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Abstract: Drought is one of the major climate disasters leading to forest degradation in dryland
mountains. Hence, revealing the response of forest resilience to drought is crucial to predict forest
succession in dryland mountains under future global warming. Here, we chose the Qilian Mountains
as the study area and calculated the recovery time and drought intensity along elevation from 1982 to
2020 using the Leaf Area Index (LAI) and the Standardized Precipitation Evapotranspiration Index
(SPEI). Then, the forest resilience to drought was calculated using the area of an exponentially fitted
curve between drought intensity and corresponding recovery time. Finally, the dominant climate
factors underlying altitude differentiation of forest resilience were analyzed using a random forest
(RF) regression model, and correlations were determined based on a generalized additive model
(GAM). The results indicate that forests in the elevation range of 2600–3900 m exhibited faster recovery
rates and greater resilience compared to those in 1700–2600 m. The attributional analysis shows that
altitudinal differentiation of forest resilience to drought was mainly constrained by precipitation
with a non-monotonic correlation, and resilience was strongest when monthly precipitation reaches
30 mm. In terms of the occurrence of historical drought events, increased potential evapotranspiration
improved resilience in the elevation range of 2600–3900 m and enhanced cloud cover initially enlarged
the resilience and then decreased it in the elevation range of 3000–3400 m and 3400–3900 m, with
resilience being strongest when cloud cover reached 24% and 33%, respectively. Under future climate
change, global warming will further exacerbate the drought impact in arid regions, increasing the
risk of primary forest collapse. The results of this study provide a scientific basis for predicting the
potential changes in vegetation resilience and developing policies for ecological protection in dryland
mountains, and we will take addressing the difficult study of the quantitative effects of tree species
on resilience altitude differentiation based on ecosystem scales as our future direction.

Keywords: recovery time; drought intensity; elevation; climate factors; Qilian Mountain National Park

1. Introduction

Climate is an important external factor affecting ecosystems, and the increased fre-
quency of climate hazard events can disrupt ecosystem structure and function [1–3].
Drought is considered to be one of the most complicated climate hazard events and can
reduce vegetation growth capacity [4], decrease net primary productivity [5], trigger forest
mortality events [6], and alter plant community biodiversity [7]. The intensity, frequency,
and duration of drought worldwide have increased significantly with global warming, with
drought having increasingly severe impacts on ecosystems [8–10], Therefore, it is critical to
recognize and understand the processes through which ecosystems respond to drought.

The concept of resilience was introduced into ecology by Holling in 1973 [11]. Ecosys-
tem resilience is defined as the ability of a system to recover from external disturbances
without changing into a substitute state [12,13]. Recovery time, as the key indicator of
ecosystem resilience, represents the time required for the system to return to its normal
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state [14,15]. Previous studies have evaluated the recovery time for ecosystems to re-
cover after being exposed to drought. The recovery time is closely associated with the
drought intensity of drought events [16–18]. Schwalm et al. [16] reported that the greater
the drought intensity the ecosystem experiences, the longer the recovery time is required.
Ingrisch et al. [18] pointed out that under the same drought intensity, the ecosystems that
required shorter recovery time were more resilient. Therefore, recent studies coupled re-
covery time and drought intensity to assess the resilience of ecosystems to droughts [19,20].
For instance, Yao et al. [20] proposed an indicator that fits curves based on the relationship
between recovery time and drought intensity to judge the resilience of different ecosystems.
The resilience varies significantly among ecosystems. Forests showed weaker resilience to
drought than other ecosystems and a higher risk of incomplete recovery [21]. However,
dryland mountains are extremely fragile in response to drought events, and forest resilience
to drought of dryland mountains has not been systematically studied. Furthermore, alti-
tude is the key variable affecting the distribution of forest species and the forest growth of
dryland mountains. The characteristics of multiple factors affecting the recoverability to
drought, including climate variables, biotic variables, as well as soil properties, etc., also
show obvious elevation heterogeneity. Among them, climate variables change particularly
significantly with increasing altitude and are extremely important in studying the attribu-
tion of vegetation changes. For instance, precipitation increases and temperature decreases
as altitude rises in some dryland mountains [22,23]. Therefore, the dynamic response rela-
tionship between recovery time and drought intensity may be significantly different among
different altitude zones. What is the relationship between recovery time and drought inten-
sity at different elevations in dryland mountain forests? What altitudinal differentiation
characteristics does forest resilience based on the above relationships exhibit? What are the
dominant climate factors and correlations of resilience altitudinal differentiation? Solving
these problems is essential to predict how dryland mountains will recover from drought
disturbance in the future climate context, and to identify and understand the mechanism of
geographical heterogeneity in response to drought of dryland mountain vegetation.

Qilian Mountain National Park (QMNP) is the core area of the Qilian Mountains,
known for its complex mountain climate and primary forests with significant elevation
differentiation. It has become an ideal experimental site to explore forest response to climate
change in dryland mountains. Previous studies showed that drought was the most major
climate hazard event in QMNP and inhibited primary forest growth [22]. Temperature and
precipitation were the main factors driving forest change in QMNP [22–24]. Specifically,
tree growth was mainly affected by a one-month time lag effect of precipitation and a two-
month time accumulation effect of temperature [25]. Overall, the qualitative, quantitative,
and temporal effects of climate on primary forest change in QMNP have been systematically
studied. However, under the background of global climate change, primary forests in
dryland mountains experienced frequent drought events and are at great risk of incomplete
recovery or even collapse [26]. It is very urgent to study forest resilience under drought
disturbance, analyze altitudinal differentiation characteristics of resilience, and explore its
affecting factors, which is of great importance to determine whether primary forests can
recover from drought events and formulate restoration measures at different elevations
under water and heat conditions in the QMNP in the future.

This study hypothesizes that forest resilience to drought exhibits altitudinal differen-
tiation in dryland mountains. To verify this hypothesis, QMNP was selected as a typical
study area. We calculated recovery time and drought intensity using the leaf area index
(LAI) as the vegetation state index and the standardized precipitation evapotranspiration
index (SPEI) as the drought index, respectively. Forest resilience curves were fitted based on
the dynamic response relationship between recovery time and drought intensity, and forest
resilience was quantified using the curve area. Then we analyzed the altitude differentiation
of forest resilience and assessed the recovery time required by the ecosystem under future
drought disturbance. Finally, we identified the dominant climate factors contributing to
altitudinal differentiation of resilience and explored their correlations. This study aims to



Forests 2023, 14, 1284 3 of 20

uncover the spatiotemporal characteristics of forest resilience and its underlying mecha-
nism in QMNP. The findings confirm the importance of adopting the altitudinal gradient
perspective in studies of the dryland mountain evolution. They provide a scientific basis
for predicting the potential changes in forest resilience to drought hazards in the QMNP
and other dryland mountains under the background of future global warming.

2. Methodology
2.1. Research Area

QMNP, with a total area of 5.02 × 104 km2, is one of the first 10 pilot national park
systems established in China, renowned for its ecological importance. It serves as an
important ecological security barrier in the west, an important water production area
for inland rivers and the Yellow River Basin, and a priority area for the conservation of
biodiversity. The park (94◦51′~103◦00′ E, 36◦47′~39◦48′ N) is located at the intersection
of two major plateaus, the Qinghai–Tibet Plateau and Mongolian Plateau. The ecosystem
is unique and diverse, with the forest being one of the most critical ecosystem types
(Figure 1). It has a typical continental alpine semi-humid mountain climate, with an
average annual temperature of approximately 4 ◦C and an average annual rainfall of
approximately 400 mm. The climatic conditions show significant altitude dependence
in primary forests, with precipitation increasing and temperature decreasing as altitude
increases [26–30].
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2.2. Data Source and Processing
2.2.1. Meteorological Data

This study used the 1 km monthly temperature and precipitation dataset for 1982–2020
from the National Earth System Science Data Centre (http://www.geodata.cn/data/
datadetails.html?dataguid=192891852410344&docId=3517, accessed on 21 March 2022)
to compute the SPEI. The dataset is based on the global 0.5◦ climate data released by
CRU [31] and the global high-resolution climate data released by WorldClim [32], val-
idated by data from 496 independent meteorological observation sites, and its results
are reliable [33].

The potential evapotranspiration data were obtained from the 1990–2021 China 1 km
monthly potential evapotranspiration dataset released by the National Earth System Science
Data Centre (http://www.geodata.cn/data/datadetails.html?dataguid=34595274939620
&docId=991, accessed on 15 March 2023). This dataset is based on the China 1 km monthly
mean temperature, minimum temperature, and maximum temperature dataset [33], and
calculated using the Hargreaves potential evapotranspiration formula. It has been subjected
to multiple quality control measures, and has high accuracy [34].

http://www.geodata.cn/data/datadetails.html?dataguid=192891852410344&docId=3517
http://www.geodata.cn/data/datadetails.html?dataguid=192891852410344&docId=3517
http://www.geodata.cn/data/datadetails.html?dataguid=34595274939620&docId=991
http://www.geodata.cn/data/datadetails.html?dataguid=34595274939620&docId=991
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The cloud cover data are from the Climatic Research Unit gridded Time Series (CRU
TS) produced by the NERC Centers for Atmospheric Science (UK) (NCAS) (https://crudata.
uea.ac.uk/cru/data/hrg/, accessed on 17 March 2023). The spatial resolution of this dataset
is 0.5◦ and the temporal resolution is monthly [35].

2.2.2. Elevation Data

The elevation data used in the study were the digital elevation model (DEM) data
provided by the Resource and Environmental Science Data Center of the Chinese Academy
of Sciences (https://www.resdc.cn/data.aspx?DATAID=123, accessed on 17 February 2022).
The dataset was reconstructed based on recent Shuttle Radar Topography Mission V4.1
(SRTM V4.1), and the spatial resolution was 30 m.

2.2.3. Vegetation Data

As a key vegetation structure variable, LAI is critical in vegetation feedback to cli-
mate [20,35–38]. It is generally defined as half of the sum of green leaf surface area
per unit surface area [34]. The LAI data from 1982 to 2020 used in this study were se-
lected from the NOAA Climate Data Record (CDR) of AVHRR Leaf Area Index (LAI)
and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) dataset (https:
//doi.org/10.7289/V5M043BX, accessed on 22 April 2022), which was derived from the
NOAA AVHRR surface reflection product. After data acquisition, the spatial resolution was
0.05◦. Monthly LAI data were obtained by selecting the Maximum LAI Value of vegetation
growth in the month based on Maximum Value Composites pixel by pixel [39].

Forest data were obtained from the 30 m land cover dataset and its dynamics from 1990
to 2020 in China (1.0.0) [40]. The dataset was verified based on 5463 visual interpretation
samples and the overall accuracy is 80%. The forest information along elevation zones
through field investigations is described in Figure 2. The main elevation zone of the forest
distribution in QMNP is 2600–3400 m, the lower forest line is 1700 m and the upper forest
line is 3900 m [23,26,27]. The main elevation zone of the forest distribution was divided
into 400 m intervals. Therefore, the forest distribution of QMNP was divided into four
elevation zones: 1700–2600 m, 2600–3000 m, 3000–3400 m, and 3400–3900 m.
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2.3. Analysis
2.3.1. Standardized Precipitation Evapotranspiration Index

In this study, we used the SPEI to investigate drought. The SPEI is an effective indica-
tor for detecting and assessing droughts regarding global warming [41–44]. It encompasses
multiscale effects and is more sensitive to changes in the water and heat conditions [45–47].
Considering the seasonal characteristics of forest growth, we chose the SPEI with the time
scale of three months (SPEI-3) that reflects short-term and medium-term moisture condi-
tions, allowing us to study the characteristics of seasonal drought events and reveal the
drought effects on ecosystems [41,48–50]. The potential evapotranspiration (PET) was calcu-
lated through using the Thornthwaite method [51]. The SPEI-3 was obtained by calculating
the difference between precipitation and potential evapotranspiration and conducting
normal standardization. The specific calculation process based on Equations (A1)–(A14) is
shown in Appendix A.

2.3.2. Theoretical Basis of Resilience Curve
Physiological Basis of Resilience Curve

The forest has a certain recoverability to drought disturbances, which can be visualized
through a spring-like process (Figure 3). Specifically, under the premise that a forest
ecosystem can recover, as the drought intensity increases, the functional traits of the
ecosystem are compressed more severely, resulting in a longer recovery time. This process
is dynamic and non-linear [52–54]. For this reason, some studies have fitted a nonlinear
curve of the relationship between the recovery time and the maximum drought intensity
and quantified the resilience using the curve area [20]. However, we found that this research
overestimated resilience due to the occasional interference of drought events corresponding
to maximum drought intensity.
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Average drought intensity is the average of drought intensity of multiple events
corresponding to the recovery time, it can avoid occasional interference of extreme drought
and improve the accuracy of quantified resilience [55]. Therefore, this study replaced the
maximum drought intensity index with average drought intensity and continued to adopt
the method of fitting the dynamic response relationship curve to evaluate resilience. The
fitted curve was defined as the resilience curve (Figure 4).
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Figure 4. Resilience curve based on recovery time and drought intensity. Red circles and green
triangles represent the two-dimensional points with recovery time as the abscissa and drought
intensity as the ordinate of ecosystem A and ecosystem B, respectively. When the recovery time
is tx, DA and DB indicate the drought intensity that ecosystem A and ecosystem B can withstand,
respectively. When drought intensity is Dy, tA and tB indicate the recovery time required by system
A and system B, respectively.

Interpretation of the Resilience Curve and Resilience Qualification

The resilience curves of forests in different elevation zones in this study have the
following ecological implications [20,56]: (1) For forests in different elevation zones, the
slope of the resilience curve is higher, and the response rate to drought is faster. (2) Forests
that withstand greater drought intensity have greater resilience in the same recovery time.
If forests in different elevation zones are subjected to the same drought intensity, a shorter
recovery time will show greater resilience. (3) By fitting the curve, the recovery time taken
for the ecosystem to recover while enduring the corresponding drought intensity can be
estimated. (4) The curve provides a basis to measure whether the ecosystem disturbed by
continuous drought events can restore during the calculated recovery time; otherwise, the
ecosystem may collapse.

The area of resilience curves in this study has the following ecological implications [20]:
Within the same recovery time, the larger the curve area, the lower the sensitivity of the
forest to drought, and the higher the forest resilience to drought.

2.3.3. Resilience Curves
Definitions of Recovery Time and Drought Intensity

We take January as an example and selected a time series of LAI data from January
1982 to January 2020. Twelve sets of LAI time-series data from January to December were
obtained. We calculated the mathematical expectation and standard deviation (SD) of these
twelve sets of LAI time-series data, respectively. An SPEI below −1 indicated drought [57].
To reduce the impact of factors other than drought (insect pests, forest harvesting, mining,
etc.) that contribute to LAI anomalies, the series where drought (SPEI-3 < −1) and LAI
anomalies occurred concomitantly was selected [58,59]. Recovery time was defined as
the time duration taken for an LAI under −0.5 SD to reach −0.5 SD again [16,20]. This
approach is illustrated in Figure 5. After data filtering, we obtained time-series data that
met the requirements, such as c, d, and e, where c, d, and e respectively indicated that the
recovery time was 3 months, 2 months, and 5 months.



Forests 2023, 14, 1284 7 of 20

Forests 2023, 14, x FOR PEER REVIEW 7 of 21 
 

 

2.3.3. Resilience Curves 

Definitions of Recovery Time and Drought Intensity 

We take January as an example and selected a time series of LAI data from January 

1982 to January 2020. Twelve sets of LAI time-series data from January to December were 

obtained. We calculated the mathematical expectation and standard deviation (SD) of 

these twelve sets of LAI time-series data, respectively. An SPEI below −1 indicated 

drought [57]. To reduce the impact of factors other than drought (insect pests, forest har-

vesting, mining, etc.) that contribute to LAI anomalies, the series where drought (SPEI-3 

< −1) and LAI anomalies occurred concomitantly was selected [58,59]. Recovery time was 

defined as the time duration taken for an LAI under −0.5 SD to reach −0.5 SD again [16,20]. 

This approach is illustrated in Figure 5. After data filtering, we obtained time-series data 

that met the requirements, such as c, d, and e, where c, d, and e respectively indicated that 

the recovery time was 3 months, 2 months, and 5 months. 

 

Figure 5. Drought occurrence and recovery time using SPEI-3 and LAI time-series data. a indicates 

drought occurrence but no LAI anomalies. b indicates LAI anomalies occurrence but no drought. c, 

d, and e indicate drought and LAI anomalies that occur concomitantly: c represents that recovery 

time is 3 T; d represents that recovery time is 2 T; and e represents that recovery time is 5 T, T = 1 

month. 

Drought intensity was computed as the absolute value of the monthly SPEI-3 (below 

−1) cumulative sum for a drought event within the recovery time [43,60,61]. Drought in-

tensity was calculated as follows: 

Drought intensity = ∑ 𝑆𝑃𝐸𝐼𝑖

𝑛

𝑖=1

 (1) 

where 𝑛 is the value for months with an SPEI-3 < −1 during the recovery time of each 

drought event. 

Resilience Curve and Resilience Qualification 

With recovery time as the horizontal axis and drought intensity as the vertical axis, 

the ecosystem resilience curve to drought was conducted by fitting the point data. We 

chose the logarithmic function 𝑌 = 𝑎 + 𝑏 ln 𝑥 to represent the resilience curve based on 

the coefficient of determination (R2) of the fitted curve. 

Figure 5. Drought occurrence and recovery time using SPEI-3 and LAI time-series data. a indicates
drought occurrence but no LAI anomalies. b indicates LAI anomalies occurrence but no drought. c, d,
and e indicate drought and LAI anomalies that occur concomitantly: c represents that recovery time
is 3 T; d represents that recovery time is 2 T; and e represents that recovery time is 5 T, T = 1 month.

Drought intensity was computed as the absolute value of the monthly SPEI-3 (below −1)
cumulative sum for a drought event within the recovery time [43,60,61]. Drought intensity
was calculated as follows:

Drought intensity =
n

∑
i=1

SPEIi (1)

where n is the value for months with an SPEI-3 < −1 during the recovery time of each
drought event.

Resilience Curve and Resilience Qualification

With recovery time as the horizontal axis and drought intensity as the vertical axis,
the ecosystem resilience curve to drought was conducted by fitting the point data. We
chose the logarithmic function Y = a + b ln x to represent the resilience curve based on the
coefficient of determination (R2) of the fitted curve.

In this study, resilience at each recovery time was measured by using the area of the
resilience curve, the algorithm was shown as follows [62]:

Resilience =
∫

Y d(t) (2)

where t represents recovery time.

2.3.4. Affecting Climate Factors of Forest Resilience

Forest restoration is a complex ecological process, which is influenced by a variety
of factors, including climate factors, biotic variables, and external disturbances [63,64].
Climate factors directly affect plant growth and habitat environment. At the same time,
they may interfere with other complex factors affecting forest restoration that are difficult to
isolate and parse separately [65]. Therefore, we focused on exploring the impact of climate
factors on the ratio of the drought intensity to the recovery time of historical events [20,66],
specifically examining the effects of temperature (TEM), precipitation (PRE), cloud cover
(CLD) and PET based on previous research results in the Qilian Mountains. TEM during
the recovery period (RecTEM) was calculated as the average monthly temperature. RecPRE,
RecPET, and RecCLD were obtained by the same calculation.
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A random forest (RF) regression model was used to analyze the importance of factors
affecting resilience. RF is a machine learning method based on decision trees, which can
effectively deal with high-dimensional data and nonlinear relationships, and has high
accuracy and good robustness [67,68]. Firstly, we randomly split the data, with two-thirds
of the data as the training set and one-third of the data as the verification set. Then, we built
an RF model consisting of 500 regression trees. During the splitting process of decision
trees, factors that reduce the average Gini impurity less are considered more important
to resilience.

2.3.5. Relationships between Forest Resilience and Dominant Factors

Generalized additive model (GAM) was applied to analyze the relationships between
resilience and dominant factors. GAM is a non-parametric extension of generalized linear
models, commonly used to explore the nonlinear relationship between the dependent
variable and independent variables [69,70]. GAM was built using the “mgcv” package in R.
We applied nature logarithmic transformation to it to reduce the impact of extreme values
on the model [71], The form in the study was shown as follows:

f orest resilience ∼ Gaussian (3)

log( f orest resilience) = β0 + s(xi) + ε (4)

Forest resilience values follow Gaussian distribution. Where β0 is Constant intercept
term, ε is random error, s(xi) is the spline smoothing function that is automatically selected
by the GAM model based on the nonlinear relationship between dominant climate factor
and forest resilience in each elevation zone.

3. Results
3.1. Altitudinal Differentiation of Forest Drought

Using Theil–Sen trend analysis and the Mann–Kendall trend test [71–74], the trends of
the SPEI values in different elevation zones of QMNP from 1982 to 2020 were determined
(Figure 6). The SPEI values of different elevation zones showed a non-significant increasing
trend (p > 0.05) over the past 40 years, and the forests of different elevation zones showed
different degrees of aridification. On the whole, forests at 3000–3900 m elevations showed
higher linear slope values and lower p values than those at 1700–3000 m elevations. This
indicated that the humid characteristics and trends towards humidification at higher
altitudes were more notable. This may be mainly related to the pattern that precipitation
increases as altitude rises in QMNP [23,24].

The drought intensity and drought occurrences in forests in different elevation zones
are shown in Figure 7. The higher the drought intensity of the drought events experienced
in the QMNP, the longer the recovery time required to return to the pre-drought state. The
lower the drought intensity, the more frequent the drought events that occurred. Moreover,
in terms of altitudinal differentiation, with the increase in altitude, the environment became
more humid, the frequency of drought occurrence decreased, and the frequency of LAI
anomaly occurrence under the interference of drought also showed a decreasing trend
(Figure 7c).
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Figure 7. Occurrences of drought and LAI anomaly: (a,b) represent the drought intensity and the
total number of drought events in forests of different elevation zones for a given recovery time from
1982 to 2020, respectively, T = 1 month; (c) indicates Mean SPEI-3, the annual average frequency
of drought (SPEI-3 < −1), and annual average frequency of the co-occurrence of drought and LAI
anomalies in forests of different elevation zones from 1982 to 2020.
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3.2. Altitudinal Differentiation of Forest Resilience to Drought

The resilience curves of forests in different elevation zones fitted in this study are
shown in Figure 8. The 1700–2600 m and 3000–3400 m resilience curves passed the signifi-
cance test at the level of 0.05 and 0.01, respectively, while the 2600–3000 m and 3400–3900 m
resilience curves only passed the significance test at the level of 0.1 because there were
few sample points. From slope b of the resilience curves, the rates of forest resilience in
response to drought in the different elevation zones increased in the order 1700–2600 m,
3000–3400 m, 3400–3900 m, and 2600–3000 m. The greater the rate, the more rapid and
sensitive response to drought.
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Figure 8. Resilience curves of forests in different elevation zones in the form of the function
Y = a + b ln x. Sig. (two-tailed test) < 0.1, and the values after ± for each parameter are 95% confi-
dence intervals. The black dots indicate two-dimensional point data with recovery time as the abscissa
and drought intensity as the ordinate for forest ecosystems in different elevation zones. The red curve
is the resilience curve fitted by a logarithmic function, T = 1 month. (a), (b), (c), and (d) represent
elevation ranges of 1700–2600 m, 2600–3000 m, 3000–3400 m, and 3400–3900 m, respectively.

The differences in resilience along the integral interval of recovery time in different
elevation zones and the dispersion coefficients [75] of resilience at each recovery time are
shown in Figure 9. The forest resilience to drought gradually increased in the elevation
ranges of 1700–2600 m, 3000–3400 m, 2600–3000 m, and 3400–3900 m. At the same time,
the resilience curve area of 1700–2600 m was the smallest and far less than the other three
elevation zones under the same recovery time, indicating that the forests in this elevation
zone had the weakest resilience to drought disturbance. The areas of the resilience curves
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of forest ecosystems in the different elevation zones and the dispersion coefficients are
shown in Table 1.
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Figure 9. Resilience differentiation, T = 1 month: (a) indicates the difference in resilience values of
different elevation zones at each recovery time; (b) indicates the distribution of resilience values in
QMNP at each recovery time.

Table 1. The areas of resilience curves and dispersion coefficients, T = 1 month.

Area 1 T–2 T 1 T–3 T 1 T–4 T 1 T–5 T 1 T–6 T

1700–2600 m 1.9530 4.9461 8.6148 12.7858 17.3571
2600–3000 m 2.1791 6.0283 10.9622 16.7026 23.0858
3000–3400 m 2.2816 5.9686 10.5683 15.8468 21.6660
3400–3900 m 2.4403 6.5335 11.7002 17.6651 24.2660
Dispersion coefficient 0.0923 0.1134 0.1259 0.1340 0.1398

3.3. Dominant Climate Factors of Forest Resilience and Relationships

RecPRE was the dominant climate factor affecting altitude differentiation of forest
resilience in QMNP (Figure 10a). With the estimated degree of freedom (edf) value of 2.01
based on GAM, the resilience non-monotonically responded to RecPRE (Figure 11a and
Table 2). As precipitation increased, the resilience showed a trend of first increasing and
then decreasing, and reached its peak when the precipitation is 30 mm.

In terms of the occurrence of historical drought events, we explored dominant factors
of the temporal differentiation of forest resilience at different altitude zones. The results
showed that RecPET was the most important climate factor affecting temporal differentiation
of forest resilience in the 1700–3000 m altitude zones (Figure 10b,c). The edf value of
one indicated the linear relationship, and greater potential evapotranspiration enhanced
resilience (Figure 11b,c and Table 2). RecCLD was the most important climatic factor
affecting temporal differentiation of forest resilience in the 3000–3900 m altitude zones
(Figure 10d,e). The edf values were 1.81 and 1.32, respectively, indicating that the resilience
non-monotonically responded to cloud cover (Figure 11d,e and Table 2). As cloud cover
increased, the resilience showed a trend of first increasing and then decreasing. Specifically,
forest resilience reached its peak at 24% cloud cover over 3000–3400 m and 33% cloud cover
over 3400–3900 m.
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Figure 11. Relationship between forest resilience and dominant factors based on GAM. The gray area
represents the upper and lower bounds of the confidence interval. The horizontal axis represents
the measured values of the independent variable, and the vertical axis represents the smooth-fitted
values of the forest resilience. The abbreviation edf reflects the complexity of the smoothing function.
When edf is 1, the link function is a linear equation, indicating the linear relationship; when edf is >1,
the link function is a nonlinear curve equation, indicating the nonlinear relationship. Moreover, the
larger the edf value, the stronger the nonlinear relationship.
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Table 2. GAM model statistical parameters for single factor analysis.

Dominant Factor Standard Error F-Value p-Value Deviance Explained/%

Forests in QMNP RecPRE 0.03526 2.525 0.0934 11.7
1700–2600 m RecPET 0.07525 0.773 0.395 5.61
2600–3000 m RecPET 0.07649 2.665 0.134 21
3000–3400 m RecCLD 0.0732 2.457 0.132 38.7
3400–3900 m RecCLD 0.06676 0.116 0.821 7.03

4. Discussion
4.1. Indicative Significance of the Resilience Curve for Primary Forests within the Protected Area

In this study, we established the link between drought intensity and the correlating
recovery time of dryland mountains to fit resilience curves and summarized the altitudinal
differentiation of resilience. This can serve as a foundation for sustainable ecological
management and environmental protection of dryland mountains.

(1) The resilience curves can help ecological departments make decisions by assessing
the resilience. The resilience to drought of lower-elevation forests in the QMNP is
lower than that of higher-elevation forests, and the sensitivity to drought is higher
(Figures 8 and 9). This indicates that the relevant departments should focus on formu-
lating ecological environmental protection policies and strengthening the sustainable
management of lower-elevation forests in the future.

(2) The resilience curves allow us to estimate the recovery time required for ecosystems to
recover after a drought event of certain intensity. For instance, if the value of drought
intensity in QMNP is five, the recovery times for forests at elevations of 1700–2600 m,
2600–3000 m, 3000–3400 m, and 3400–3900 m are 6.8 T, 3.6 T, 4 T, and 3.3 T, respectively
(Figure 8). The resilience curve provides scientific data to help primary forests cope
with drought disturbance in order to prevent ecosystem collapse in the future.

(3) The protected area could predict changes in resilience and tree lines based on future
climate change through the resilience curves. The average annual temperature and
average annual precipitation in the QMNP have been increasing in recent years, and
the climate has tended to become warmer and more humid [25,26]. The average
annual temperature in the QMNP increased by 0.048 ◦C/y and the average annual
precipitation increased by 1.17 mm/y from 1985 to 2019. Because March–October
is the peak season for forest growth in the Qilian Mountains, the response of forest
ecosystem resilience to drought is mainly reflected in spring, summer, and autumn,
where the annual average temperature increased by 0.069, 0.056, and 0.044 ◦C/y, and
the annual average rainfall increased by 0.020, 0.545, and 0.669 mm/y, respectively [76].
Therefore, forests in the growing season in the QMNP will become warmer and wetter
in the future, forest resilience to drought will become stronger, forests with strong
resilience will expand, and the lower forest line will decline and the upper forest line
will rise in the future.

4.2. Dominant Climate Factors Underlying Altitude Differentiation of Forest Resilience

The recovery rate and quantitative evaluation value of forest resilience to drought at
elevations of 2600–3900 m in QMNP were higher than those at elevations of 1700–2600 m
(Figures 8 and 9), indicating greater resilience. We found that precipitation is the most
important climate factor influencing the altitude differentiation of resilience (Figure 10a),
consistent with previous studies on vegetation response to climate in QMNP [77,78]. As
precipitation increased, resilience tended to increase first and then decrease, peaking when
the total monthly precipitation reached 30 mm (Figure 11a). Previous studies have shown
that soil moisture is the main water source of forest growth. Relatively abundant precipita-
tion increases soil moisture and the accumulation of available water in forests. Furthermore,
it has a positive impact on plant physiological processes. Takahashi, F., et al. [79] found
that relatively abundant precipitation increases the water film on the surface of plant leaves,
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improving the water use efficiency and the photosynthetic efficiency. Moreover, relatively
abundant precipitation can also improve soil nutrient conditions. A recent study indicated
that increased precipitation can enhance soil nutrient content and promote plant restora-
tion [80]. Therefore, under the same tree species, forests in elevation zones with relatively
low aridity have a greater chance of survival and are more resilient to drought [81,82]. As
the altitude rises, precipitation increases until reaching the peak at approximately 3300 m
in QMNP [22,26,27,83]. This contributes to the decreasing frequency of drought, frequency
of simultaneous occurrence of drought and LAI anomalies, and sensitivity of forest ecosys-
tems to drought (Figure 7c), which are conducive to enhancing species resilience to drought.
Accordingly, forests at higher elevations exhibit greater resilience to drought compared to
those at lower elevations.

In exploring the climate factors of forest resilience temporal differentiation at different
altitude zones during the recent 40 years, we found that potential evapotranspiration was
the dominant climate factor for forest resilience temporal differentiation in the altitude
zone of 1700–3000 m (Figure 10b,c). Increased potential evapotranspiration enhanced
the resilience, showing a positive correlation relationship (Figure 11b,c). This is because
increased potential evapotranspiration can improve soil moisture, promote root expansion,
and enhance the nutrient and water absorption capacity of plants [84]. Additionally, in the
microenvironment observation in some arid areas, researchers have found that increased
potential evapotranspiration can also promote the activity of soil microorganisms that play a
crucial role in organic matter decomposition and nutrient cycling [85]. This helps accelerate
the decomposition of organic materials and the circulation of nutrients, thereby enhancing
forest resilience to drought. We also found that cloud cover was the dominant climate
factor for forest resilience temporal differentiation in the altitude zone of 3000–3900 m
(Figure 10d,e). With increasing cloud cover, the resilience showed a trend of increasing
first and then decreasing (Figure 11d,e). This may be attributed to the phenomenon that
increased cloud cover reduces light and temperature, restrains transpiration, promotes soil
moisture, and facilitates plant growth [86]. However, excessive cloud cover is not conducive
to forest recovery from drought events. Ji et al. [87] pointed out that excessive cloud cover
reduces the availability of sunlight, thereby weakening photosynthesis and inhibiting
vegetation growth. Moreover, Garcia-Carreras et al. [88] found that increased cloud cover
enhanced environmental humidity in forests, resulting in the breeding and spread of
diseases and pests, and further reducing forest resilience to drought. While previous
studies generally emphasized that temperature and precipitation are the dominant climate
factors affecting the differentiation of vegetation response to climate change [25,27,76], in
this paper, we tentatively highlight the importance of potential evapotranspiration and
cloud cover in future research on this process.

4.3. Limitations and Perspectives

The underlying physiological mechanisms of species influence the ability of the
species to recover from drought [88–91]. In QMNP, the dominant species at an altitude of
1700–2600 m are Ulmus glaucescens Franch., Pinus tabuliformis Carr., and scattered stands
of Picea crassifolia Kom. At higher altitudes of 2600–3900 m, Picea crassifolia and Sabina
przewalskii Kom. become the dominant species (Figure 3). The results indicated that Picea
crassifolia and Sabina przewalskii exhibited stronger resilience to drought compared to Ulmus
glaucescens and Pinus tabuliformis (Figures 8 and 9). The stronger resilience of the former
species may be attributed to their deep root system and small leaf surface area, which
allow them to absorb water from deep soils and reduce water loss of transpiration during
droughts [92,93]. Conversely, the latter species have limited access to deep soil moisture or
experience higher water loss due to their shallow roots or larger leaf surface areas, resulting
in weaker physiological adaptations and resilience to drought events [94,95].

However, our study of forest resilience was based on ecosystem scales, and we only
obtained the distribution elevation information of different tree species in QMNP through
field investigations. Moreover, Sabina przewalskii, Picea crassifolia, Pinus tabuliformis, and
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Ulmus glaucescens have significant similarities in morphology, structure, and spectral char-
acteristics [96,97]. It is difficult to distinguish them using remote sensing images, which
resulted in the inability to obtain the spatial distribution map of tree species. In addition,
the response process of ecosystems to climate is complex, and the impact of species on this
process is often multi-channel, involving changes in multiple indicators such as biomass,
crown width, tree height, etc. [63,65]. It remains a challenging task in ecology to accurately
explore the quantitative effects of tree species on ecosystem scales using specific indicators.
Therefore, it is difficult to quantitatively investigate the impact of species on resilience in
this study, and it will be the focus of our future work.

5. Conclusions

In this study, Qilian Mountain National Park was selected as a typical area of dryland
mountains. We used an improved resilience indicator that coupled drought intensity
and corresponding recovery time and analyzed the characteristics of resilience altitude
differentiation. Then, the dominant climate factors underlying altitude differentiation of
forest resilience were explored using a random forest regression model, and correlations
were determined based on a generalized additive model. The main findings are as follows:

(1) Forests at higher altitudes in Qilian Mountain National Park exhibited more signifi-
cant humid characteristics and trends towards humidification. This may be mainly related
to the pattern that precipitation changes as the altitude rises.

(2) Forests in the altitude range of 2600–3900 m recovered faster and had greater
resilience to drought compared to those in the range of 1700–2600 m. This altitudinal
differentiation of forest resilience was related to precipitation non-monotonically, and
resilience was strongest when monthly precipitation reaches 30 mm. This indicates that
the relevant departments should focus on helping lower-elevation primary forests recover
from drought disturbances by adjusting moisture conditions in the future.

(3) In terms of the occurrence of historical drought events at different altitude ranges,
increased potential evapotranspiration improved resilience in the altitude range of 1700–
3000 m, and enhanced cloud cover initially enlarged the resilience and then decreased it in
the altitude range of 3000–3900 m with resilience being strongest when cloud cover reaches
24% and 33%, respectively.

Our study confirms the altitudinal differentiation of forest resilience to drought and
the importance of the altitudinal perspective in studies of dryland mountain evolution.
Furthermore, the findings of this study provide a scientific basis for predicting the potential
changes in vegetation resilience and developing policies for ecological protection in studies
of dryland mountains under future global climate change.
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Appendix A

(1) Calculation of PET

We calculated the PET through using the Thornthwaite method

PET = 16×
(

10Ti
H

)A
(A1)

H =
12

∑
i=1

Hi =
12

∑
i=1

(
Ti
5

)1.514
(A2)
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where i is the month; Ti is the monthly average temperature; H is the annual heat index;
and A is a constant, A = 0.492 + 0.179 H − 0.000071 H2 + 0.000000675 H3.

(2) Calculation of the difference between precipitation and PET

Di = Pi − PETi (A3)

where Pi is the monthly precipitation and PETi is the monthly potential evapotranspiration.

(3) Normalization of the Di data series using the log-logistic probability distribution

F(x) =

[
1 +

(
α

x− γ

)β
]−1

(A4)

α =
(ω0 − 2ω1)β

Γ(1 + 1/β)Γ(1− 1/β)
(A5)

β =
2ω1 −ω0

6ω1 −ω0 − 6ω2
(A6)

γ = ω0 − αΓ(1 + 1/β)Γ(1− 1/β) (A7)

where Γ is the factorial function and ω0, ω1, and ω2 are the probability-weighted moments
of the data series Di.

ωs =
1
N

N

∑
i−1

(1− Fi)sDi (A8)

Fi =
i− 0.35

N
(A9)

where N is the number of months involved in the calculation and ωs is the probability-
weighted moment.

(4) The cumulative probability distribution F(x) of the calculated Di sequence is normal-
ized to yield the SPEI value

Normalization of the cumulative probability density

P = 1− F(x) (A10)

When the cumulative probability P > 0.5,

ω =
√
−2lnP (A11)

SPEI = ω− c0 + c1ω + c2ω3

1 + d1ω + d2ω2 + d3ω3 (A12)

When the cumulative probability P ≤ 0.5,

ω =
√
−2lnP (A13)

SPEI =
c0 + c1ω + c2ω3

1 + d1ω + d2ω2 + d3ω3 −ω (A14)

where d1 = 1.432788, d2 = 0.189269, d3 = 0.001308, c0 = 2.515517, c1 = 0.802853, and
c2 = 0.010328.
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