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Abstract: The southern portion of the Qinghai–Tibet Plateau (QTP) and the central Himalayan
region are home to the Mt. Qomolangma (Everest) National Nature Reserve (QNNR), which is
the world’s highest nature reserve and is distinguished by delicate natural ecosystems and unique
geographic features. Analyzing regional vegetation trends, as well as the impacts of natural and
anthropogenic variables on vegetation coverage, is crucial for local environmental protection and
sustainable development. In this study, the variation patterns of the MOD13Q1 Normalized Difference
Vegetation Index (NDVI) data were explored, and the responses of vegetation development to both
natural and anthropogenic parameters were investigated by applying trend analysis and partial
correlation analysis, as well as the partial least squares-structural equation model (PLS-SEM). To
better comprehend the spatial characteristics and interrelationships between NDVI and various
parameters under different vegetation types, the Uniform Manifold Approximation and Projection
(UMAP) was employed for dimensionality reduction and visualization. The results illustrated that
between 2000 and 2018, the reserve greened up at a rate of 0.00073/a (p < 0.05), with vegetation
improvement areas accounting for 49.46%. The major climatic driver for the greening trend of
vegetation was temperature. Topography (especially elevation) remains dominant in regulating
vegetation development in the QNNR, despite a progressively growing impact of hydrothermal
conditions on vegetation development. Additionally, the implementation of environmental initiatives
has stifled the adverse impacts of human activity.

Keywords: vegetation dynamics; climate change; anthropogenic activity; terrain; uniform manifold
approximation and projection (UMAP); partial least squares structural equation model (PLS-SEM)

1. Introduction

The balance of the terrestrial ecosystem is maintained by vegetation [1], which is a
vital connection of the atmosphere, hydrosphere, and soil [2] that results from the long-term
interactions between climate, terrain, and human activity [3–5]. The structure and dynamics
of terrestrial natural systems have been strongly influenced by global warming in the last
few decades, particularly in alpine and subalpine forest communities where vegetation
variations are more responsive to topography [6–13]. According to research, the combined
effects of terrain and climate are what lead to the regional variability of vegetation [14,15].
The spatial distribution of water, temperature, and radiation, as well as nutrients, is influ-
enced by topography in mountainous regions with extreme elevation differences [16,17].
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Thus, both directly and indirectly, the terrain has an impact on vegetation dynamics. In
the northeastern Tibetan Plateau, the dominant factors driving vegetation changes were
determined to be annual average temperature, soil type, and elevation, which explained
over 15% of the variation [18]. The coevolution of vegetation should be comprehensively
investigated with topography, climate, and soil conditions to further restore degraded
ecosystems and maintain ecosystem diversity [19]. Previous studies have demonstrated
that temperature and precipitation are the main elements influencing the dynamics of
vegetation, and appropriate warming has a favorable impact on vegetation cover [20,21].
Specifically, in the southeast Qinghai–Tibet Plateau, most climatic factors exhibit a uni-
modal relationship with forest moss plant diversity; when temperature exceeds the optimal
threshold for moss plant growth, even minor warming can lead to a decline in moss plant
diversity. Temperature factors, especially minimum temperature and daily temperature
range, are identified as the most influential drivers of forest moss plant diversity and
distribution [22]. While wetness increases soil moisture and air humidity, which could
promote the growth of plants [23,24], it also lowers the radiation and temperature that
prevent plants from growing [12,25,26]. The mountain ecosystem, with its significant eleva-
tion changes, challenges the notion that climatic variables primarily influence vegetation
dynamics. Additionally, it is crucial to consider how intensified human activity impacts
vegetation coverage [27–29], including the benefits of properly implemented ecological
restoration programs that result in improving vegetation cover [30–32]; reducing ecosystem
vulnerability and minimizing extreme weather effects [30,33,34]; and the detrimental effects
of overgrazing, deforestation, and massive construction projects [34–37]. Thus, investigat-
ing the changing patterns of vegetation as well as quantitatively assessing the influence of
natural and anthropogenic variables on vegetation variation are crucial for the sustainable
development of the reserve [38–40].

The Qinghai–Tibet Plateau (QTP), sometimes referred to as the “Asia Water Tower”
and “Earth’s Third Pole” [41,42], is a vast area covered by glaciers and is a powerful source
of atmospheric heat [43] that profoundly affects local and global climate change [44,45].
Mt. Qomolangma, located at the southernmost border of QTP, is one of the most dynamic
and delicate mountain ecosystems worldwide, which has enormous elevation changes and
is extremely vulnerable to both topographic and climatic change [46,47]. Consequently,
the Mt. Qomolangma (Everest) National Nature Reserve (QNNR) was formed in 1998 to
safeguard the natural resources of the exceptionally high mountain ecosystem, mountain
forest ecosystems, shrub and grassland ecosystem, as well as their biological distribution
and ethnic, historical, and cultural heritage [48] (Figure 1). The reserve is split into two
sections, the southern slope, which contains a semi-humid montane forest system, and
the northern slope, where the plateau semi-arid shrub fallow and grassland system are
present. Several studies concluded that the increasing rates of temperature and human
activity development in the QTP and the QNNR are more rapid compared with the global
average level [49–52]. Therefore, the QTP’s and the QNNR’s terrestrial ecology will be
permanently impacted as snowpacks steadily diminish [53] and glaciers noticeably thin
and recede [41,53–56]. Currently, many studies concentrate on how climate change affects
the reserve’s vegetation development [57,58], while few take into account the combined
impact of climate, terrain, and anthropogenic activities.

Previously, the multiple linear regression method has been widely utilized to explore
the relationship between vegetation response variables (such as phenology, productivity,
and NDVI) and various influencing factors. However, this approach may lack the capacity
to elucidate the intricate interactions and pathways within the internal system. Moreover,
when numerous influencing factors are considered, issues such as overfitting and dimin-
ished explanatory value may arise [59,60]. Additionally, the traditional dimensionality
reduction method, Principal Component Analysis (PCA), is unable to capture non-linear
dependencies between data and may be significantly influenced by potential outliers in
the data [61]. To gain a deeper understanding of the clustering behaviors of different types
of vegetation under the influence of various factors and to enhance visualization, it is im-
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perative to consider employing the latest non-linear dimensionality reduction techniques.
In response to the aforementioned gaps, this study aims to investigate the mechanisms
influencing vegetation dynamics by holistically considering the roles of climatic variations,
anthropogenic impacts, and the topography of the QNNR. To accomplish this, the partial
least squares-structural equation model (PLS-SEM) and Uniform Manifold Approximation
and Projection (UMAP) methods were employed. Vegetation variations throughout the
growing season of the QNNR were identified using the MOD13Q1 NDVI data, with a
250 m spatial resolution, 16-day temporal interval, and spanning from February 2000 to
December 2018. Meteorological data, drawn from the China Meteorological Forcing Dataset
(1979–2018) (CMFD), were used to discern the spatiotemporal pattern of climate change
throughout the research period.
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By utilizing PLS-SEM and UMAP, a more comprehensive understanding of the intri-
cate interactions between vegetation, natural, and anthropogenic drivers could be achieved.
The principal objectives of this study were as follows: (1) to examine the changes in vege-
tation of the reserve over the past 19 years; (2) to explore the partial correlations between
vegetation development and meteorological parameters; and (3) to evaluate the influence
of both natural and anthropogenic factors on vegetation variation. By illuminating the un-
derlying mechanisms driving vegetation developments, this study hopes to offer technical
support for the sustainable development of the reserve.

2. Materials and Methods
2.1. Study Area

The QNNR, which encompasses the counties of Tingri, Gyirong, Nyalam, and Ding-
gye, is situated on the boundary of China and Nepal. It has a maximum elevation of
8848.96 m.a.s.l. (Mt. Qomolangma), a minimum elevation of 1440 m.a.s.l., and a total area
of 33,819 km2 (Figure 1a). Centered on Mt. Qomolangma, the reserve is split into the
southern slope and the northern slope of the Himalayas, each having considerably distinct
weather conditions. During 2000–2018, the mean annual temperatures at Nyalam station
(on the southern slope) and Tingri station (on the northern slope) were 4.28 ◦C and 3.78 ◦C,
respectively, while their respective mean annual precipitation amounts were 613.9 mm and
297.4 mm [62]. Since the Himalayas prevent warm, humid air from the Indian Ocean and
the Bengal Bay from reaching the QTP [63], the southern slope of the reserve experiences
abundant rainfall and vegetation during the monsoon season, contrasting with the rather
arid climate condition on the northern slope. Thus, the southern slope illustrates the semi-
humid mountain forest system that is dominated by alpine vegetation (AV) and needleleaf
forest (NF). In contrast, the northern slope is primarily covered by shrubs, grassland, and
meadow, and features a plateau semi-arid bush fallow and steppe system (Figure 1b) [51].

2.2. Data Source and Pre-Processing

The Normalized Difference Vegetation Index (NDVI) is an efficient indicator that is
frequently used in investigations of vegetation activities [12,25]. This study covered the
period from February 2000 to December 2018 and used MOD13Q1 NDVI data, which
are provided every 16 days at 250-m spatial resolution by the National Aeronautics and
Space Administration (NASA, https://ladsweb.modaps.eosdis.nasa.gov/ accessed on
5 February 2023). With the help of the MODIS Reprojection Tool (MTR), the original NDVI
data were transformed and projected. The monthly, growing season (April to October),
interannual, and average scale NDVI values were all produced using the Maximum Value
Composite (MVC) approach. The pixels with NDVI values less than 0.1 were masked out,
indicating sparse and non-vegetated places such bare soil, water body, snow, and ice [64].

In this study, thw China Meteorological Forcing Dataset (1979–2018) (CMFD) was
used, provided by the National Tibetan Plateau Data Center (https://doi.org/10.11888
/AtmosphericPhysics.tpe.249369.file accessed on 7 February 2023) [65] with a spatial res-
olution of 0.1◦, which was generated by combining ground-based observations with a
number of gridded datasets from remote sensing and reanalysis using AUSPLIN Statistical
interpolation [66]. The four climatic raster datasets including temperature, radiation, pre-
cipitation, and specific humidity were selected for further analysis. The total precipitation
and radiation of the growth season were obtained by adding up the monthly values from
April to October, while the growing season’s mean temperature and specific humidity were
derived by averaging the monthly values from April to October.

The digitized vegetation map provided by the Resource and Environment Science and
Data Center (https://www.resdc.cn/ accessed on 8 February 2023) was used to extract
the 1 km resolution vegetation type data. The DEM (30 m resolution) data was collected
from the Geospatial Data Cloud (https://www.gscloud.cn/ accessed on 8 February 2023),
and elevation, slope and aspect data were extracted from DEM data. The 1 km grid
datasets of human activity intensity in agricultural and pastoral areas of the Qinghai–Tibet

https://ladsweb.modaps.eosdis.nasa.gov/
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
https://www.resdc.cn/
https://www.gscloud.cn/
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Plateau during 1990–2015 were collected from the National Tibetan Plateau Data Center
(https://doi.org/10.11888/HumanNat.tpdc.300295 accessed on 7 February 2023) [67].

In this study, the bilinear interpolation method was used to resample all the remote
sensing data into 250 m to match the spatial resolution of NDVI. Table 1 illustrates the
details of datasets employed in this study.

Table 1. Dataset source.

Dataset Spatial Resolution Time Scale Source

MOD13Q1 NDVI dataset 250 m 2000.02–2018.12 https:
//ladsweb.modaps.eosdis.nasa.gov/

Climate dataset 0.15◦ (resampled as 250 m) 1979–2018 https://doi.org/10.11888
/AtmosphericPhysics.tpe.249369.file

Vegetation type 1 km (resampled as 250 m) / https://www.resdc.cn/
DEM 30 m (resampled as 250 m) / https://www.gscloud.cn/

Human activity
intensity dataset 1 km (resampled as 250 m) 1990–2015 https://doi.org/10.11888/HumanNat.

tpdc.300295

2.3. Methods

Figure 2 shows the flow chart of this study.
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2.3.1. Theil–Sen Median and Mann–Kendall Method

The Theil–Sen median approach is a qualitative approach for assessing the time-series
trends that has the advantage of not being affected by the sample absence [68], which was
employed in our study to identify variations in vegetation. The following is the calculation
equation:

β = Median
( xj − xi

j− i

)
0 < i < j < n (1)

where, xi and xj stand for the NDVI value at the time i and j. n means the data length.
β > 0 depicts an upward trend, while β < 0 illustrates a downward trend.

https://doi.org/10.11888/HumanNat.tpdc.300295
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
https://www.resdc.cn/
https://www.gscloud.cn/
https://doi.org/10.11888/HumanNat.tpdc.300295
https://doi.org/10.11888/HumanNat.tpdc.300295
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The Mann–Kendall approach is a nonparametric statistical technique that has the
benefit of allowing the sample to deviate from expected distributions, while taking into
account any existing outliers [69]. This approach is widely used for significance tests of
vegetation and meteorological trends [70]. The formulas are as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(2)

sgn
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(3)

Var(s) =
n(n− 1)(2n + 5)

18
(n ≥ 8) (4)

Z =


S−1√
Var(s)

S > 0

0 S = 0
S+1√
Var(s)

S < 0
(5)

where, corresponding, xi and xj stand for the NDVI value at the time i and j. n means the
data length. S is the test statistic that obeys the positive-terrestrial distribution. sgn

(
xj − xi

)
is the logical discriminant function. Var(s) means the variance of S. In this study, the
confidence level of α = 0.05 was selected for further analysis. Depending on the Mann–
Kendall results, the variation was either insignificant (|Z| < 1.96 ) or significant (|Z| > 1.96).
Therefore, the trends of NDVI were reclassed as five levels (Table 2).

Table 2. The level of NDVI trends.

NDVI Trend Level β Z

Significant degradation ≤−0.0005 >1.96
Slight degradation ≤−0.0005 −1.96–1.96

Stable −0.0005–0.0005 −1.96–1.96
Slight improvement ≥0.0005 −1.96–1.96

Significant improvement ≥0.0005 >1.96

2.3.2. Partial Correlation Coefficient Analysis

The relationships between NDVI and meteorological factors were investigated using
partial correlation coefficient (PCC) analysis and the t-test approach [71]. The following are
the equations:

ri·j·l1·l2· ...lg =
ri·j·l1·l2· ...lg−1 − ri·l1·l2· ...lg−1 ∗ rj·l1·l2· ...lg−1√(

1− r2
i·l1·l2· ...lg−1

)
∗
(

1− r2
j·l1·l2· ...lg−1

) g ≤ k− 2 (6)

t =
√

n− k− 1 ∗ r√
1− r2

(7)

where, r represents the PCC value between a certain meteorological parameter and the
NDVI, n means the number of time–series data. k represents the controllable variables, and
n − k − 1 is the degree of freedom. The PCC significance levels were assessed using the
t-test at the level of 0.05.

2.3.3. Partial Least Squares Structural Equation Modeling

To measure how climatic conditions, topography, and anthropogenic activities affect
vegetation dynamics, the partial least squares-structural equation model (PLS-SEM) was
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developed. PLS-SEM investigates the connections and path coefficients between vari-
ables [72] based on an assumed structure or a recognized mechanism [73]. In order to more
effectively address the issues of factors’ multicollinearity, PLE-SEM utilizes an iterative so-
lution technique based on the principle of dimensionality reduction in principal component
analysis [74]. PLS-SEM aims to maximize the explained variance of the latent endogenous
variables by evaluating partial model interactions in an iterative series of normal least
squares regressions. This method is preferable to covariance-based structural equation
model (CB-SEM) for exploratory research and theory development [75]. The measurement
model and the structural model are the two sub-models that make up a PLS-SEM. In the
PLS path modeling paradigm, the following equation could be used to represent the linear
relationship between each latent variable and its related manifest variables [76]:

xpq = λpq ξq + εpq (8)

where, error term εpq denotes measurement process imprecision and λpq represents the
loading associated for p-th manifest variable in the q-th block.

The structural model analyzes the links between the latent variables, which are ex-
pressed as [76]:

ξ j = ∑
i 6=j

βijξi + ζ j (9)

where, ζ j is the inaccuracy in the inner relation and βij is the path coefficient connecting
the i-th exogenous variable to the j-th endogenous variable.

The conceptual model was created using the following assumptions: (1) topographic
factors directly affect NDVI, (2) climatic factors directly affect NDVI, (3) human activities
directly affect NDVI, (4) topographic factors indirectly affect NDVI by influencing climatic
factors, (5) topographic factors indirectly affect NDVI by influencing human activities,
(6) meteorological factors indirectly affect NDVI by influencing human activities.

In this study, the models are tested using SmartPLS 3.0, and the significance of path
coefficients was determined using a sample size of 5000 [77]. The PLS-SEM evaluation
requires the fulfillment of three essential requirements. The first measures the overall
model’s fit and is presented by the coefficient of determination (R2) value [78]. The Stone–
Geissers coefficient (Q2) value, which measures the model’s predictive usefulness with
respect to endogenous latent variables, is the second one [79]. The third one measures the
overall model’s quality using the goodness of fit (GOF) value [80]. The following table
displays the empirical standards (Table 3):

Table 3. Elevation of PLS-SEM fitting.

Criterion Value Description

R2
>0.67 Substantial explanatory power
>0.33 Moderate explanatory power
>0.19 Weak explanatory power

Q2 >0 A larger value denoting higher prediction accuracy of the model

GOF
0.1 Overall fit of the model is weak
0.25 Overall fit of the model is medium
0.36 Overall fit of the model is strong

2.3.4. Uniform Manifold Approximation and Projection (UMAP)

Situations involving high-dimensional data, such as texts, images, biological, and
other forms of data, may frequently occur in data analysis and might provide a variety of
difficulties [81]. Therefore, the curse of dimensionality refers to a situation where typical
statistical models perform poorly when dealing with high-dimensional data because their
basic assumptions are violated [82].

Dimensionality reduction is essential for dealing with numerous variables, which not
only enables the pretreatment of high-dimensional data but also offers a useful visualization
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of the data points, providing additional insight into the data structure and potentially
significant patterns that may already be apparent at this level of investigation [83]. Linear
dimensionality reduction techniques, such as Principal Component Analysis (PCA) or
Linear Discriminant Analysis (LDA), are applicable when the distribution of the data or the
relationships among the data can be effectively expressed through linear transformations.
These techniques operate based on linear algebra, and they assume that the data can
be simplified through linear combinations or projections into a linear subspace, which
may lead to computationally efficient and easily interpreted results. However, when the
data encompass intricate nonlinear relationships, linear dimensionality reduction may
fail to effectively preserve these associations [84]. In this study, one dependent parameter
(NDVI) and nine independent parameters (elevation, slope, aspect, temperature, radiation,
precipitation, specific humidity, grazing intensity, human activity intensity) were involved.
Dimensionality reduction methods aim to transform these high-dimensional data into
lower-dimensional data, while still retaining the critical data information [85].

Trade-offs are inevitable in the process of dimensionality reduction. To capture and
retain the group structure’s finer-scale features, it is crucial to employ an appropriate
technique. While some methods tend to focus on the maximum variance within the
dataset, they might neglect the variance occurring in other directions. Various nonlinear
neighbor graph-based dimensionality reduction techniques, such as t-SNE [85,86], have
been proposed to circumvent this limitation.

In this study, the Uniform Manifold Approximation and Projection (UMAP) ap-
proach was utilized, which introduced in 2018 as a nonlinear dimensionality reduction
technique whose primary objective is to capture complex nonlinear structures within
high-dimensional data and preserve these structures as much as possible in the reduced-
dimensional space [87]. The UMAP is a robust tool for dimensional reduction, providing
an excellent means to analyze complex cluster structures. The ranking patterns of each
dataset were visualized using the UMAP method.

Before performing the dimensionality reduction analysis, all data underwent a Hellinger
transformation [88], since UMAP is based on Euclidean distance measurements. The UMAP
technique structures the data in a low-dimensional space using a graphical layout [87].
After generating a high-dimensional graph, the algorithm fine-tunes its low-dimension
representation to make it as structurally similar as possible. The minimum distance and
number of neighbors are critical UMAP parameters that maintain the global and local
structure. In this paper, the number of neighbors was set as 10, with the minimum distance
set at the default value.

3. Results
3.1. The Changing Patterns of Vegetation Dynamics in the QNNR

The NDVI across the entire QNNR decreased with fluctuation before 2010 and in-
creased significantly afterward, showing an overall greening trend of 0.00073/a (p = 0.037)
during 2000–2018 (Figure 3b). The growing season average NDVI illustrated marked spatial
heterogeneity in the QNNR during 2000–2018 (Figure 3a). The high NDVI (>0.8) areas were
concentrated in relatively low-elevation parts such as the southern portion of the reserve
and regions along rivers, which where dominated by NF and shrub. While the low NDVI
(<0.2) areas were distributed throughout the reserve, in areas partly covered by lakes, snow,
and glaciers, and dominated by grassland, meadow, and AV. Such a vegetation distribution
pattern is comprehensively influenced by topography, climatic divergence, and vegetation
type. Additionally, the mean growing season NDVI in the QNNR also indicated markedly
vertical zonality, which decreased gradually with the increase of elevation.
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Figure 3. (a) The growing season average NDVI pattern, (b) the spatial pattern of NDVI trend during
2000–2018 in the QNNR (−2 and −1 indicate significant degradation and slight degradation, while
2 and 1 represent significant improvement and slight improvement, respectively.).

The NDVI changing trend was explored by the Theil–Sen and Mann–Kendall methods
(Table 2). Figure 3b showed the NDVI trend characteristics of the study area. In the center
of and low-elevation regions on the southern slope of the QNNR, the majority of the areas
(40.23%) were slightly improved, where NF, grassland, shrub, and AV dominated. The
vegetation stable regions accounted for 37.16% of the areas, and were widely distributed
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throughout the reserve and mainly dominated by AV vegetation. The areas showing
significant improvement (14.31%) were mostly located in the low-elevation area of the
southern slope and around lakes and rivers, where abundant hydrothermal conditions and
vegetation cover were found. Slight degradation was accounted for in 7.18% of the regions,
which were mostly dispersed in the reserve’s eastern section and sparsely distributed
throughout the study area, where AV dominated. The lowest proportion (1.12%) showed
significant degradation. These areas were concentrated in the eastern part of the QNNR,
were surrounded by slight degradation areas, and were mainly covered by grassland and
possibly affected by human activities such as grazing (Figure 3b). In terms of different
elevation levels, the proportions of areas indicated vegetation improvement decreased with
increasing elevation, but significant degradation regions were largely concentrated in the
middle and low-altitude regions (4000–4500 m), which were dense with human activity.

3.2. The Respond of Vegetation Dynamics to Climate Change in the QNNR

To explore the vegetation dynamic response to a particular climatic variable, the PCC
and significance between hydrothermal variables and NDVI during the growing season
were investigated at a pixel size.

During 2000–2018, growing season NDVI and hydrothermal parameters’ partial cor-
relation levels showed markedly spatial heterogenicity (Figure 4). Specifically, as seen in
Figure 4e, the vegetation coverage of the eastern part of the QNNR was negatively corre-
lated with temperature, but the western region’s vegetation cover was mostly associated
positively with temperature. The positive relation level increased with the rise of elevation,
and no obvious difference between the various vegetation types was noted. The level of
partial connection between NDVI and radiation is shown in Figure 4g; around glacial lakes
in the northwest of the QNNR, the negatively correlated pixels were scattered, while the
significant positive association pixels, which made up 2.11% of the total, were dispersed
sporadically among the low-elevation areas of the south slope. There was no marked
variation in terms of elevation gradient, and grassland was more negatively affected by
radiation than other vegetation types. Figure 4a illustrates that NDVI and precipitation
are positively correlated in more than 60% of the pixels, with the geographic distribution
of high values in the middle and low values in the periphery running from northeast to
southwest. The northwest and northeastern corners of the reserve held the majority of
the strongly positively associated pixels, and the low elevation zones of the south slope
were where the majority of the pixels having a strong negative correlation were located.
The percentage of positive correlation grew as elevation climbed. When compared to other
types of vegetation, the AV had a more substantial positive correlation with precipitation,
which was strongly tied to the distribution characteristics’ altitudinal gradient. The dis-
tribution pattern of the relationship between vegetation dynamics and specific humidity
(Figure 4c) seemed to be comparable to that of radiation (Figure 4g), with a more significant
negative correlation with a trend of initial increase followed by a subsequent decrease with
increasing elevation. Grassland showed a more pronouncedly negative relationship with
specific humidity.

3.3. Quantification of Climate Change, Topography, and Anthropogenic Activities’ Impacts on
Vegetation Dynamics
3.3.1. Partial Least Squares Structural Equation Model (PLS-SEM)

To more precisely measure how natural and artificial variables interact to affect vegeta-
tion growth, a PLS-SEM was established including four climatic parameters (temperature,
radiation, precipitation, and specific humidity), three topographic factors (elevation, slope,
aspect), and two human activities indicators (human activity intensity, and grazing intensity).
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Figures 5 and 6 show the PLS-SEM results in 2000, 2005, 2010, and 2015. The evalu-
ation findings of coefficient of predictive relevance (Q2), goodness of fit (GOF), and de-
termination (R2) demonstrated that the PLS-SEM model performed well with a good ca-
pacity for explanatory power for the causal pathway (Table 4). Specifically, the NDVI’s 
R2 fitted in an acceptable range. All variables had positive Stone–Geisser coefficients, in-
dicating good predictive relevance regarding the endogenous latent variables. The path 
coefficients of PLE-SEM indicate that the interrelations between the latent variables were 
significant for all nine parameters (p < 0.05).  

Table 4. Assessment of the PLS-SEM. 

Assessment Indicators Types 
Values 

2000 2005 2010 2015 
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Q2 / 0.337  0.328  0.343  0.345  

p-value 
Topographic factor →NDVI 0.000  0.000  0.000  0.000  

Climatic factor → NDVI 0.000  0.000  0.000  0.000  
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Figure 4. The partial correlation coefficient between the QNNR’s growing season vegetation and
hydrothermal parameters: (a) NDVI and precipitation; (c) NDVI and specific humidity; (e) NDVI and
temperature; (g) NDVI and radiation. The frequency histogram of partial correlation level between
the growing season vegetation and meteorological parameters: (b) NDVI and precipitation; (d) NDVI
and specific humidity; (f) NDVI and temperature; (h) NDVI and radiation.
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Figures 5 and 6 show the PLS-SEM results in 2000, 2005, 2010, and 2015. The evaluation
findings of coefficient of predictive relevance (Q2), goodness of fit (GOF), and determination
(R2) demonstrated that the PLS-SEM model performed well with a good capacity for
explanatory power for the causal pathway (Table 4). Specifically, the NDVI’s R2 fitted in
an acceptable range. All variables had positive Stone–Geisser coefficients, indicating good
predictive relevance regarding the endogenous latent variables. The path coefficients of
PLE-SEM indicate that the interrelations between the latent variables were significant for
all nine parameters (p < 0.05).
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Figure 5. PLS-SEM for vegetation growth in the QNNR among climatic factors (temperature, pre-
cipitation, radiation, specific humidity), topographic factors (elevation, slope, aspect), and human
activities (population intensity (PI), grazing intensity (GI)) in (a) 2000, (b) 2005, (c) 2010, and (d) 2015.
The positive path coefficients are denoted by green arrows, whereas the negative path coefficients are
denoted by red arrows. Bold lines show the absolute values of path coefficients greater than 0.4, thin
lines show the absolute values of path coefficients between 0.1 and 0.4, and dashed lines show the
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Table 4. Assessment of the PLS-SEM.

Assessment
Indicators

Types
Values

2000 2005 2010 2015

R2 NDVI 0.340 0.331 0.347 0.348
Q2 / 0.337 0.328 0.343 0.345

p-value
Topographic factor→NDVI 0.000 0.000 0.000 0.000

Climatic factor→ NDVI 0.000 0.000 0.000 0.000
Human activity→ NDVI 0.002 0.000 0.000 0.022

GOF / 0.369 0.367 0.371 0.369
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Figure 6. The direct effects and total effects of NDVI.

Among three latent variables (topographic, climatic, and artificial factors), topographic
factors dominated the interpretation of NDVI, showing a downward trend of direct effects,
an upward trend of indirect trend, and slight fluctuations of the total effects. In comparison,
climatic factors’ impact on NDVI was less, showing the increasing trends of both direct
effect and total effect. Since human activity did not directly affect climate and topography
in the established PLS-SEM model, the human activities’ direct impact on vegetation was
equal to its total effect that turned from positive to negative in 2010, which may be due to
the implementation of local ecological programs. In terms of each latent variable, elevation
was the most significant topographic element for the dynamics of vegetation, while slope
and aspect had fewer positive impacts over the period. In terms of the four climatic
factors, temperature and humidity had higher correlations with NDVI. Specifically, the
effect of temperature decreased over the period, and that of humidity fluctuated slightly.
The influence of precipitation changed from negative to positive, and became more and
more positive over the years. In contrast, the effect of radiation turned from positive to
increasingly negative. From the perspective of artificial factors, the impact of grazing on
NDVI was much higher than that of human activity.

3.3.2. Uniform Manifold Approximation and Projection (UMAP)

The dimensionality reduction model based on the UMAP approach could effectively
aggregate parameters by vegetation type. By combining the reduced model with different
factors, the correlation between various vegetation types and variables could be derived
(Figure 7). Specifically, elevation showed an obvious negative correlation with NDVI, while
temperature was directly related to elevation. It can be observed from the scatter plot that
the NDVI noticeably decreases when the temperature is below 5 ◦C and the elevation is
more than 4000 m. The overall manifestation of human activity intensity was notably atten-
uated. Grazing intensity, mainly determined by vegetation types, was primarily distributed
in the two largest clutters (grasslands and meadows). The vegetation types with high NDVI
values were shrub and NF. While the NDVI values of meadow were controlled by elevation,
showing a distinct changing pattern as the elevation gradient progressed. The variance in
radiation is most conspicuous, with high radiation typically corresponding to low NDVI,
and the highest radiation values were predominantly found in grasslands, meadows, and
alpine vegetation. Even within a single type of vegetation, radiation exhibits significant
heterogeneity, influenced by a combination of factors such as elevation, precipitation, and
humidity. Furthermore, variations in humidity and precipitation usually occur in tandem.
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Figure 7. The comparative analysis of features using UMAP Dimensionality Reduction (vegetation
type: 1—Needleleaf Forest (NF), 2—Shrub, 3—Grassland, 4—Meadow, 5—Alpine Vegetation (AV),
6—Cultural Vegetation (CV) (Each subplot indicated a two-dimensional projection in the UMAP space,
with UMAP1 and UMAP2 as the primary axes. Individual points correspond to individual samples,
with their color assigned based on the value of the specific feature denoted by each variable. The
central distinction across these 11 subplots lies in the color assignment of the points, determined by
different feature values. These features are specified in the title of each subplot. Within these subplots,
points of analogous colors share proximity in the values of the respective feature. Consequently,
a comparison across various subplots enables us to discern how specific features influence the
distribution of samples within the two-dimensional space and carry out a comparative analysis). The
lower right corner figure illustrated the interrelationships between temperature, elevation, and NDVI.

4. Discussion
4.1. The Spatiotemporal Trends of Vegetation and Its Partial Correlation with
Meteorological Parameters

NDVI is frequently used to monitor vegetation’s development and how it responds to
climatic variation, because it is a reliable indication of plant growth status [89–91]. During
the research period, the entire reserve displayed a growing season NDVI tendency of
greening (0.0007/a) (Figure 3b), which was coincident with previous studies in the Everest
area [92] and the QTP [93–98]. The NDVI interannual variance shifted from a decline to a
noticeable increase in 2010 and continued to improve afterwards, which may be attributed
to the execution of the Natural Forest Protection program, as well as to the improvements
of hydrothermal conditions.
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According to the NDVI trends, there was substantial geographic heterogenicity over
the research period [99,100] (Figure 3b). The low temperature was identified in prior
studies as one of the main barriers to vegetation coverage [101,102]. Due to the elevation-
dependent warming (EDW) that occurs in mountainous places, the plateau warms more
quickly than the plain areas [103–105], which significantly promotes vegetation growth in
the plateau areas. Moreover, in the temperate alpine ecosystem, warm temperatures are
also considered a major driving force behind seed germination, namely “the warm-cued
germination”, which increases the chance for plant survival during first-year establishment
to withstand the cold winter on a plateau [12,106–110].

The PCC results (Figure 4e) showed that in the southwest and center of the reserve,
the NDVI was positively associated with temperature, while the northeastern of the reserve
contained the majority of the parts where vegetation negatively correlated with temperature.
The northeastern part of the reserve experienced extremely low temperatures, which
restricted the growth of vegetation to some extent. Even though there was a decreased
tendency in precipitation over the study period, the drying had no discernible effects on
the QNNR’s vegetation development.

Based on the NDVI–precipitation partial correlations (Figure 4a), rainfall had a positive
effect on vegetation development in the high-elevation regions of the north slope and a
negative effect on NDVI in the south slope regions with more favorable hydrothermal con-
ditions. However, in the areas with elevations ranging from 4200 to 4800 m, the north slope
had a significantly lower NDVI value than the south slope, which had more heavy precipi-
tation [111]. Because of the water stress effect on the northern slope, vegetation growth is
more sensitive to precipitation [112], and with increasing elevation, precipitation decreases
and soil water availability reduces, thereby limiting the dynamics of vegetation [113,114].
According to previous studies, the vegetation development may be constrained by the
availability of water in mountainous, arid, and semi-arid locations [6,105,115–117]. The
drying and warming would result in more soil moisture evaporation and less soil water
availability in the reserve’s north slope, where the elevation is higher [118,119]. This indi-
cates how crucial precipitation and soil water availability are for the seedling establishment
and vegetation dynamics in the reserve. The NDVI–radiation partial correlation (Figure 4g)
revealed that greater radiation in the reserve’s center inhibited the growth of vegetation.
Changes in solar radiation brought on by clouds and aerosols primarily have an impact
on vegetation growth by regulating how well plants absorb carbon dioxide [120]. Radi-
ation also has an impact on turbulent surface energy flux, which is a contributing factor
in evapotranspiration [120]. Thus, radiation influences vegetation transpiration and soil
moisture constantly which would intensify the water stress effect on north slope areas
and affect vegetation growth consequently. The comparatively low specific humidity in
the QNNR’s central region limits the growth of vegetation, which is probably because
the lower humidity leads to the closure of some vegetation stomata affects the absorption
of CO2, and reduces photosynthesis (Figure 4c). Global warming caused the glaciers on
Everest and its surroundings to thin at a pace of 0.38 0.04 m w.e./a between 2000 and
2012 AD [54,56,121–123]. This, to some extent, increased regional runoff and soil water,
potentially reducing the impact of water stress in high-elevation locations.

4.2. Relationship between Vegetation Dynamics and Influencing Factors under the UMAP and
PLS-SEM Analysis

Currently, it is commonly acknowledged that vegetation evolution is a complex process
in which multiple factors work together, and research into the connection between vegetation
dynamics and specific hydrothermal parameters is not rigorous enough [124–126]. The three
main types of vegetation driving forces are (1) meteorological factors, which provide the
fundamental conditions for vegetation development [127,128]; (2) topographic parameters
which impact the vegetation development directly by themselves and also influence the dis-
tribution of climatic parameters that indirectly affect the spatial heterogeneity of vegetation
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coverage [129,130]; and (3) non-climatic disturbances resulting from human actions such as
urban development, large construction projects, overgrazing, and deforestation [99,131].

The topography is a relatively constant factor in the context of global climate change
and intensification of anthropogenic activity, and it merits investigation into how it in-
fluences vegetation growth both directly and indirectly, as well as how the distribution
of vegetation responds to it. The PLS-SEM (Figure 5) and UMAP (Figure 7) results show
that the main variables affecting NDVI are elevation, temperature, and humidity, with
elevation being the most negatively correlated and temperature being most positively
correlated with NDVI, especially in areas with high NDVI value. Humidity often reacts
in tandem with precipitation. Anthropogenic factors are, to some extent, controlled by
elevation. Two topographic factors, slope and aspect, indicate low correlations with NDVI
and are not influenced by the differentiation of vegetation types. Previous studies have
highlighted that the possible reason for slow vegetation development in the high-altitude
regions of the QTP is the low nitrogen content that plays a major part in the development
of photosynthetic organs such as chloroplasts, which concentrate around 75% of plant
nitrogen [132,133]. Moreover, as elevation rises, the biomass of the leaf area, root nodules,
mesophyll conductance, and stomatal declines noticeably, weakening the vegetation’s
capacity of absorbing nutrients and photosynthesis [134].

The results from our structural equation model showed that during the research
period, elevation had adverse effects on vegetation development that were both direct
and indirect (by influencing meteorological conditions). While the substantial elevational
difference dominates the distribution of thermal conditions, the water vapor channel, which
is likewise strongly correlated with elevation variation, has a considerable impact on the
distribution of hydro conditions. Slope can influence vegetation growth by altering soil
erosion rate, soil moisture, litter formation, and aspect, which can affect the vegetation’s
ability to photosynthesize [135].

However, as supported by the outcomes of other places in the QTP, our outcomes
indicated that the effect of slope and aspect on vegetation in the QNNR is negligible in
comparison to elevation [136]. The PLS-SEM findings also illustrated that the topographic
variables, as a relatively constant indicator, demonstrated a decreasing direct effect on
vegetation, whereas climatic elements steadily increased their influence on vegetation. This
is partially attributable to the reserve’s rising temperature trend during the research period,
which somewhat overcomes the low-temperature restriction on vegetation development.

The melting of snow and glaciers brought on by warming reduces the water stress
that results from increasing elevation, which also explains why the decreasing precipitation
trend does not have a more detrimental effect on vegetation. This phenomenon lessens
the negative effects of increasing elevation on vegetation. The greater association between
specific humidity and NDVI in the PLS-SEM further illustrates how melting snow and
glaciers raise humidity levels, which in turn leads to vegetation’s stomata opening wider
and absorbing more carbon dioxide, facilitating photosynthesis.

The increasing radiation accelerates vegetation transpiration, thus enhancing the
water stress phenomenon and increasing the negative impact of radiation on vegetation.
As not many people live in the reserve, human activates do not cause much environmental
harm, despite the fact that they are intensifying. According to the structural equation
model, human activity positively affected vegetation in 2000, demonstrating the benefits of
modest grazing [35,137]. Light and moderate grazing activity both have a positive effect
on vegetation diversification and soil respiration in the grassland ecosystems of the QTP,
where vegetation covering, above-ground biomass, total nitrogen, and SOC exhibit a slight
linear development connection with grazing intensity [138].

Unfortunately, human activities negatively influenced the growth of vegetation in
the reserve in 2005 and 2010 due to the expansion of urban areas. To reduce the damages
caused by human activities, several ecological policies including prohibiting grazing and
offering reward-compensation mechanisms for herdsmen [139] were implemented by the
local government. Thus, the regional livestock growth trend reversed from an increase to a
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decrease around 2009, with a sharp decline since 2010. Our PLS-SEM findings demonstrate
that the detrimental influence of human activity peaked in 2010 and then declined in 2015,
highlighting the contribution of ecological policies [51,140–143]. In conclusion, topographic
factors, followed by climatic elements, have the most power over the growth of vegetation
in the QNNR, whereas anthropogenic causes have the smallest impact.

4.3. Limitations and Prospects

This study analyzed the variations in vegetation development and hydrothermal
parameters, and it qualified the influences of topography, hydrothermal conditions, and
human activity on vegetation growth in the reserve. The limitations of this paper are
as follows: (1) Limited by only two meteorological stations located in the reserve, the
ground-observed data is insufficient for interpolation, and the coarse spatial resolution
of CMFD affects the partial correlation calculation. (2) The model only considered four
hydrometeorological factors, three topographic factors, and two anthropogenic activity
indicators; the structural equation model fitting is still limited. In further studies, more
auxiliary data is necessary to generate more precise climatic raster data. Moreover, to
more precisely evaluate the influence of natural and artificial variables on vegetation cover
in the reserve, additional indicators, such as water cycle, evaporation, population, and
land use, might be extensively taken into consideration in PLS-SEM. (3) Over the last few
decades, a variety of remote sensing vegetation indices have been developed, such as
the Normalized Difference Vegetation Index (NDVI), Global Environmental Monitoring
Index (GEMI), Difference Vegetation Index (DVI), Simple Ratio Vegetation Index (SR),
Soil-Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), Aerosol Free
Vegetation Index (AFVI), and the Medium Resolution Imaging Spectrometer Terrestrial
Chlorophyll Index (MTCI). Although NDVI is deemed sufficient for the scope of this study,
other indices might be employed in the future to obtain a more holistic and comprehensive
assessment of regional vegetation dynamics.

5. Conclusions

From 2000 to 2018, the entire reserve exhibited an improving trend in vegetation at
a rate of 0.0007/a, exceeding the typical levels of the Qinghai–Tibet Plateau. The partial
correlation analysis indicated substantial spatial heterogeneity between the growing season
NDVI and hydrothermal parameters, with different impacts of hydrothermal factors on the
vegetation development of the northern and southern slopes, suggesting that water stress
could potentially influence vegetation growth to some extent. Moreover, the vegetation
response to meteorological factors displayed a certain correlation with elevation; specifically,
a noticeable decrease in NDVI occurred when the temperature was below 5 ◦C and elevation
exceeded 4000 m. The PLS-SEM results suggested that for the vegetation development in
the QNNR, topographic factors, particularly elevation, played a dominant role, while the
influence of climatic factors gradually increased over each five-year period, with relatively
rare impacts from anthropogenic activities. Therefore, the natural environment in the
QNNR has benefited from the implementation of ecological programs. Visualization
through the UMAP approach revealed a distinct negative correlation between elevation
and NDVI, with temperature directly associated with elevation. The overall manifestation
of human activity intensity was notably attenuated, and grazing intensity was mainly
determined by vegetation types, predominantly distributed within the two largest clusters
(grasslands and meadows).
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