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Abstract: Green plums have produced significant economic benefits because of their nutritional and
medicinal value. However, green plums are affected by factors such as plant diseases and insect
pests during their growth, picking, transportation, and storage, which seriously affect the quality
of green plums and their products, reducing their economic and nutritional value. At present, in the
detection of green plum defects, some researchers have applied deep learning to identify their surface
defects. However, the recognition rate is not high, the types of defects identified are singular, and
the classification of green plum defects is not detailed enough. In the actual production process, green
plums often have more than one defect, and the existing detection methods ignore minor defects.
Therefore, this study used the vision transformer network model to identify all defects on the surfaces
of green plums. The dataset was classified into multiple defects based on the four types of defects in
green plums (scars, flaws, rain spots, and rot) and one type of feature (stem). After the permutation and
combination of these defects, a total of 18 categories were obtained after the screening, combined with
the actual situation. Based on the VIT model, a fine-grained defect detection link was added to the
network for the analysis layer of the major defect hazard level and the detection of secondary defects.
The improved network model has an average recognition accuracy rate of 96.21% for multiple defect
detection of green plums, which is better than that of the VGG16 network, the Desnet121 network, the
Resnet18 network, and the WideResNet50 network.

Keywords: vision transformer; green plums; deep learning; multiple defect detection

1. Introduction

Green plums are widely distributed in hills and sloping forests all over the world.
They are rich in a large number of amino acids, vitamins, lipids, trace elements, and other
nutrients, of which a variety of natural acids are important for human metabolism and
have a rich nutritional and economic value [1]. Green plum sarcocarp is crisp and tender;
it is thick, the core is small, and the taste is sweet and sour, so it is very popular among
people. Not only is it unique in flavor, healthy, and appetizing, but it is also beneficial to
human health.

With the improvement in people’s living standards, their demand for high-quality
fruits is also increasing. Consumers are more inclined to buy fruits without defects, and
fruit product manufacturers are more inclined to choose high-quality fruits as raw materials.
However, green plums are susceptible to diseases, insect pests, and knocks during their
growth and production [2], resulting in different defects. Damage to the nutritional content
and appearance of the product caused by defects will affect the market and price of
the product. After picking, green plums are not easy to preserve, and they need to be
sorted and selected as soon as possible. However, in China, the sorting of green plums
is mainly carried out manually. The efficiency of manual sorting is low and the cost
is high, which makes it impossible to sort a large amount of greengage in a short time.
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Moreover, the sorting experience requirements for people are very high, and the sorting
accuracy cannot be guaranteed. In addition, the efficiency and accuracy of manual detection
are affected by human fatigue. These are the factors that cause quality problems in the
secondary processing of green plums. To improve the economic value and nutritional value
of green plums and their products, it is of great significance to carry out a variety of defect
detection and classification processes on green plums that utilize high-level automation and
intelligence. The main defects of green plums are divided into four categories: scars, rot,
flaws, and rain spots. These defects will lead to quality and nutritional problems for green
plums and their products. Therefore, before their sale and further processing, it is necessary
to carry out defect detection on green plums, reject unqualified green plums, and classify
green plums. This research focuses on the detection of the above four types of defects in
order to achieve accurate identification of the main defects and other defects.

Computer vision technology is equivalent to the role of human vision in fruit and
vegetable quality inspection. It perceives images, interprets and recognizes characters
electronically, and provides information for quality grading and sorting machines. By
combining machine vision and image processing with the advancement of computer
technology, such systems have been applied in different fields of food engineering to
accurately identify product characteristic defects in real time [3]. With the development of
machine learning [4–7], researchers have applied machine vision [8] and deep learning to
defect detection, making the non-destructive testing of fruit processing technology more
efficient and accurate. The efficiency and accuracy of defect detection have been greatly
improved through machine vision and deep learning. Yao et al. [9] developed a defect
detection model based on You Only Look Once (YOLOv5) and optimized the network
aiming at kiwifruit defects. This model can accurately and quickly detect defects in kiwifruit.
The detection accuracy rate reached 94.7%, nearly 9% higher than the original algorithm.
It only takes 0.1 s to process a single image, realizing real-time high-precision detection
of kiwifruit defects. R. Nithya et al. [10] developed a computer-aided grading system for
mango defect detection to classify high-quality mangoes. After training and testing the
system using the publicly available Mango database, an accuracy rate of 98 percent was
obtained. Huang et al. [11] used a multichannel hyperspectral imaging system for non-
destructive testing of apple varieties. They achieved the best overall classification accuracy
of 99.4% in the near-infrared and full-region spectral ranges, whose wavelengths range
from 550–1650 nm. The multichannel hyperspectral imaging system provides more spatial–
spectral information, and the non-destructive testing effect is excellent. In their research
on green plum surface defect detection, Zhou et al. [12] and Zhou et al. [13] proposed a
computer vision system for green plum surface defect detection based on the convolutional
neural networks VGG16 and WideResNet50, respectively, which can detect the main defects
of green plums. The average accuracy rates were 93.8% and 98.95%, respectively. Although
the main defects of green plums can be accurately identified, each green plum may have
more than one defect. The previous detection methods for green plum defects could only
identify and output the main defects of the recognized green plums but couldn’t identify
other defects. According to the degree of impact of defects on production, from large to
small, the defects of green plums are characterized by rot, flaws, scars, and rain spots. The
production of different green plum products has different requirements regarding the defects
of green plums. For example, green plums should have no rot or flaw defects to produce green
plum wine. These defects indicate that the green plums have become moldy and contain a
large number of microorganisms in their bodies. Such defective green plums damage the
quality of green plum wine and pose a risk to human health. However, these defective
green plums can be used as fertilizer after fermentation [14]. Green plums with only small
scar defects can also be used to produce green plum wine to improve production efficiency.
However, for green plums whose main defect is the scar, it is impossible to know whether
it has other defects if there are small-scale rot defects on the surface. Additionally, this
type of green plum still has food safety problems and cannot be used to produce green plum
products. Green plums with milder scars and rain spots only have surface problems and no
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internal necrosis, so they can still be used as raw materials for green plum wine, candied
fruit, and plum powder; green plums without defects can be further sold or processed in
the market. Therefore, it is necessary to carry out multi-defect detection on green plums,
which can improve secondary production efficiency and the utilization rate of defective
green plums.

Rain spot defects are the most common among the four types of defects in green plums.
Although green plums with rain spot defects will not cause food safety problems, these
affect the quality classification of green plums. The previous defect detection methods
could only identify the main defects but could not judge whether other defects threatened
food production safety in green plums. This makes it impossible to ensure that such green
plums identified as having rain spot defects will not have safety problems and thus cannot
be used as the raw material for producing green plum products in the next step. They
can only be completely discarded due to food safety issues, which greatly reduces the
economic value of green plums. This study used a deep learning method based on the vision
transformer (VIT). Compared with the WideResNet50, Resnet18, and VGG16 models, the
vision transformer network model has higher accuracy, added hazard degree analysis,
and fine-grained detection abilities. Using a multi-defect detection scheme, it can identify
all of the surface defects of green plums. This system can accurately detect major and
minor defects in the output, enabling a more meticulous classification of defective green
plums. Therefore, the precision and accuracy in identifying defects of green plums can
be improved.

This study has the following innovations: (a) Aiming at the multi-defect identification
problem of green plums, a defect identification network model based on the VIT network
was proposed. (b) Compared with the single-defect classification processing of traditional
data sets, this study’s data set was processed using multi-defect classification. (c) After
the MLP layer, the green plum defect risk level analysis layer and fine-grained detection
link were added. The contribution of this study lies in the realization of a more detailed
classification of green plum defect levels, the ability to accurately identify major defects
and the remaining minor defects, and the output of the results of multiple defects. A new
method for identifying multiple defects on a surface is proposed.

2. Materials and Methods
2.1. Data Collection and Processing

The dataset used in this study was a batch of green plums from Zhangzhou, Fujian, and
2799 RGB images of green plums were collected through visible light images. To simulate
the real scene of actual production and inspection, this research transported green plums on
a conveyor belt and collected images, as shown in Figure 1. A light gate from Yue Jiang
Company (Hong Kong, China) was installed on the conveyor belt, and when the green
plums were transported to the light gate, the conveyor belt stopped, and the acquisition
device located above collected images. The acquisition system is shown in Figure 1. Viewed
from the top down, the acquisition system’s first equipment is the camera holder, the
second equipment is the camera, the third equipment is the light source holder, the fourth
equipment is the light source, the fifth equipment is the light gate, the sixth equipment is
the green plum to be photographed, and the seventh is the conveyor belt. The entire image
acquisition stage is in a closed lighting environment, and the material of the conveyor
belt has a light-absorbing effect. The defective green plum is located on the conveyor belt,
and the LED ring light source is used for supplementary light. The camera bracket can
be adjusted to keep the camera at a fixed height, and the green plum should be rotated at
random angles during the shooting process to obtain multi-angle green plum defect pictures.
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Figure 1. Collection equipment diagram: 1. camera holder; 2. camera; 3. light source holder; 4. light 
source; 5. light gate; 6. green plum sample; 7. conveyer belt. 
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CMOS sensor chip was adopted. The light source used for the collection was an LED ring 
light source. The image collection stage was carried out in a closed lighting environment. 
During the shooting process, the green plum rotated to obtain multi-angle images of the 
surface defects of green plums. 

In this study, 2799 pictures of various green plum defects and intact pictures were 
taken with a dot matrix camera, and the original pictures collected by the camera were 
2592 × 2048 pixels. Due to the large size of the original image, in order to ensure the effi-
ciency of image processing, the original images were preprocessed, and the noise in the 
image was removed at the same time [15]. The final image obtained had a size of 224 × 224 
pixels. The defects of green plums were divided into four categories according to the degree 
of damage, from heavy to shallow: rot, flaws, scars, and rain spots. Among them, the rain 
spot defect had the characteristics of smallness, light color, and dispersion and occupied 
a small number of pixels in the image; thus, it is not easy to identify or misidentify [16]. 
At the same time, some plum pictures contained fruit stems from green plums. Although 
the feature of fruit stems is not a defect, it is affected by factors such as image acquisition 
angle, light changes, and lens distortion [17], resulting in the color and shape of fruit stems 
and rain spots. Consequently, the recognition of rain spots was disturbed. In Zhou H. Y.’s 
[12] previous green plum defect detection method, the algorithm (an improved VGG net-
work model) did not yet solve the problem of misjudging fruit stems as defective rain 
spots. Traditional visual detection algorithms still have poor accuracy and limitations 
with fruit stems and rain spots [18], resulting in misjudgments of defects. Moreover, in 
the VIT model used by Zhang Xiao [19], compared to the recognition accuracy of other 
defects, the recognition error rate of rain spots was the highest, reaching 2.62%, which 
lowered the overall recognition accuracy. In order to avoid the misjudgment of rain spots 
and fruit stems and achieve higher recognition accuracy, the characteristic fruit stems 
were divided into one category for training. To sum up, green plums could be classified 

Figure 1. Collection equipment diagram: 1. camera holder; 2. camera; 3. light source holder; 4. light
source; 5. light gate; 6. green plum sample; 7. conveyer belt.

The camera lens adopted is the M1620-MP2 industrial camera lens from Computer
Company (Tokyo, Japan), whose focal length is 16 mm and minimum object distance is
20 cm. The industrial camera adopted the MER-531-20GC-P industrial camera of Beijing
Daheng Image Technology Co., Ltd. (Beijing, China). A PYTHON 5000 frames exposure
CMOS sensor chip was adopted. The light source used for the collection was an LED ring
light source. The image collection stage was carried out in a closed lighting environment.
During the shooting process, the green plum rotated to obtain multi-angle images of the
surface defects of green plums.

In this study, 2799 pictures of various green plum defects and intact pictures were
taken with a dot matrix camera, and the original pictures collected by the camera were
2592 × 2048 pixels. Due to the large size of the original image, in order to ensure the
efficiency of image processing, the original images were preprocessed, and the noise in
the image was removed at the same time [15]. The final image obtained had a size of
224 × 224 pixels. The defects of green plums were divided into four categories according
to the degree of damage, from heavy to shallow: rot, flaws, scars, and rain spots. Among
them, the rain spot defect had the characteristics of smallness, light color, and dispersion
and occupied a small number of pixels in the image; thus, it is not easy to identify or
misidentify [16]. At the same time, some plum pictures contained fruit stems from green
plums. Although the feature of fruit stems is not a defect, it is affected by factors such
as image acquisition angle, light changes, and lens distortion [17], resulting in the color
and shape of fruit stems and rain spots. Consequently, the recognition of rain spots was
disturbed. In Zhou H. Y.’s [12] previous green plum defect detection method, the algorithm
(an improved VGG network model) did not yet solve the problem of misjudging fruit stems
as defective rain spots. Traditional visual detection algorithms still have poor accuracy
and limitations with fruit stems and rain spots [18], resulting in misjudgments of defects.
Moreover, in the VIT model used by Zhang Xiao [19], compared to the recognition accuracy
of other defects, the recognition error rate of rain spots was the highest, reaching 2.62%,
which lowered the overall recognition accuracy. In order to avoid the misjudgment of rain
spots and fruit stems and achieve higher recognition accuracy, the characteristic fruit stems
were divided into one category for training. To sum up, green plums could be classified into
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the following six categories: scars, rain spots, flaws, rot, intact, and fruit stems, as shown in
Figure 2.
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Figure 2. Green plum surface defect classification chart: (a) rot; (b) flaw; (c) scar; (d) spot; (e) intact;
(f) stem.

2.2. Dataset Processing Methods

In terms of the classification method of the data set, the previous green plum defect
research team chose to divide the green plum defects into four categories: rot, flaws, scars,
and rain spots. When faced with green plums with multiple defects, they did not use the
hazards of the defects as the classification standard. They chose the defect with the largest
area as the defect class for the green plums. However, if a more harmful defect appeared in
a small area, the final output could still be the defect in a larger area, ignoring the harm
of other defects to the green plums. Moreover, small-area defects occupy fewer pixels, and
training features may be lost after repeated convolution and pooling operations during
training. This is also one of the reasons for the poor recognition effect of previous rain
spot training. In contrast to the above classification methods, it was considered that in
the actual detection process, multiple defects might appear on a green plum, as shown in
Figure 3. In order to express and output the multiple defects of green plums more clearly,
the dataset was divided more carefully. The sum of defects on each green plum picture
was used as its defect category, as shown in Figure 3, which contains flaws, stems, and
rain spots; then, this picture was used as the flaw + stem + spot category. In the actual
detection, there were very few green plums with more than three kinds of defects, and some
plum categories had only a few pictures or even none. In order to ensure the quality of
the dataset, according to the hazard based on a combination of harmfulness and quantity,
the following 18 theoretical types of combination classes were finally obtained: scar—1,
scar + rot—2, scar + stem—3, scar + stem + spot—4, scar + spot—5, rot—6, rot + flaw—7,
rot + stem—8, rot + stem + spot—9, rot + spot—10, intact—11, flaw—12, flaw + stem—13,
flaw + stem + spot—14, flaw + spot—15, stem—16, stem + spot—17, spot—18, carried
out with these types using order numbers 1–18 (Note: for concise expression, the category
names and numbers in the following diagrams, such as the confusion matrix, correspond
one-to-one). The combined images of 18 types of green plum defects are shown in Figure 4.
They were divided into a training set, a test set, and a validation set. The images in the test
set and validation set do not intersect. In addition, in order to ensure the quality of the
dataset, data enhancement was performed on it, and operations such as mirroring, rotating,
and adjusting the brightness and contrast of the original picture were performed. Finally,
a total of 27,990 green plum sample pictures were obtained. The dataset was divided into
a training set, a test set, and a validation set in the ratio of 8:1:1 and then enhanced. The
category distribution of the dataset after image enhancement is shown in Table 1. Putting it
into the VIT model, the VIT model could effectively learn various types of defect features
and finally output all the defects of green plums. It only needed to classify them to meet the
needs of improving the productivity of green plums. According to the degree of harmfulness
of the defect, as long as the green plums with rot and flaws were listed as a hazard, as this
type of green plum seriously affects food safety and the manufacturer can use it as fertilizer
after fermentation, the green plums with scars and rain spots were listed as defective. Plums
can be used as raw materials for secondary production. Fruit stems and perfect green plums
are listed as normal plums, which can be further processed or sold directly.
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Figure 4. Shown are the 18 categories of green plum multi-defect classification: (a) scar; (b) scar + rot;
(c) scar + stem; (d) scar + stem + spot; (e) scar + spot; (f) rot; (g) rot + flaw; (h) rot + stem;
(i) rot + stem + spot; (j) rot + spot; (k) intact; (l) flaw; (m) flaw + stem; (n) flaw + stem + spot;
(o) flaw + spot; (p) stem; (q) stem + spot; (r) spot.

2.3. Multiple Defect Detection Model of Green Plum Based on Vision Transformer

The vision transformer network [20] adopts self-attention and multi-head attention
mechanisms, using residual connection and layer normalization techniques to accelerate
training. The self-attention mechanism obtains information for each position in the input
sequence. Among them, self-supervised learning reduces VIT’s dependence on large-scale
training [21]. Therefore, this study chose to use this network model to identify the green
plum defects. In the field of image classification, the common convolutional neural network
(CNN) [22,23] uses continuous stacking convolution layer operations to extract local fea-
tures, which has certain limitations in extracting global features. As an encoder–decoder
architecture based on the self-attention mechanism [24,25], the vision transformer model
does not use RNN (cyclic neural network) sequential structure parallel training and can
reflect complex spatial transformations and long-distance feature dependencies. Through
the softmax function, the gradient is reduced. With the multiple sets of independent
weights and parameter quantities added to the multi-head attention mechanism [26], the
information obtained by different learning methods is combined, improving the expression
ability of the network. Its global feature representation ability is stronger, and the migration
effect is better.
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Table 1. Distribution of dataset.

Number Class Original
Data Set

Data Aug-
mentation Validation Set Training Set Test Set

1 scar 168 1680 168 1344 168
2 scar + rot 34 340 34 272 34
3 scar + stem 312 3120 312 2496 312
4 scar + stem + spot 37 370 37 296 37
5 scar + spot 18 180 18 144 18
6 rot 546 5460 546 4368 546
7 rot + flaw 62 620 62 496 62
8 rot + stem 130 1300 130 1040 130
9 rot + stem + spot 67 670 67 536 34

10 rot + spot 178 1780 178 1424 178
11 intact 616 6160 616 4928 616
12 flaw 114 1140 114 912 114
13 flaw + stem 62 620 62 496 62
14 flaw + stem + spot 30 300 30 240 30
15 flaw + spot 23 230 23 184 23
16 stem 54 540 54 432 54
17 stem + spot 60 600 60 480 60
18 spot 288 2880 288 2304 288

The VIT model consists of three modules: the linear projection of flattened patches
(embedding layer), the transformer encoder, and the multilayer perceptron (MLP) head.
The input image (224 pixels × 224 pixels) first passes through the embedding layer and
is divided into 196 patches according to the size of 16 × 16. This step is realized by a
convolution operation with a convolution kernel size of 16 × 16, a step size of 16, and a
number of 768. The methods of adding position embedding and patch embedding can
better reflect the information of the whole image. Secondly, the data enters the transformer
encoder layer. The encoder contains a multi-head attention mechanism, which can represent
the global features more accurately and repeatedly stack the encoder block L times. The
output shape after the transformer encoder is consistent with the input shape. Finally, the
defect classification result for green plums is obtained through the linear output in the MLP
head [27]. Among them, the calculation formula for multi-head self-attention is as follows:

MultiHead(Q, K, V) = Concat(head1,· · · ,headh)W
O (1)

where Q, K, V, H, and WO represent the query vector, key vector, value vector, number of
heads, and output transformation matrix, respectively.

In Formula (1), the output headi of each head can be expressed as follows:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(2)

In Formula (2), WQ
i , WK

i , and WV
i represent the query, key, and value transformation

matrix of the headi, respectively. The self-attention calculation formula is as follows:

Attention (Q, K, V) = Softmax (
QKT
√

dk
)V (3)

Although the classification method in this study could facilitate the network to learn
various defects and output all the defects of green plums, it was also necessary to output
the main defects according to the degree of defect damage. This study proposed primary
defect detection based on previous research, enabling the new VIT network to output the
first hazard defect of the green plum as the major defect based on the defect area size and
hazard level. A hazard level analysis layer was added after the MLP output layer to obtain
the main defects more accurately. In this layer, a convolutional neural network was inserted
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into the network. It was used for training in the identification of the hazards of each defect.
Different degrees and different types of defects have different effects on green plums. The
network layer obtains the defect hazard factors of green plums and judges the degree of
influence of the hazard on green plums through factor size analysis in order to determine
the main defects of green plums. After analyzing the degree of harm, the entire network
outputs the main defects of green plums more precisely. The main defect detection structure
diagram is shown in Figure 5.
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The improved network could identify the most harmful defect features, but there may
be multiple defects on the surface of green plum, causing the network to ignore the remaining
defects and the harm they bring. In order to solve the multi-defect detection problem of
green plums, the network structure was improved, and a fine-grained multi-defect detection
link was added after the MLP. This link existed in parallel with the risk level analysis to
identify all the defects for green plums and output them. In this link, multiple defects on
green plums are first identified, the confidence of the corresponding defects in the graph is
calculated, the confidence threshold is set to 0.6, and the confidence of defects higher than
the threshold is output as secondary defects. If there are multiple secondary defects, the
output sequence is in order of the degree of harm; finally, the network model can output
all the defects in green plums, major defects + minor defects. The structure diagram of the
whole network is shown in Figure 6.
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3. Results

The green plum defect classification network built in this research used the deep
learning framework PyTorch to define the network calculation graph. The hardware,
software, and compilation environment configurations used in this study are shown in
Table 2.

Table 2. Software and hardware environment configuration.

Software and Hardware Name

System Windows 10 × 64
CPU Inter I7 11700K@3.6 GHz
GPU Nvidia GeForce RTX 3080Ti(12G)

Environment configuration PyCharm 2022.3.3 + Pytorch 1.7.1 + Python 3.7.7
Cuda 10.2 + cudnn 7.6.5 + tensorboardX 2.1

Before training, the green plum defect classification network was parameterized. Batch_size
was set to 64, Heads (the number of “heads” in the multi-head attention) was 2, Mlp_dim (the
number of neurons in the hidden layer in the multilayer perceptron) was 64, and the learning
rate parameter in the Adam optimizer was set to 0.01. After the parameters were set, the
dataset was input into the model for training until the loss reached the minimum value and
remained stable for 30 epochs. At this stage, the training of the green plum defect classification
network model was completed. The green plum data from the test set were imported into the
trained green plum defect classification network model. The model generated the test results
for the main defects through the risk level analysis layer. As shown in Table 3, the accuracy
rate of the VIT network for the classification of the main defects on the green plum surface
reached 96.21%.

Table 3. Results of green plum defect classification.

Methods Vision Transformer

Major Defect Classification Accuracy

Scar 94.02%
Rot 98.62%

Intact 93.89%
Flaw 96.42%
Spot 93.68%

Accuracy 96.21%
Loss 0.078

Inputting 2799 test set pictures into the fine-grained defect detection link for testing,
the confusion matrix of multi-defect detection on the green plum surface obtained by the VIT
network is shown in Figure 7. The VIT model had the best detection effect on scar + spot
and rot + stem + spot, with an accuracy of 100%. The effects of the intact category, the
scar + stem + spot category, and the stem + spot category were poor. Among the 616 intact
pictures, 1 was misjudged as the scar category, 4 were misjudged as the scar + stem category,
and 15 were misjudged for rain spots. Among the 37 pictures in the scar + stem + spot
category, 1 was identified as a spot, 1 was misjudged as a rot + stem, 1 was misjudged
as a flaw + spot, and 6 were identified as a stem + spot kind. Among the 60 pictures
of stem + spot, 4 were misjudged as scar + stem + spot, 1 was misjudged as a flaw, and
7 pictures were misjudged as spot without the characteristics of the stem.

Figure 8 is a test result diagram of a part of the test set, and the colored boxes in the
figure show some misjudged plum cases. Picture (11 -> 18) in the green box in the figure
misjudged the intact class as a spot. This may have occurred because the fruit tip of the
intact green plum turned yellow, the rain spot was a small target defect, and its shape and
color were similar to the fruit tip, resulting in misjudgment. The pictures in the purple
frame (12 -> 13) identified the flaw as a flaw + stem category, which may have been caused
by the fact that the pulp at the flaw was oxidized by air and was similar in color to the fruit
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stems. The rain spot fruit stems in the yellow and red boxes are, respectively, identified as a
rain spot and a flaw. The comprehensive analysis showed that because the rain spot defect
was too dense, small, and round in shape, resulting in a misjudgment of the fruit stem, the
rain spot defect was similar to a flaw when it was distributed laterally. The pictures in the
blue box (1 -> 18) classified the scars as rain spots because the small scars were similar to
rain spots, which led to their misjudgment.
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4. Discussion

In this study, the multi-defect detection of green plums was a classification task. Com-
pared with the target detection algorithm, the VIT model did not need to label each defect
in each picture in the dataset. It only needed to classify different green plum defect pictures
in the dataset. The target detection algorithm, such as the YOLO series model, needed
to use labeling software to frame the defect area in each picture. Multiple defects often
overlapped when labeling, resulting in repeated labeling of the frame, as shown in Figure 9.
The yellow box in Figure 9 shows the stem, the blue box shows the scar, and the red box
shows the rain spot. The rain spot feature and the rot feature overlapped. Furthermore, the
process of manual labeling is a subjective job, after all, so there is also a certain error rate
that will interfere with subsequent training. This not only consumes a lot of time but also
leads to a decrease in recognition accuracy. Moreover, the purpose of this defect detection
process was not to determine the exact position of the green plum [28], but only to identify
the defect type of the green plum. Therefore, there was no need to label and locate defects in
the dataset. Regardless of the perspective of dataset production or the final research goal,
the target detection algorithm was unsuitable for this research.
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This study compared the performance of the green plum multi-defect classification
network with that of other networks such as ResNet18, WideResNet50, Desnet121, and
VGG16. This was conducted to validate the performance of the green plum network further.
After the above models were fully trained, the accuracy rate of the main defect classification
and the average test time were used as performance index comparisons. The test results
are shown in Table 4.

Table 4. Accuracy of surface main defect classification for green plum.

Accuracy of Surface Defect Classification
Accuracy Average Test

TimeNetwork Name Scar Rot Intact Flaw Spot

ResNet18 86.54% 90.95% 79.04% 94.18% 93.10% 89.92% 0.88 ms
WideResNet50 89.53% 89.68% 94.48% 86.03% 88.51% 91.39% 1.05 ms

Desnet121 93.83% 92.63% 96.57% 89.52% 97.70% 94.14% 1.39 ms
VGG16 92.34% 95.18% 98.06% 90.83% 97.17% 95.42% 0.96 ms

Vision Transformer 94.02% 98.62% 93.89% 96.42% 93.68% 96.21% 1.43 ms

In Table 4, in the classification of main surface defects of green plums, the accuracies of
the VIT model for the main defects of scars, rot, intact, flaws, and rain-spotted green plum
images reached 94.02%, 98.62%, 93.89%, 96.42%, and 93.68%, respectively. The average
discrimination accuracy rate of the network was 96.21%, and the processing time of a
single image was 1.43 ms. The accuracy rate of all kinds of main defect discrimination was
significantly better than other models, such as WideResNet50. The VIT model could also
identify other defects in green plums.
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In terms of model accuracy, compared with ResNet18 [29] and WideResNet50, the
vision transformer had a larger lead in the accuracy of the green plum multi-defect detection
task. The vision transformer was higher than ResNet18 and WideResNet50 by 6.29% and
4.82%, respectively, and slightly ahead of the Desnet121 and VGG16 models [30] (2.07%
and 0.79%). The detection accuracy for scars, rot, and flaws was higher than that of other
models, and the accuracy regarding intact and rain spots was slightly lower than that of
Desnet121 and VGG16 [31]. The overall effect of VIT was better. However, in terms of
image processing time, since a hazard level analysis layer and a fine-grained detection link
were added to the model, the VIT model took 0.55 ms longer to process a single image than
the fastest ResNet18 but could obtain a high recognition rate of detection of main defects
and multiple defects.

The loss curves of the vision transformer, ResNet18, WideResNet50, Desnet121, and
VGG16 networks are shown in Figure 10. Although the VIT model outperformed other
models’ accuracy, its convergence speed during training was obviously not as good as
other models. It may be that the effect of the optimizer in the VIT model was not as good
as that of other models. In subsequent studies, we may consider replacing the optimizer
with one that is more suitable for the VIT model in order to promote earlier convergence of
the model and improve the efficiency of training.
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Comprehensive analysis shows that the VIT network demonstrated excellent classi-
fication performance. To sort the quality of green plums based on the VIT network model
and classify green plums with multiple flaws, the softmax function was used to reduce the
gradient, and the multi-head attention mechanism was added. The overall feature repre-
sentation ability is stronger, resulting in improved feature learning and migration effects.
As a result, the network learns more features of defects, increasing the feature recognition
rate. Consequently, the network performs better in the multi-defect classification of green
plums. The average discrimination accuracy of the final model was 96.21%. This method
not only accurately identifies the main defects of green plums but also classifies and outputs
the defects in a more detailed manner and completes the multi-defect detection task of
green plums. Manufacturers can consider the rational use of defective green plums that
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can ensure food safety according to the defect situation of green plums. They can further
classify multi-category green plums according to their own needs, which greatly improves
the utilization rate of green plums and can increase the profit margins of enterprises.

5. Conclusions

Some researchers have previously conducted research on the defects of green plums and
were able to identify the main defects. However, each green plum may have more than one
defect. Their methods could only identify a single type of defect due to the lack of a detailed
classification of green plum defects. The previous green plum defect detection methods could
not detect other defects in green plums. This study proposed a model for the detection and
classification of green plum multi-defects based on the vision transformer, aiming at the
problem of multiple defects on the surfaces of green plums. This vision transformer was
based on the four main defects of green plums (scars, rot, flaws, and spots) and a class of
features (stems). There were 2799 green plum pictures classified with multiple defects to
obtain a more detailed dataset, divided into 18 categories according to the actual situation.
Moreover, the training set, validation set, and test set were allocated according to a ratio
of 8:1:1. Then the dataset was expanded by changing parameters such as image angle,
contrast, brightness, etc. to ensure the quality of the dataset and adding a risk level analysis
layer and fine-grained detection links. The model was trained with the improved network.
The network realized the effective classification of the main defects and multiple defects
on the green plum surface, and the average recognition accuracy rate reached 96.21%. The
single test image processing time was 1.43 ms.

This study also compared the established network with the accuracy of various ma-
jor defects and the training loss curves of the ResNet18, Desnet121, WideResNet50, and
VGG16 networks. The superiority of the vision transformer network was verified in defect
classification performance compared to other network methods. It completed the automatic
detection of multiple types of defects on the surfaces of green plums and classified the defect
levels of green plums more carefully. However, there is still room for optimization in the train-
ing speed of the model. In addition, the more detailed classification method for green plum
surface defects used in this study can also be applied to the defect detection of other fruits.
This can help manufacturers further classify defective fruits and improve the utilization of
non-hazardous and minimally hazardous fruits, thereby increasing production profit.

This research was based on static green plum surface images, and a static green plum
surface multi-defect classification model was constructed based on the vision transformer
model, achieving good surface multi-defect classification results. However, the training
efficiency of the model was not high enough. This can be improved by changing the
optimizer to accelerate the convergence speed of the model. The surface defect detection
method used in this study could not understand the chemical composition of green plums,
such as sugar content, pH, soluble solids, etc. It could not identify whether there were
internal defects in the green plums. Moreover, under static conditions, only one side of the
green plums’ defects could be identified. In actual testing, the conveyor belt can be improved
to make the green plum rotate continuously during transportation, allowing the camera to
recognize all defects on the plum. In subsequent research, we should study how to identify
internal defects in green plums in order to achieve higher food safety rates. Additionally,
high-spectral imaging technology can be used to obtain the internal chemical components
of green plums to select high-quality green plums.
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