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Abstract: As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana
plays a significant role in water purification, soil and water conservation, and climate regulation. In
the context of climate change, rapidly and accurately obtaining its spatial distribution has critical
decision-making significance for maintaining ecological security in the arid area of CA and the
sustainable development of the “Silk Road Economic Belt”. However, conventional methods are
extremely challenging to accomplish the high-resolution mapping of Picea schrenkiana in the TS, which
is characterized by a wide range (9.97 × 105 km2) and complex terrain. The approach of geo-big data
and cloud computing provides new opportunities to address this issue. Therefore, the purpose of this
study is to propose an automatic extraction procedure for the spatial distribution of Picea schrenkiana
based on Google Earth Engine and the Jeffries–Matusita (JM) distance, which considered three
aspects: sample points, remote-sensing images, and classification features. The results showed that
(1) after removing abnormal samples and selecting the summer image, the producer accuracy (PA)
of Picea schrenkiana was improved by 2.95% and 0.24%–2.10%, respectively. (2) Both the separation
obtained by the JM distance and the analysis results of eight schemes showed that spectral features
and texture features played a key role in the mapping of Picea schrenkiana. (3) The JM distance can
seize the classification features that are most conducive to the mapping of Picea schrenkiana, and
effectively improve the classification accuracy. The PA and user accuracy of Picea schrenkiana were
96.74% and 96.96%, respectively. The overall accuracy was 91.93%, while the Kappa coefficient was
0.89. (4) The results show that Picea schrenkiana is concentrated in the middle TS and scattered in
the remaining areas. In total, 85.7%, 66.4%, and 85.9% of Picea schrenkiana were distributed in the
range of 1500–2700 m, 20–40◦, and on shady slope and semi-shady slope, respectively. The automatic
procedure adopted in this study provides a basis for the rapid and accurate mapping of the spatial
distribution of coniferous forests in the complex terrain.

Keywords: Google Earth Engine; Sentinel-1; Sentinel-2; JM distance; Tianshan mountains; Picea schrenkiana

1. Introduction

As one of the most valuable terrestrial ecosystems, the forest ecosystem plays a vital
role in maintaining global carbon balance and slowing down the rise in the greenhouse
gas concentration [1]. The carbon stock of forest ecosystems accounts for about 33%–46%
of terrestrial ecosystems [2]. Under the background of “carbon neutrality”, global changes
caused by both natural and human factors directly or indirectly affect forest ecosystems,
which has aroused widespread concern in the whole society [3]. The arid area of Central
Asia (CA), which is connected to China by mountains and rivers, is a key hub zone in the
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construction of “the Silk Road Economic Belt” and a hot area concerned with the international
community [4]. The Tianshan Mountains (TS) is one of the most important parts in the arid
area of CA, in which the forest ecosystem has critical ecological values and functions such as
carbon sink [5], water resource conservation, flood regulation, water purification, and soil and
water conservation. The TS is highly essential for maintaining the ecological security of the
downstream areas and the sustainable development of the whole arid zone [6]. The arid areas
of CA, far from the sea and interspersed with mountains and basins, have light precipitation
but intense evaporation, severe water shortages, and fragile ecosystems. Therefore, this region
is a dramatic response region to global changes [7,8]. In the past half-century, although the
trend of “warming and humidification” has occurred in the arid area of CA [9], it has not
slowed down the ecological degradation in the region, because the positive ecological effect of
increasing precipitation is not sufficient to offset the negative effect of rising temperatures [10].
In addition, the normalized difference vegetation index (NDVI) of the natural vegetation
growing season in CA has declined at a rate of 0.0003 per year due to a sudden increase in the
temperature since 1998 [10]. All of the above studies indicate that the natural vegetation in
this area shows browning as a whole. Picea schrenkiana is a coniferous forest species with an
altitude range of 1400–2800 m on the northern slopes of the TS, and is particularly sensitive to
climate change [11]. Timely and accurate acquisition of its spatial distribution information is
of great significance to ensure the sustainable development of the arid area of CA and “the
Silk Road Economic Belt”.

Remote sensing is the most time-efficient and economical method for obtaining large
spatial-scale land-cover information [12,13]. With the improvement in remote-sensing
image resolution, remote-sensing technology plays a vital role in forest-cover extraction and
forest-change monitoring [14]. In Vietnam, researchers utilized Landsat images from 1973 to
2020 to identify changes in the spatial distribution of mangroves in Thanh Hoa and Nghe An
provinces, and analyzed the reasons for these changes [15]. The researchers first determined
the range of cultivated land in the Guanzhong region based on the land-use map, and
then distinguished between the grain/non-grain crops based on MODIS vegetation index
data. Finally, the non-grain production of cultivated land was extracted [16]. The above
studies on land-cover extraction and forest-change monitoring mainly used Landsat data
with high spatial resolution and MODIS data with high temporal resolution. Landsat data
are limited by the temporal resolution and rainy weather, and MODIS data are limited
by the spatial resolution and mixed pixels, which when used separately do not meet the
requirements for fine forest-cover extraction and forest-change monitoring. To solve this
problem, some scholars [17,18] implement the method for integrating different remote-
sensing data to make comprehensive use of the advantages of different sensors in time and
space. However, the traditional data acquisition and data processing and analysis methods
based on stand-alone off-line remote-sensing analysis software (ENVI and ERDAS) have
great limitations [19], which cannot meet the needs of wide-area and high spatial resolution
fine forest-cover extraction and forest-change monitoring.

The rapid development of remote-sensing cloud-computing platforms has become a
new way to solve geographical and spatial-related problems. Researchers can directly in-
voke the huge amount of data on the platform, in conjunction with the algorithms provided
by it, to implement online analysis and processing, as well as visualization operations,
which considerably increase the efficiency of data analysis and processing. So far, Google
Earth Engine (GEE) has been used in forestry [20], agriculture [21,22], wetlands [23], dis-
aster monitoring [24,25], and land-use change [26,27]. In terms of vegetation information
extraction, Liu et al. [28] selected Landsat images and used decision-tree classification to
extract the spatial distribution information of mangroves in Yuxian County in Vietnam, and
monitored the inter-annual dynamic changes in mangroves in the region from 1993 to 2017.
Li et al. [29] selected Landsat OLI and MODIS NDVI data and fused spectral and phono-
logical characteristics to extract distribution information on rubber forests in Thailand,
Malaysia, and Indonesia. Xu et al. [30] used the GEE platform and multi-temporal Landsat
images to extract information from citrus orchards in southern Jiangxi based on the random
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forest (RF) method, and the average OA reached 93.15%. The above results show that with
the help of GEE, there are three main features for the extraction of vegetation information
by domestic and foreign scholars. First, this vegetation is the most important cash crop
in the region, such as rubber and citrus, which plays an essential role in the prosperity of
farmers and the economic development of the region. Second, it has a major ecological
value and ecological function. Third, it grows mainly in tropical and subtropical regions,
such as Southeast Asia and Yunnan, Guangxi, Guangdong, and Fujian provinces.

At present, the research on Picea schrenkiana mainly includes nitrogen addition [31],
individual genomics [32], stoichiometric characteristics [33], population dynamics [34], and
biomass estimation [35,36]. However, the spatial distribution pattern of Picea schrenkiana
in the TS is not clear, which has become the bottleneck for the scientific management and
utilization of the plant resources. Therefore, we proposed an automatic extraction procedure
for the spatial distribution of Picea schrenkiana based on GEE and the Jeffries–Matusita
(JM) distance. The key research contents are as follows: (1) Can eliminating abnormal
sample data improve the accuracy of land-cover classification in the TS of CA? (2) The
difference in land-cover classification accuracy in the TS of CA under different seasonal
images. (3) Feasibility analysis of using the JM distance to determine the importance of
classification features. (4) Eight different scenarios were designed to determine the effects
of different types of classification features and the best scenario was to extract the spatial
distribution of Picea schrenkiana with a resolution of 10 m in the TS.

2. Materials and Methods
2.1. Study Area Description

This study was conducted in the TS (69◦–95◦ E, 39◦–46◦ N), with a total area of
about 9.97 × 105 km2 (Figure 1). Due to its vast area and distance from the ocean, the
TS is the farthest mountain system from the ocean in the world [37] and also the largest
mountain system in the arid area of the world. The main topography of the TS consists
of mountains, intermountain basins, and piedmont plains. The mean altitude of the ridge
is about 4000 m and the highest peak has an altitude of about 7443.8 m [38]. Located in
the northern temperate zone and far from the sea, the area is characterized by a temperate
continental climate. The annual average temperature is about 5.0 ◦C [39], and the annual
average precipitation ranges from 250 to 300 mm. The vegetation distribution of the TS
has a typical vertical zone. From low altitude to high altitude, there are mountain steppe,
meadow steppe, mountain coniferous forest, alpine steppe, alpine cushion plants, and
snow-covered glaciers [33]. Picea schrenkiana is the dominant species in mountain conifer
forests. According to the field survey data and existing literature (Table 1), the elevation
range of Picea schrenkiana on the northern slope of the TS in CA is from 1400 to 2800 m.
To ensure an accurate extraction of Picea schrenkiana, a 1300 m contour was drawn from
ArcGIS software and SRTM data with a spatial resolution of 90 m. The field enclosed by
the contour at 1300 m is defined as the region studied in this paper.

Table 1. The main elevation range of Picea schrenkiana on the northern slope of the Tianshan Mountains.

Elevation Reference

1500–2700 m Wang, Ren et al. [34]
1600–2800 m Li, Chang et al. [33]
1600–2800 m Lan, Xiao et al. [40]
1500–2800 m Luo, Xu et al. [35]
1500–2800 m Li, Luo et al. [41]
1400–2800 m Jiang, Zhu et al. [42]
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Figure 1. Location of the study area.

2.2. Remote-Sensing Data

Sentinel-1 satellites are equipped with a dual-polarization C-band synthetic aperture
radar (SAR) instrument, which provides SAR images with high temporal and spatial resolution.
Sentinel-1 data are interferometric wide swath mode (IW) images, which is the standard mode
over land [43] and corresponds to COPERNICUS/S1_GRD in GEE. The Sentinel-1 Toolbox has
been used to preprocess the dataset, including thermal noise removal, radiometric calibration,
and terrain correction [44]. Here, we exclusively utilized the vertical transmit/horizontal
receive (VH) and vertical transmit/vertical receive (VV) bands. We also used Sentinel-2 data
from the GEE archive. Sentinel-2 consists of two satellites (Sentinel-2A and Sentinel-2B), each
carrying a multi-spectral imager (MSI) to acquire data in 13 spectral bands along a 290 km sun-
synchronous orbit path every 5 days. Since Sentinel-2 MSI, Level-2A data were not provided
fully on GEE’s data pool, Level-1C data were employed in this work, which corresponds to
COPERNICUS/S2 in GEE. The datasets are products of the top of the atmosphere (TOA) after
radiometric calibration and terrain correction.

Due to the wide coverage of the study area, it is necessary to combine images taken
at different times to obtain high-quality image data covering the study area. At the same
time, considering the factors of vegetation growth seasons, the images are divided into the
four seasons of spring, summer, autumn, and winter (Table 2). The ee. Filter.calendarRange
function was used to obtain images in the time range of the four seasons. The shape-
file for the study area was imported into the GEE platform and the ee. filterBounds
filter was employed to obtain images of the region of interest. For Sentinel-2 images,
CLOUDY_PIXEL_PERCENTAGE of the four seasons was set to different values to remove
all Sentinel-2 images of poor quality and obtain the number of pixel-by-pixel high-quality
observation images in the study area (Table 2). The results showed that during the study
period, the number of high-quality Sentinel-2 images from the four seasons in the study
area ranged from 1 to 288 (Figure 2). The ee. Reducer.median function was then utilized
to create a single image by calculating the median of all values on each pixel across the
stack of all images. Finally, the Sentinel-1 composite image and high-quality Sentinel-2
composite image covering the study area were achieved for subsequent studies.
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Table 2. Sentinel-1/2 image selection schedule.

Seasons Years Months Cloudy _Pixel_Percentage

Spring 2019–2020 4–6 30
Summer 2019–2020 7–9 20
Autumn 2019–2020 10–12 35
Winter 2019–2020 1–3 60
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2.3. Training and Validation Sample Points

The accuracy of classification results is intimately related to the representativeness and
quantity of samples [45]. Under realistic conditions for the TS and available land-cover data, the
land-cover categories in this region were divided into seven types to separate Picea schrenkiana
from the rest of the land uses. These include Picea schrenkiana, grassland, cropland, built,
bare land, snow and ice, and waterbody. Due to the large extent of the study area, visual
interpretation of a large number of sample points not only requires a lot of work, but also
fails to properly distinguish between land-cover classes. To address this issue, we combined
visual interpretation using Google Earth VHRI with semi-automatic extraction of sample points.
On the one hand, the Picea schrenkiana samples were collected from VHRI on Google Earth.
On the other hand, the non-Picea schrenkiana data (e.g., grassland, cropland, built, bare land,
snow and ice, and waterbody) were collected by the semi-automatic extraction of sample points
method. Specifically, semi-automatic extraction of sample points refers to the use of two tools
(Create Random Points tool and Extract Multi Values to Points tool) in ArcGIS software and ESA
World Cover data to obtain a large number of samples more accurately and quickly. Furthermore,
the coordinates of 99 field survey Picea schrenkiana samples (Figure 1) were collected through
GPS in the summer of 2019. Finally, a total of 8159 samples (Table 3) were collected, and 70% of
these (5866) were used for model training and 30% (2293) for validation.

Table 3. The situation of Sample Collection.

Type Picea schrenkiana Grassland Cropland Built Bare Land Snow and Ice Waterbody

Numbers 1524 3036 533 517 1704 275 570

2.4. Classification Feature Input

Seven categories of features are applied for classification in this study (Table 4). These
include radar features, spectral features, red-edge features, spectral indices, texture features,
and terrain features. Multiple lines of evidence showed that texture features, especially
texture features based on SAR data, can avoid the phenomenon of “ same spectrum foreign
objects” and “ same object foreign spectrum”, to improve the accuracy of remote-sensing
image classification [46]. A gray-level co-occurrence matrix (GLCM), proposed by Haralick
in 1973 [47], is the most common statistical analysis method for calculating texture features
at present. Therefore, this study used the algorithm glcmTexture provided by GEE to
compute the texture metrics with a window size of 3 × 3 and an offset of 1 × 1 from
the GLCM around each pixel of Sentinel-1 bands (VV and VH) [48]. Considering that
Picea schrenkiana is a single group tree species on the north slope of the TS at an altitude of
1400–2800 m, the ee. Algorithms. Terrain and ee. Image (“USGS/SRTMGL1_003”) function
provided by the GEE platform was used to calculate terrain features.

Table 4. Summary of classification features applied in this research.

Categories Features Central Wavelength/Indices Formula Data Source

Radar features
VV vertical transmit/vertical receive Sentinel-1
VH vertical transmit/horizontal receive Sentinel-1

Spectral features

AEROS 443 nm Sentinel-2
BLUE 490 nm Sentinel-2

GREEN 560 nm Sentinel-2
RED 665 nm Sentinel-2

RDED1 705 nm Sentinel-2
RDED2 740 nm Sentinel-2
RDED3 783 nm Sentinel-2

NIR 842 nm Sentinel-2
RDED4 865 nm Sentinel-2
VAPOR 940 nm Sentinel-2
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Table 4. Cont.

Categories Features Central Wavelength/Indices Formula Data Source

CIRRU 1375 nm Sentinel-2
SWIR1 1610 nm Sentinel-2
SWIR2 2190 nm Sentinel-2

Red-edge features

NDVIre1 (RDED4 − RDED1)/(RDED4 + RDED1) Sentinel-2
NDVIre2 (RDED4 − RDED2)/(RDED4 + RDED2) Sentinel-2
NDVIre3 (RDED4 − RDED3)/(RDED4 + RDED3) Sentinel-2

NDre1 (RDED2 − RDED1)/(RDED2 + RDED1) Sentinel-2
NDre2 (RDED3 − RDED1)/(RDED3 + RDED1) Sentinel-2

Spectral indices

NDVI (NIR − RED)/(NIR + RED) Sentinel-2
EVI 2.5 × (NIR − RED)/(NIR + 6.0 × RED −7.5 × BLUE + 1) Sentinel-2

MNDVI (RED − GREEN)/(RED + GREEN) Sentinel-2
NDWI (GREEN − NIR)/(GREEN + NIR) Sentinel-2
LSWI (NIR − SWIR1)/(NIR + SWIR1) Sentinel-2

MNDWI (GREEN − SWIR1)/(GREEN + SWIR1) Sentinel-2
NDTI (SWIR1 − SWIR2)/(SWIR1 + SWIR2) Sentinel-2
NDI45 (RDED1 − RED)/(RDED1 + RED) Sentinel-2

Texture features

VV ASM VV Angular Second Moment Sentinel-1
VV CON VV Contrast Sentinel-1

VV CORR VV Correlation Sentinel-1
VV SVAR VV Sum Variance Sentinel-1
VV ENT VV Entropy Sentinel-1
VH ASM VH Angular Second Moment Sentinel-1
VHCON VH Contrast Sentinel-1

VH CORR VH Correlation Sentinel-1
VH SVAR VH Sum Variance Sentinel-1
VH ENT VH Entropy Sentinel-1

Terrain features

ELE ELEVATION SRTM
SLO SLOPE SRTM
ASP ASPECT SRTM
SHA HILL SHADE SRTM

2.5. The Method for Eliminating Abnormal Samples

The Box-plot developed by American statisticians in 1977 [49] is a common method to
check whether there are outliers in a group of data. Compared with the Grubbs method,
3σ method, and Z-score method, the Box-plot has a wider application because it does not
require the data to obey normal distribution to determine outliers. The 1st quartile (Q1),
2nd quartile (Q2), and 3rd quartile (Q3) are the numbers placed at 25%, 50%, and 75% of a
set of data in ascending order, respectively [50] (Figure 3). The difference between Q1 and
Q3 is called the interquartile range (IQR). The criteria for identifying outliers in the Box-plot
are whether the data are greater than Q3 + 1.5IQR or less than Q1 − 1.5IQR in a group
of data [51]. Minimum and maximum are the minimum and maximum values except for
outliers. In the process of visual interpretation, Google Earth VHRI and semi-automatic
extraction of sample points were used to determine land-cover categories. It is impossible
to ensure that all sample points are pure and typical, which leads to the existence of outliers
in the value of the extracted classification feature. For a specific sample, if the number of
outliers in the 13 extraction values based on spectral features is greater than or equal to 2,
the sample is considered to be an abnormal sample. Therefore, the outliers of the extracted
values are identified based on the Box-plot and then the abnormal samples are judged and
eliminated. By comparing the Kappa score and OA before and after eliminating abnormal
samples, the influence of abnormal samples on classification accuracy was analyzed.
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2.6. The Method for Classification Feature Optimization

Considering that some features selected in this study could not satisfy the requirement
to distinguish Picea schrenkiana from other land-cover categories, redundant information
existed in classification features [52], which affected the accuracy of mapping the spatial
distribution of Picea schrenkiana. For this problem, the purpose of separability analysis is to
evaluate the ability of each feature to distinguish Picea schrenkiana from other land-cover
categories. There are three common methods to determine the separability between differ-
ent categories: the separability index (SI) [53,54], the transformed divergence (TD) [55], and
the JM distance [56,57]. Compared with the SI and TD, the JM distance can quantitatively
evaluate the separability between different categories. Thus, the JM distance is used to
evaluate the ability of each feature to distinguish Picea schrenkiana from other categories,
to determine the best feature combination to extract Picea schrenkiana. The JM value is
between 0 and 2, and its size represents the degree of separation of the seven land-cover
categories under the selected features. When JM = 2, it indicates that seven types of land-
cover categories are entirely separated under the selected classification features [58,59]. The
expression for the JM distance is as follows:

JM = 2(1− e−B) (1)

where B represents the Bhattacharyya distance on a feature dimension. On the premise that
normal distribution is satisfied, the Bhattacharyya distance between samples of different
land-cover types is:

B =
1
8
(e1 − e2)

2 2
δ2

1 + δ2
2
+

1
2

ln

[
δ2

1 + δ2
2

2δ1·δ2

]
(2)

where ek represents the mean value of a certain type of feature; δ2
k represents the variance

of a certain type of feature, where (k = 1, 2).

2.7. Random Forest-Based Classifier

RF algorithm is a non-parametric machine-learning algorithm of multiple decision-
tree combinations proposed by Breiman Leo and Adele Cutler in 2001 [60]. In contrast
to machine-learning algorithms such as decision trees and support vector machines, the
RF algorithm is stable and effective in processing data multi-collinearity and dimensional-
ity [61,62] without an over-fitting phenomenon [63]. Correspondingly, the RF algorithm
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was chosen and used in this study to map the spatial distribution of Picea schrenkiana in the
TS of the CA.

The dominant construction procedure of the RF algorithm is as follows: based on the
bootstrap sampling method, 2/3 of the samples are randomly chosen from the original
sample set to construct the decision-tree model. Assuming that the features of each sample
are M dimensions, m feature subsets (m << M) are randomly extracted from them, and the
optimal feature is selected from these m features to split the node of the decision tree. The
above procedure is iterated n times to obtain a random forest composed of n decision trees,
and the optimal result is chosen from the n decision trees by voting for the classification
result for each classification sample. In this study, a decision tree of size 50 was selected as
optimal.

2.8. Description of Different Scenarios

Eight scenarios (Table 5) were designed to illustrate the effects of different types of
classification features and the optimal classification features conducive to the extraction
of Picea schrenkiana. We selected the best scenario and optimized the parameters of the
classifier to extract the spatial distribution of Picea schrenkiana with a resolution of 10 m in
the TS.

Table 5. Eight scenarios for mapping the spatial distribution of Picea schrenkiana.

Scenarios Radar
Features

Spectral
Features

Red-Edge
Features

Spectral
Indices

Texture
Features

Terrain
Features

Features
Optimization

S1
√

S2
√ √

S3
√ √

S4
√ √

S5
√ √

S6
√ √

S7
√

S8
√ √ √ √ √ √

2.9. The Method for Accuracy Assessment

Accuracy evaluation is performed by constructing a confusion matrix based on the
2293 validation sample points and classification results from this study. The purpose
of constructing the confusion matrix is to obtain accuracy assessment indexes, such as
producer accuracy (PA), user accuracy (UA), the OA, and the Kappa score. The PA is the
ratio of the number of pixels correctly assigned by the classifier to the actual total number of
references in the category, which is used to measure the omission error of each category. The
UA represents the ratio between the number of pixels correctly assigned to this category
and the total number of pixels classified into this category by the classifier, which is used
to measure the commission error of this category. The OA and Kappa scores are used to
evaluate the overall classification accuracy of all categories. The four evaluation indices are
calculated as follows:

PA =
Nij

N∗j
× 100% (3)

UA =
Nij

Ni∗
× 100% (4)

OA =
∑

q
i=1 Nii

N
× 100% (5)

Kappa =
[N ∑

q
i=1 Nii −∑

q
i=1(Ni∗ ∗ N∗i)]

[N2 −∑
q
i=1(Ni∗ ∗ N∗i)]

(6)
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Nij is the value of row i and column j in the confusion matrix, N∗j is the sum of the j
column of the confusion matrix, Ni∗ is the sum of row i of the confusion matrix, N is the
total number of validation sample points, and q is the number of rows and columns of the
confusion matrix.

3. Results
3.1. The Result of Eliminating Abnormal Samples

A total of 656 anomalous samples were selected by using the method described in
Section 2.5. These include 117 Picea schrenkiana, 235 grassland, 56 cropland, 56 built,
139 bare lands, 24 snow and ice, and 29 waterbody. In this study, Picea schrenkiana was
taken as an example to draw scatter plots of the extraction values of Picea schrenkiana
samples in the spectral features (BLUE, GREEN, and RED) before and after the removal
of abnormal samples. It can be seen from Figure 4 that after the removal of abnormal
samples, the dispersion degree of the extraction values of Picea schrenkiana samples in the
spectral features (BLUE, GREEN, and RED) decreased (Figure 4). In addition, the accuracy
assessment index also changed. After the removal of abnormal samples, the OA and Kappa
scores increased by 1.43% and 0.02, respectively, and the PA of Picea schrenkiana increased
by 2.95%, but its UA decreased by 1.68% (Table 6).
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Figure 4. Scatter plot of extraction values of Picea schrenkiana samples in Sentinel-2 bands (Blue,
Green, Red) before and after eliminating abnormal samples. (The horizontal axis represents the
number of samples, the vertical axis represents the band extraction value; (a,c,e) represent the scatter
plots of extracted values of Picea schrenkiana in bands BLUE, GREEN, and RED before eliminating
outliers, respectively; (b,d,f) represent the scatter plots of extracted values of Picea schrenkiana in
bands BLUE, GREEN, and RED after eliminating outliers, respectively).
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Table 6. Classification accuracy of abnormal samples before and after removal.

Type Picea schrenkiana Grassland Cropland Built Bare Land Snow and Ice Waterbody OA Kappa

Before
PA/% 93.93 89.93 66.88 81.40 85.89 70.00 91.52

87.10% 0.83
UA/% 95.43 84.52 79.85 90.32 83.47 78.87 96.79

After
PA/% 96.88 89.89 62.94 80.69 86.94 83.13 94.80

88.53% 0.85
UA/% 93.75 87.65 81.08 81.82 85.78 90.79 95.35

Note: Darker red indicates lower values, while darker green indicates higher values.

3.2. Classification Results of Single Seasonal Images

The classification accuracy of different seasonal images is different; the OA and
Kappa score was higher in spring and summer than in autumn and winter (Table 7). The
difference in the classification accuracy between different seasonal images is mainly caused
by three land-cover categories: cropland, snow and ice, and waterbody. The main reason is
that compared with other land-cover categories (Picea schrenkiana, grassland, built, and bare
land), the seasonal variation in the three land-cover categories (cropland, snow and ice,
and waterbody) is more obvious. The PA of Picea schrenkiana was the highest in summer
and the lowest in winter (96.04% and 95.34, respectively), while the UA was the highest in
spring and the lowest in winter (96.71% and 96.24%, respectively). Although the summer
UA of Picea is lower than the spring UA, the summer PA of Picea schrenkiana increases by
0.24%–2.10% compared to the other three seasons. In addition, the OA and Kappa scores
increased by 0.48%–5.28% and 0.01–0.07, respectively, in the summer compared to the other
three seasons. As a result, the summer was used as the optimal sextant for mapping the
spatial distribution of Picea schrenkiana. This conclusion is in accordance with the actual
situation, as a great variety of plants are in a period of vigorous growth during the summer,
and the physical properties and chlorophyll of the different plants are significantly different.

Table 7. Classification accuracy of single seasonal images.

Type Picea
schrenkiana Grassland Cropland Built Bare Land Snow and Ice Waterbody OA Kappa

Spring
PA/% 95.80 93.85 79.61 88.10 88.24 73.56 96.89

0.88
UA/% 96.71 89.91 90.98 93.28 87.88 81.01 97.50 91.19%

Summer
PA/% 96.04 94.91 74.34 89.68 87.63 85.06 96.89

0.89
UA/% 96.26 88.52 91.87 91.13 91.53 90.24 98.73 91.67%

Autumn
PA/% 93.94 91.48 75.00 92.06 84.79 70.11 87.58

0.85
UA/% 95.95 85.32 90.48 85.93 85.48 82.43 98.60 88.36%

Winter
PA/% 95.34 93.14 69.74 87.30 78.09 62.07 80.75

0.82
UA/% 96.24 80.97 88.33 88.71 84.06 87.10 98.48 86.39%

Note: Darker red indicates lower values, while darker green indicates higher values.

3.3. The Results of Feature Optimization

The JM distance of different classification features is considerably different (Table 8).
The feature with the largest JM distance is RED, while the smallest feature is VH CORR
and VV CORR. The maximum distance is approximately 50 times the minimum distance.
Based on the JM distances of the 42 categorical features in order from highest to lowest, the
variation in the Kappa score was observed and the best combination of categorical features
for mapping the spatial distribution of Picea schrenkiana was determined accordingly. With
the increase in the number of features involved in classification, the Kappa score in the
early stage (1–7 classification features) increased considerably, rapidly increasing from
0.410 to 0.821 (Table 8). In the middle period (8–17 classification features), the increased
range of the Kappa score decreased significantly, showing a steady upward trend. In the
later period (18–42 classification features), the Kappa score fluctuated slightly, fluctuating
around 0.88. When the number of classification features used was 32 and 42, the Kappa
score was 0.894 and 0.898, respectively. Considering that the difference between them is
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only 0.004, the first 32 classification features are selected as the final results of the feature
optimization in this study.

Table 8. The JM distance of features and the accuracy of classification results of different numbers of
features.

Feature JM Distance Kappa Numbers
RED 1.01 0.41 1

SWIR2 0.94 0.608 2
GREEN 0.9 0.659 3
BLUE 0.89 0.73 4

RDED1 0.87 0.764 5
CIRRU 0.82 0.793 6
SWIR1 0.81 0.821 7

MNDVI 0.72 0.821 8
AEROS 0.7 0.828 9

VH ASM 0.68 0.829 10
VH ENT 0.6 0.836 11

LSWI 0.6 0.837 12
MNDWI 0.59 0.848 13

EVI 0.58 0.856 14
VAPOR 0.58 0.858 15
RDED2 0.56 0.864 16
NDTI 0.54 0.869 17
NIR 0.52 0.869 18

VV ASM 0.52 0.862 19
RDED4 0.51 0.868 20
RDED3 0.51 0.871 21
NDre2 0.49 0.873 22
NDre1 0.49 0.869 23

NDVIre1 0.47 0.87 24
NDVI 0.47 0.866 25

VV ENT 0.46 0.863 26
VH 0.39 0.873 27

NDVIre3 0.3 0.87 28
NDI45 0.3 0.869 29
SLOPE 0.28 0.886 30

VV 0.26 0.89 31
ELEVATION 0.24 0.894 32

VV CON 0.23 0.889 33
VV SVAR 0.22 0.89 34
NDVIre2 0.18 0.884 35
ASPECT 0.13 0.894 36
VH CON 0.11 0.892 37
VH SVAR 0.1 0.894 38

NDWI 0.09 0.89 39
HILL SHADE 0.07 0.894 40

VH CORR 0.02 0.89 41
VV CORR 0.02 0.898 42

Note: Darker red indicates lower values, while darker green indicates higher values.

The JM distances of the first 32 features were classified and analyzed (Table 9). The
spectral features and texture features show high separation, while the radar features and
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terrain features show low separation. Among the spectral features, RED, GREEN, and
BLUE have a high separation. The spectral features play an important role in forest mapping
and are more prominent than other features in distinguishing Picea schrenkiana from other
land-cover categories. In addition, the texture features play a key role in mapping the
spatial distribution of Picea schrenkiana, as Picea schrenkiana interleaves with other land-cover
categories such as grassland and bare land in patches.

Table 9. Jeffries–Matusita distance between different types of features.

Type of Feature
The Feature with the

Highest Degree of
Separation (Ranking)

The Feature with the
Lowest Degree of

Separation (Ranking)

The Average
JM Distance

Spectral features RED (1) RDED3 (21) 0.74
Texture features VH ASM (10) VV ENT (26) 0.57
Spectral indices MNDVI (8) NDI45 (29) 0.54

Red-edge features NDre2 (22) NDVIre3 (28) 0.44
Radar features VH (27) VV (31) 0.32
Terrain features SLOPE (30) ELEVATION (32) 0.26

Note: Darker red indicates lower values, while darker green indicates higher values.

3.4. Accuracy Analysis under Different Scenarios

Among the six scenarios (scenario 1- scenario 6), the PA and UA of mapping the
spatial distribution of Picea schrenkiana were between 95.57%–97.44% and 95.40%–96.27%,
respectively (Table 10). The OA of scenario 1 based on Sentinel-2 bands was 88.75%, and
the Kappa score was 0.85. Based on the spectral features, the texture features (scenario 2),
spectral indices (scenario 3), red-edge indices (scenario 4), radar features (scenario 5), and
terrain features (scenario 6) were added, respectively, and the OA and Kappa scores were
slightly increased. The OA scores increased by 0.39%, 1.09%, 0.7%, 0.61%, and 2.35%, while
the Kappa scores increased by 0.01, 0.02, 0.01, 0.01, and 0.03, respectively. These results
indicated that the spectral features had the best identification ability for Picea schrenkiana,
while the other features had no obvious influence. However, the texture and terrain features
still played a positive role in the land-use classification of the TS.

Table 10. Classification accuracy statistics under different scenarios.

Type Picea
schrenkiana Grassland Cropland Built Bare Land Snow and Ice Waterbody OA Kappa

Scenario 1
PA/% 96.27 92.90 61.84 75.4 86.00 81.61 95.03

0.85
UA/% 96.27 85.33 83.19 86.36 88.15 87.65 96.23 88.75%

Scenario 2
PA/% 95.57 92.9 62.5 76.19 88.03 82.76 94.41

0.86
UA/% 95.79 86.36 85.59 84.96 87.50 91.14 96.82 89.14%

Scenario 3
PA/% 96.50 94.08 65.79 75.40 87.63 81.61 95.03

0.87
UA/% 95.83 87.17 85.47 84.82 88.89 93.42 96.84 89.84%

Scenario 4
PA/% 96.74 93.73 63.82 79.37 85.80 81.61 95.03

0.86
UA/% 95.62 86.46 88.18 82.64 89.62 87.65 96.23 89.45%

Scenario 5
PA/% 96.74 92.54 66.45 78.57 87.02 80.46 95.03

0.86
UA/% 95.40 86.70 86.32 86.84 87.73 89.74 96.84 89.36%

Scenario 6
PA/% 97.44 93.73 74.34 84.92 88.24 79.31 96.27

0.88
UA/% 95.87 89.19 90.40 89.17 88.41 94.52 97.48 91.10%

Scenario 7
PA/% 96.74 95.50 73.68 91.27 87.63 83.91 95.65

0.89
UA/% 96.96 89.17 94.12 89.15 91.72 86.9 98.09 91.93%

Scenario 8
PA/% 97.20 95.62 73.03 86.51 88.03 83.91 95.65

0.89
UA/% 96.53 88.79 93.28 88.62 91.75 91.25 98.72 91.84%

Note: Darker red indicates lower values, while darker green indicates higher values.

Compared with the other seven scenarios, scenario 7 obtained the best classification
effect after optimizing all features by using the JM distance, and the OA and Kappa
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scores were 91.93% and 0.89 (Table 10), respectively. Compared to scenario 8, where
all features participate in the classification, the OA and Kappa scores in scenario 7 are
improved by 0.09% and 0.001, respectively, and the number of features in scenario 7 are less.
Therefore, scenario 7 was selected as the final scheme for mapping the spatial distribution
of Picea schrenkiana in the TS of CA.

3.5. Spatial Distribution of Picea schrenkiana in the Best Scenario

By comparing and analyzing different classification scenarios in Section 3.4, scenario 7
achieves the optimal classification effect, and its confusion matrix is shown in Table 11.
Picea schrenkiana and open water have the best mapping results, with both the PA and UA
above 95%. The PA and UA of grassland, built, and bare land are both above 85%. The
mapping accuracy of cropland and snow and ice is not high and the PA of cropland is only
73.68%. The spatial distribution of Picea schrenkiana in the optimal classification scenario
(scenario 7) is shown in the figure and six places are randomly selected for detailed display.
Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas
(Figure 5). In addition, the pattern boundary of Picea schrenkiana based on the method
presented in this paper has a strong consistency with the optical image (Figure 6).
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Figure 5. Land-cover classification (a) and spatial distribution of Picea schrenkiana (b) in the Tianshan
Mountains of Central Asia. The study selected six different regions to display the extraction results of
Picea schrenkiana, with A–F representing the positions of six different regions.

Table 11. Confusion matrix of scenario 7.

Picea schrenkiana Grassland Cropland Built Bare Land Snow and Ice Waterbody
Picea schrenkiana 415 13 0 0 0 0 0

Grassland 13 807 33 4 43 0 5
Cropland 0 5 112 2 0 0 0

Built 0 2 7 115 5 0 0
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Table 11. Cont.

Picea schrenkiana Grassland Cropland Built Bare Land Snow and Ice Waterbody
Bare Land 0 18 0 5 432 14 2

Snow and Ice 0 0 0 0 11 73 0
Waterbody 1 0 0 0 2 0 154

PA/% 96.74 95.5 73.68 91.27 87.63 83.91 95.65
UA/% 96.96 89.17 94.12 89.15 91.72 86.90 98.09

OA = 91.93% Kappa = 0.89
Note: Darker red indicates lower values, while darker green indicates higher values.
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A total of seven intervals with a separation of 300 m were set in the elevation dis-
tribution range of Picea schrenkiana, and the variation characteristics of Picea schrenkiana
with altitude were observed. The distribution area of Picea schrenkiana first increases and
then decreases with altitude (Figure 7, Elevation). Picea schrenkiana occupies the largest
distribution area in the altitude range of 2100 to 2400 m, accounting for 29.7%. In total,
75.7% of the Picea schrenkiana is distributed in a range of elevation from 1800 to 2700 m.
This study shows that Picea schrenkiana distributes in the TS of CA with a slope range of
0–69◦. A total of seven slope ranges were set at intervals of 10◦ to observe the change in
Picea schrenkiana distribution. In total, 33.9% of the Picea schrenkiana was distributed in
the slope range of 30–40◦, accounting for the largest proportion of all the intervals, and
66.4% of the Picea schrenkiana was distributed in the slope range of 20–40◦ (Figure 7, Slope).
According to the classification method for aspects in forestry investigation, four aspects
(semi-shady slope, shady slope, semi-sunny slope, and sunny slope) are set. Only 14.1% of
the Picea schrenkiana were distributed in sunny and semi-sunny slopes, while 85.9% of the
Picea schrenkiana were distributed in shady and semi-shady slopes (Figure 7, Aspect).
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4. Discussion
4.1. The Influence of Feature Selection on Classification Results

In this study, the JM distance was used to explore the best classification features
of land-use classification and map the spatial distribution of Picea schrenkiana in the TS.
SWIR2, GREEN, BlUE, RDED1, CIRRU, SWIR1, MNDVI, AEROS, VH ASM, VH ENT,
LSWI, MNDWI, EVI, and VAPOR were the top classification features in a sequence of
importance (Table 8). Jiang et al. [42] selected an area of 10,000 km2 in the TS for the
remote-sensing identification of mountain coniferous forest and screened the ELEVATION,
NDVI, spectral slope of red to near-infrared band, BLUE, RED, SWIR1. SLOPE is the most
important classification feature of mountainous coniferous forest in the TS. SWIR1, RED,
BLUE, SWIR1, and MNDVI (NDVI) in this study were consistent with Jiang’s research
conclusion. The important reasons for BLUE and SWIR1 are that the bare land of the study
area is large and the two classification features are sensitive to the soil background [64].
RED and NDVI are sensitive to vegetation and play a significant role in distinguishing
vegetation from other land covers. ELEVATION and SLOPE, two categorical features, are of
low importance in this study, which is inconsistent with the conclusions of Jiang et al. The
main reason is that this study focuses on the importance of different features for mapping
the spatial distribution of Picea schrenkiana. Therefore, only the JM distance between
Picea schrenkiana and other land-cover types (grassland, cropland, built, bare land, snow
and ice, and waterbody) was calculated. The distance between each of the two categories
was not calculated. The immediate consequence of this practice would be to obscure the
topographic features of Picea schrenkiana‘s distribution in the TS. In addition, the JM distance
algorithm only evaluates the classification features based on the separation degree between
different categories and does not consider the correlation between different features [65].
As a result, the classification features selected based on the JM distance selection may
still have strong correlations, affecting the classification accuracy. At the same time, VH
ASM and VH ENT are also of high importance in this study, because VH can obtain more
vegetation structure information than VV [66].

4.2. The Spatial Distribution of Picea schrenkiana

The statistical results of this study showed that Picea schrenkiana was concentrated in
the middle TS and scattered in other areas (Figure 5). Topographic factors such as elevation,
slope, and aspect affect the spatial distribution of vegetation through the redistribution of
vegetation habitat elements such as heat and water. The biomass of Picea schrenkiana showed
a unimodal trend with the increase in altitude [35,67], and the biomass of Picea schrenkiana
reached its peak at an altitude of 2100–2400 m, indicating that the altitude range was the
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most suitable for Picea schrenkiana to grow. The results of this study also show that the
distribution area of Picea schrenkiana first increases and then decreases with the increase
in altitude. The distribution area of Picea schrenkiana occupies the largest proportion in
the altitude range of 2100 to 2400 m, accounting for 29.7% (Figure 7, Elevation). This is
consistent with previous findings. Picea schrenkiana occupies the largest distribution area
of 33.9% in the slope range of 30–40◦, and 66.4% of the Picea schrenkiana is distributed in
the slope range of 20–40◦ (Figure 7, Slope). In addition, 85.9% of the Picea schrenkiana is
distributed in the shade slope and semi-shade slope (Figure 7, Aspect). These are consistent
with the descriptions in the literature [68].

To sum up, although this paper has achieved good results in mapping the spatial
distribution of Picea schrenkiana in the TS of CA (Figure 5), the impact of shadows was a
major challenge for this work. In this area, the effect of removing shadows by terrain cor-
rection is not obvious, and the method for identifying the actual object type in the shadow
according to the difference in the distribution position of shadows on the two images will
have a large workload [42]. How to avoid the influence of shadows and choose the optimal
feature selection algorithm [65] to more accurately identify the spatial distribution pattern
of Picea schrenkiana in the TS is a problem worthy of attention in future studies.

5. Conclusions

The advantage of this work is being able to map the spatial distribution of Picea schrenkiana
with 10 m resolution in the entire TS (9.97× 105 km2) by using GEE, the JM distance, the latest
available satellite sensors, and a large number of training samples, overcoming the problem of
insufficient computing capability for the large-scale monitoring of Picea schrenkiana. By using
the Box-plot method to eliminate abnormal samples, the PA of Picea schrenkiana is increased by
2.95%, and the OA and Kappa scores of land-cover classification in the TS of CA are increased
by 1.43% and 0.02. Compared to the other three seasons, the PA of Picea schrenkiana in summer
increased by 0.24%–2.10%, the OA and Kappa scores of land-cover classification in the TS of
CA by 0.48%–5.28% and 0.01–0.07. The separation obtained by the JM distance showed that
spectral features and texture features played a key role in the mapping of Picea schrenkiana.
The JM distance can seize the classification features that are most conducive to the mapping
of Picea schrenkiana. The best classification features are RED, SWIR2, GREEN, BlUE, RDED1,
CIRRU, SWIR1, MNDVI, AEROS, VH ASM, VH ENT, LSWI, MNDWI, EVI, VAPOR, RDED2,
NDTI, NIR, VV ASM, RDED4, RDED3, NDre2, NDre1, NDVIre1, NDVI, VV ENT, VH, ND-
VIre3, NDI45, SLOPE, VV, and ELEVATION. Picea schrenkiana has a PA of 96.74%, and OA
and Kappa scores of 91.93% and 0.89, respectively, for land-cover classification in the TS.
Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas. In
total, 85.7% of the Picea schrenkiana was distributed in the altitude range of 1500–2700 m,
66.4% of the Picea schrenkiana was distributed in the slope range of 20–40◦, and 85.9% of the
Picea schrenkiana was distributed in shady and semi-shady slopes.
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