-infrared (band5) and red-edge band (band4) were the
most sensitive to mangrove CCC. Compared with the UAV data, the GF-6 data only have
vegetation indices composed of visible and near-infrared bands, and the red-edge band,
which is sensitive to vegetation chlorophyll, is missing, and the sensitivity to mangrove
CCC is lower than that of the UAV data.

4.2. Optimal Inversion Model for Mangrove CCC

In the results of the mangrove optimal model evaluation, all three machine
learning regression models effectively estimated the mangrove CCC, and as seen in
Figures 8 and 9, although the values predicted by the four models have relatively high
consistency, the stability and robustness of the RF and GBRT models are significantly
better than the XGBoost algorithm in terms of predictive power performance. The RF
and GBRT algorithms are widely used because of their advantages [76–79]. Unlike the
standard regression tree, where each node is created using the best partition between all
variables, RF has a randomly selected subset of variables at the nodes, with the specific size
of the subset being the parameter Mtry [77]. Although this approach seems contradictory,
it has the relatively best performance compared to GBRT and XGBoost in combining UAV
data to invert mangrove AM, AC, and AM + AC + KC species, and GF-6 data to invert
mangrove AC species for accuracy estimation. In the comparison of model accuracy for
predicting mangrove AM species using UAV, and GF-6 data, the GBRT algorithm has
the best prediction performance, which is because the GBRT model is more suitable for
the prediction of small datasets [80]. Although the XGBoost algorithm has been further
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enhanced from GBRT with a second-order Taylor spread for the loss function, inclusion of
regular terms in the objective function, support for parallelism, and automatic processing of
missing values, it is prone to overfitting problems, meaning that the model is too accurate
and can effectively predict existing data, but cannot reliably predict future data [66]. In the
inversion of CCC of mangrove species with few samples, the RF and GBRT algorithms are
effective in avoiding overfitting to some extent.

For the inversion of some mangrove species, we found that the accuracy of the RF
model was better than that of the GBRT and XGBoost models, e.g., Figure 7a. Through
Figure 11, we learned how RF (Figure 11a), GBRT (Figure 11b), and XGBoost (Figure 11c)
were fitted to the training data during the model training. For the training data, the matched
points of both GBRT and XGBoost can be connected to a line. Although the correlation
coefficient reaches 1, the results in the final test are contrary to the training results, and
there is an overfitting situation. The RF model, on the other hand, made predictions based
on the distribution of each data point as much as possible according to the distribution of
the training data points, without overfitting, and achieved a high prediction accuracy.

Although RF has good local performance for the estimation of CCC in mangroves, in
the complex environment of mangroves, there is a greater need for regression models that
are suitable to fit all types of training sample sizes and generalize well across mangrove
species, and model fusion and stacking algorithms may be one of the effective means to
improve the inversion uncertainty of machine learning regression models.

Artificial intelligence technology is one of the current hot spots in the development of
science and technology. In the inversion of mangrove parameters using machine learning
regression algorithms, studying formal approaches for AI-based technique verification will
be an important direction for future development [81,82].

4.3. Mangrove Risk Prevention and Protection Measures

Since 2001, the area of mangroves has increased by 1.8% per year due to strict protec-
tion and large-scale restoration of the remaining mangroves, and by 2019, 67% of China′s
mangroves had been enclosed within protected areas, but 33% of the area remains outside
protected areas, and the remaining mangroves are suffering from extensive degradation
due to widespread anthropogenic disturbances [83]. Mangroves are under stress from
growing coastal populations from the land edge and rising sea levels from the ocean edge,
and these pressures include the synergistic effects of seawall construction, aquaculture,
overfishing, sea level rise, extreme climatic events, ecological invasions, and pollution; all
of these drivers interact to potentially lead to mangrove degradation and potential future
loss [83–85].

Changes in canopy chlorophyll content as an indicator of mangrove health are closely
related to mangrove health risk factors. For example, the chlorophyll content of the
mangrove canopy in Figure 10a–d was significantly reduced relative to other areas. The
main reason for the decrease in canopy chlorophyll content in Figure 10c,d is the growth of
Sporobolus alterniflorus, and the continued expansion of Sporobolus alterniflorus needs to be
guarded against. In Figure 10a, the traces of human activities are more obvious, and the
mangrove forest shows extensive degradation, which should be adopted as an artificial
afforestation policy. At the same time, the relevant departments can protect and restore
mangroves in a targeted manner according to the areas where the chlorophyll content of
the mangrove canopy has decreased. The healthy growing seedlings in Figure 10b, which
are in the post-afforestation period, are relatively weak against disturbing external factors
and must be continuously monitored and protected.



Forests 2023, 14, 1417 19 of 26

Forests 2023, 14, x FOR PEER REVIEW 20 of 28 
 

 

sults, and there is an overfitting situation. The RF model, on the other hand, made pre-
dictions based on the distribution of each data point as much as possible according to 
the distribution of the training data points, without overfitting, and achieved a high pre-
diction accuracy. 

 
Figure 11. Residual and standard deviation distributions of RF, GBRT, and XGBoost model train-
ing in AM species in UAV data. (a) Residual and standard deviation distributions of RF model; (b) 
Residual and standard deviation distributions of GBRT model; (c) Residual and standard devia-
tion distributions of XGBoost model. 

Figure 11. Residual and standard deviation distributions of RF, GBRT, and XGBoost model train-
ing in AM species in UAV data. (a) Residual and standard deviation distributions of RF model;
(b) Residual and standard deviation distributions of GBRT model; (c) Residual and standard devia-
tion distributions of XGBoost model.

Biological invasion, pests, and diseases are the main natural factors of mangrove
degradation in the Guangxi area [86]. Invasion of Sporobolus alterniflorus decreases the
carbon stock content of the soil, and Sporobolus alterniflorus tends to tolerate increased
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salinity and flood stress better than native mangroves [87]. Mangrove plants in the Beibu
Gulf region of Guangxi are short and have weak population dominance, which easily
allows integrals to squeeze survival space. The Sipunculus nudus worms, Phascolosoma
esculenta worms, Periophthalmus cantonensis, and Boleophthalmus chinensis proliferate
in the mangrove forests, and compared with the terrestrial forests, the species diversity
of the mangrove forests in Guangxi is relatively homogeneous, and the pests have almost
no natural enemies, which has a great impact on the survival of the mangrove forests
in Guangxi [86]. Anthropogenic factors are also important factors leading to mangrove
degradation. Mangroves in coastal areas of Guangxi are mainly deforested as agricultural
land, aquaculture ponds, and construction land [86]. Other risks of human activities, for
example, frequent harvesting activities during the fruit ripening season, have destroyed
many seedlings and young trees. Further, the degradation of mangrove forests is caused by
the flushing of effluent discharged from human aquaculture ponds forming ditches that
run through the area, dividing the mangroves into many isolated patches. Establishing
protected areas and restoring degraded ecosystems are effective measures to conserve
mangroves, and ecosystem restoration can be achieved by artificially planting species-rich
mangrove saplings to increase biodiversity [88,89].

5. Conclusions

Mangrove ecosystems are among the most productive ecosystems in the world, and
chlorophyll content is an important indicator of vegetated ecosystems. The main objective
of this study is to construct an optimal CCC model at the mangrove species-scale and
to investigate the sensitivity of VIs in UAV and GF-6 images. According to the results,
the RF model has the best estimation accuracy, followed by the GBRT regression model,
and the sensitivity of VIs calculated from UAV data is better than that of GF-6 images,
and the accuracy is improved when simultaneously inverting the CCC of AC. The study
showed that the sensitivity of the combined vegetation indices RI35, MDATT413, and RI35
calculated from the near-infrared band and red-edge band in the UAV data was higher for
the mangrove CCC estimation, and the GF-6 data had lower sensitivity for the composed
VIs than the UAV images due to the missing red-edge band. Combining the red-edge and
NIR indices of UAV data and MLR, GF-6, and MLR, respectively, can achieve effective
estimates of mangrove species-scale canopy chlorophyll content.

The importance of mangroves and the threats to them have long been recognized,
so local and national governments and international agreements have taken action to
protect them. Through this study, we found that the mangrove canopy chlorophyll content
was significantly low in some of the study areas, while identifying areas of vulnerable
mangrove growth to support targeted mangrove protection, restoration, and conservation
decision-making. We recommend more effective protection of existing mangrove resources
through the establishment of mangrove reserves and the revision of protection agreements
to limit human activities in mangrove-growing areas. For areas with severe mangrove
degradation, timely reforestation activities should be carried out.

The CCC values can effectively reflect the health of mangroves and provide a risk
warning for mangrove ecosystems to facilitate response and decision-making for mangrove
conservation and restoration. The development of the mangrove protection policy helps
to restrain human activities that destroy mangrove forests from taking coercive measures,
and also plays an important role in the sustainable development of mangrove resources
by establishing protected areas and planting trees to restore mangrove forests through the
policy.
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Figure A3. Box plot of the importance ranking of feature indices in UAV, and GF-6 data. (a) Im-
portance ranking of UAV data feature variables in AM; (b) Importance ranking of UAV data fea-
ture variables in AC; (c) Importance ranking of UAV data feature variables in KC; (d) Importance 
ranking of UAV data feature variables in AM + AC + KC; (e) Importance ranking of GF-6 data fea-
ture variables in AM; (f) Importance ranking of GF-6 data feature variables in AC; (g) Importance 
ranking of GF-6 data feature variables in KC; (h) Importance ranking of GF-6 data feature varia-
bles in AM + AC + KC. 
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