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Abstract: Toona sinensis is an important “vegetable and timber” tree species that is widely distributed
in eastern and southeastern Asia. An efficient mechanism for preserving and utilizing germplasm
resources is crucial for speeding up the process of genetic improvement of T. sinensis. We collected
a total of 1040 germplasm resources of T. sinensis from China, Britain, and New Zealand. Using
a total of 27,040 markers, we analyzed the genetic diversity, genetic structure, and core collection
of these resources. Additionally, a comprehensive evaluation method for phenotypes of T. sinensis
was established by principal component analysis (PCA) and the technique for order preference by
similarity to ideal solution (TOPSIS). Our analysis included three main results: Firstly, the breeding
population, consisting of a total of 1040 individuals, contains a diverse genetic pool and can be
divided into two genetic clusters. Secondly, the best core collection was obtained from the alternative
population, consisting of a total of 208 individuals and comprising 20% of the breeding population. It
was screened out based on Core Hunter 3 software with the average entry-to-nearest-entry (E-NE)
algorithm. Finally, a comprehensive evaluation method was established based on eight selected
agronomic traits of the core collection. This method allowed us to screen the best individual plants of
the core collection, including N0237, N0972, and N0409. Overall, our research findings will enable
better preservation and utilization of T. sinensis germplasm resources and result in faster improvement
of T. sinensis varieties.

Keywords: Meliaceae; molecular markers; genetic diversity; sampling strategy; utilization of
germplasm resources

1. Introduction

Toona sinensis, also known as Chinese toon, is regarded as a valuable mahogany that
belongs to the genus of Toona in the Meliaceae [1]. This species is highly valued for its diverse
applications in medicine, timber, and food production [2,3]. The young leaves of T. sinensis,
as a kind of popular woody vegetable, are deeply enjoyed by the masses. In addition, the old
leaves are important raw materials for silage feed and medicinal ingredients, which have great
economic value. Many valuable secondary metabolites can be extracted from T. sinensis. For
instance, limonoids have radical scavenging, anti-inflammatory, and cytotoxic activities [4],
while two novel polysaccharides (TSP-1 and TSP-2) exhibit significant hepatoprotective
activities [5]. Gallic acid has anticancer activity in human prostate cancer cells [6]. The extract
from T. sinensis tender leaf can inhibit SARS coronavirus replication [7]. At the same time, the
old leaves of T. sinensis are known to be rich in amino acids [8] and antioxidant substances [9],
such as polyphenols, flavonoids [10,11], and saponins [12]. As a result, T. sinensis leaves are
also used for the production of silage feed [13], as well as for essential oil extraction. T. sinensis
is native to eastern and southeastern Asia and is widely distributed from North Korea to
western Indonesia, with rich geographic variation [3,14]. There are abundant germplasm
resources of T. sinensis in China [15]. Previous studies on T. sinensis have mainly concentrated
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on several fields, such as fresh-keeping [16], pharmacological research [17], genomics [18,19],
phenotypic measurement [20,21], and genetic diversity [22,23]. With the development of
the market economy, people’s demand for diversified varieties of T. sinensis is gradually
increasing. Gene editing is an effective method for breeding new varieties. Therefore, quickly
and accurately identifying the excellent genes urgently needed has become a tricky problem
to be solved [24,25]. The construction of a core collection of T. sinensis is an effective way to
solve this problem, which can greatly reduce the number of research individuals and reduce
the impact caused by individual redundancy.

Core collection is the key to the research and utilization of germplasm resources [26].
The construction of the core collection can remove redundant individuals from the popula-
tion and represent the genetic diversity of the entire population to the greatest extent with
the least genetic resources, which is of great significance for improving the management
and utilization of the entire germplasm bank. There are two main methods for constructing
core collections: using phenotypic data such as plant growth traits and physiological traits,
or using molecular markers such as SSR, SNP, ISSR, etc. A reasonable sampling strategy is
a key step in the construction of core collection. Different species have their own special
characteristics. Different sampling strategies need to be fully combined with the actual
situation when constructing the core collection. The core collection was first widely used in
crops, such as Robinia pseudoacacia L. [27], Peruvian quinoa [28], Glycine max [29], and Vitis
vinifera [30]. In recent years, core germplasm has been successfully applied to many tree
species, greatly improving the utilization efficiency of forest germplasm resources. For
example, Zhu et al. constructed a core collection of Camellia oleifera using eighteen fruit
phenotypic traits and twelve pairs of SSR Loci, preserving important fruit traits of Camellia
oleifera and improving genetic diversity [31]. Lv et al. used twelve pairs of molecular
markers to determine 35% as the best core collection proportion of Eucalyptus cloeziana F.
Muell. And retained the genetic diversity of the breeding population with the smallest
sample population [32]. With the completion of the whole genome sequencing of T. sinensis,
it is more urgent than ever to construct a core collection of T. sinensis with rich genetic
diversity and breed urgently needed excellent varieties.

The construction of core collections Is an effective way to improve the efficiency of
variety improvement, and the comprehensive evaluation of multiple traits is one approach
to utilizing core collections. Traditional genetic improvement focuses on specific char-
acteristics, such as plant yield, resistance, and ornamental value. The selected varieties
may only fulfill a certain type of demand, without evaluating the overall adaptability and
comprehensive performance of plants. With the market’s development, people no longer
just evaluate a single characteristic of a plant, but also have higher requirements for the com-
prehensive performance of multiple traits. Therefore, comprehensive evaluation of plant
phenotypes has become an important way to meet current needs. Common comprehensive
evaluation methods of plant phenotypes include gray relational degree method, fuzzy
comprehensive evaluation method, TOPSIS, and CRITIC weight method [33–35], which
have been widely applied in multi-indicator comprehensive analysis. Li et al. established a
comprehensive evaluation method for beet based on six quality indexes, including total
amino acid, betaine, sugar, potassium, sodium, and α-N content [26]. T. sinensis is a tree
species used for vegetables and timber. The characters of the main trunk, branches, and
compound leaves determine the economic value of T. sinensis species to a large extent.
However, there are few studies on the construction of a core collection of T. sinensis and
the comprehensive evaluation of its main economic traits [20–22], which greatly limits the
efficient preservation and utilization of germplasm resources of T. sinensis.

This study mainly achieves two goals: One is to construct the core collection of
T. sinensis, and the other is to establish a comprehensive evaluation method of the multiple
phenotypes of T. sinensis. To achieve the above goals, we have carried out the following
research work. A total of 1040 resources of T. sinensis from Xinsha Island, Zhejiang Province
were selected in this study. A total of 13 pairs of SSR Loci were used for genotyping. We used
different genotypes of these individual plants for genetic diversity and genetic structure
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analysis. In addition, we revealed the genetic relationship of the breeding population
and constructed the core collection of T. sinensis, which will make more effective use of
T. sinensis germplasm resources. Based on eight agronomic traits of core collection, we
established a comprehensive evaluation method of T. sinensis and screened the individual
plants with excellent traits, which provided an effective reference for the industrialization
development of T. sinensis resources.

2. Materials and Methods
2.1. Plant Materials

A total of 1040 seedlings of T. sinensis were planted at the nursery site of Xinsha Island,
Hangzhou, Zhejiang Province. The seedlings were collected from China, Britain, and New
Zealand, and together formed the breeding population. The provenances of T. sinensis from
China were mainly distributed in eight geographical regions, namely, Guanzhong plain,
southern Guangxi-Yunnan mountains, north China plain, Qinling mountains, Shandong
hills, Wuling mountains, Yunnan-Guizhou plateau, and Wuyi mountains. T. sinensis
has pinnately compound leaves with different lengths. The leaves are in an opposite
arrangement. There are hairs on the back of leaves, and the density of hairs varies among
different varieties. In August 2021, the leaves of each individual were collected and
transported to the laboratory in low-temperature insulated boxes.

The T. sinensis individuals selected in this study were 3-year-old seedlings planted on
the flat land of Xinsha Island, which is rich in water resources, fertile soil, and sufficient
light. The area can meet the basic growth needs of T. sinensis. In addition, attention was
paid to the prevention of diseases and control of insect pests, as well as weeding in the
plantation. As a result, T. sinensis grows and adapts well to the environment of the area.

2.2. Experimental Methods
2.2.1. DNA Extraction

The total DNA of the collected samples of T. sinensis was extracted by using a DNA
extraction kit (DP305) (Tiangen, Beijing, China). The concentration of T. sinensis DNA was
detected by using NanoDrop2000 ultramicro spectrophotometer (Thermo Fisher Scientific,
Shanghai, China). The quality of the DNA was detected by running a 1.5% (mass fraction)
agarose gel electrophoresis. The DNA sample was then stored at a temperature of −20 ◦C
until it was ready for use in subsequent experiments.

2.2.2. SSR Typing

In this study, SSR loci were developed based on data of transcriptome and genome data of
T. sinensis. Multiple PCR technology was used to amplify the standard genome as a template.
The efficient and specific amplification of each pair of primers in the multiple systems was
judged through sequencing optimization (Table 1). The PCR products were then subjected
to high-throughput sequencing using the Illumina HiSeq platform in a 2 × 150/2 × 250 bp
dual-terminal sequencing mode to obtain FastQ data. Finally, SSR typing was carried out by
comparing the FastQ data with the reference sequence, followed by data filtering, SSR statistics,
and other processes.

2.2.3. Measurement of Phenotypic Traits

In this study, several traits of T. sinensis were measured and recorded. The height of
the tree (H), the length of the longest compound leaf (ZCFY), and the number of basal com-
pound leaf shedding (FYTL) events were measured using a tape measure. The number of
compound leaves (FYSL), branching number (FZS), logarithm of compound leaves (FYDS),
and the number of basal compound leaf discoloration (FYBS) were counted. Additionally,
the number of leaf dorsal hairs (YBM) was assigned a value from 1–5.
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Table 1. SSR information.

Loci Motifs Target _Length (bp) Primer_Sequence

TC10 TC (7) 182 F: TAGAGACAAGTTTGAGTGGAGCG
R: GCATGTGATGTAGGAGTCTGAACA

TC11 GA (8) 232 F: ACCATGTCAAGAAACCTTTTGTAACA
R: TGAGGCTAAATGTGCATCTCTTGA

TcB27 AG (8) 191 F: GGCAGAGAAGAGCGGTTTTA
R: CGGATCTTTCGCAACGTAGT

XC107 CA (19) 238 F: GGAATTAATCAAGGTTACGCATGCA
R: ACTCTTTCCCTAACTTATGGTGATTTCA

XC193 TG (16) 237 F: TGAATGTGGCTAGTCTGGAAAATTT
R: TCTCTTAAGCCTCGATGATGTGT

XC227 TC (17) 263 F: AGATGCCTTCTTGAGCTTGAAAGA
R: GGTTATTCCCAAGGTCAACAGAAA

XC239 CA (14) 277 F: ACATAACAACCGTCACACACTCG
R: CAGTCCACACCCCAAACTTAGAT

XC301 TG (25) 242 F: CCCACCGACCTCACTTTAAATCT
R: TCCAACACAATCACGTCATTCTCA

XC316 AG (23) 248 F: TCCAAGAGAAATCCACCACTTGA
R: TGACCATTCTACCCTTATGTTCAGA

XC320 AG (15) 256 F: GGCCACTCCTGCATACACAA
R: AGACATGGTGGCCCTCCTAC

XC35 CT (10) 259 F: TGACATGATGGCGATTTACAGGT
R: TGTTAAACCTTCTCCTGACTAATCCA

XC41 AC (12) 186 F: GCTTTACTGGGATTGCTGGGAAT
R: TTTACACTGAACTCTGCAATCACTT

XC66 CAT (9) 190 F: TATGGCCCATGATCATCGTCAAC
R: AGTGTGATGTAGAGGAGGTGGAG

2.3. Data Analysis
2.3.1. Analysis of the Genetic Diversity and Structure of the Breeding Population

Genetic diversity parameters of SSR loci and populations were calculated by GenAlex
v6.5 software [36], including the average number of alleles (Na), effective number of
alleles (Ne), Shannon diversity index (I), observed heterozygosity (Ho), and expected
heterozygosity (He). The polymorphism information content (PIC) of each SSR locus was
calculated by Powermarker v3.25 [37].

Based on the neighbor-joining (NJ) method, the phylogenetic tree of the breeding pop-
ulation with 1040 individuals was constructed by MEGA 11 [38]. Based on 13 pairs of SSR
Loci, the genetic structure of the breeding population was explored by using STRUCTURE
v2.3.4. The burn-in period was set at 5000, Markov Chain Monte Carlo (MCMC) was set
at 50,000, and each K value was independently calculated 10 times. We used GenAlex for
principal coordinate analysis (PCoA) and set default parameters to draw a scatter diagram
composed of principal coordinates 1 and 2.

2.3.2. Construction of Core Collection

Core Hunter 3 [39] and Powermarker software were used to select different alterna-
tive populations according to different sampling ratios, and GenAlex and Powermarker
software were used to calculate the average number of alleles, effective number of alle-
les, Shannon diversity index, and other parameters of genetic diversity. We selected the
alternative core collection by comparing the differences among alternative populations.

2.3.3. Analysis of Phenotypic Data

The maximum value (Max), minimum value (Min), mean value (Mean), variance
(SD), and coefficient of variation (CV) of each trait were calculated using the SPSSAU
online website [40]. The corrplot package of R software [41] was used for the analysis of
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phenotypic correlation. The dimensionless processing of the original data of different traits
of T. sinensis was performed, and the formula is as follows:

Dimensionless of positive indicators (H, FZS, ZCFY, FYDS, and FYSL):

Dni =
Oni

Oimax

Dimensionless of negative indicators (YBM, FYTL, and FYBS):

Dni = 1 − Oni
Oimax

,

where Dni represents the dimensionless results of different traits corresponding to different
individual plants, Oni represents the original values of different traits corresponding to
different individual plants, and Oimax represents the maximum values of different traits.

The weight value (Wn) of each trait was calculated by PCA on the online website of
SPSSAU, and the decision-making matrix R was calculated by weighting all dimensionless
indices. The positive ideal solutions (X+) and negative ideal solutions (X−) for each
character were obtained according to matrix R, and the Euclidean norm was used as the
distance measure to obtain the positive ideal solution distance (Si+) and negative ideal
solution distance (Si−) for each individual plant. Finally, the relative proximity of the ideal
solution (Ci) for each individual plant was calculated [42].

3. Results
3.1. Analysis of Genetic Diversity of Breeding Population

The genetic diversity of breeding populations is characterized by different genetic
diversity parameters. As shown in Table 2, the average number of alleles (Na) ranged from
9 to 41, with an average of 23.231. The number of effective alleles (Ne) ranged from 2.234 to
18.419, with an average of 8.114. There is a great difference between Na and Ne, indicating
that the allele frequency is unevenly distributed at different loci. The Shannon diversity
index (I) ranged from 1.292 to 3.084, with an average value of 2.263. This shows that this
breeding population has high species diversity. The observed heterozygosity (Ho) was
0.448–0.942, and the mean value was 0.622. The expected heterozygosity (He) ranged from
0.552 to 0.946, with an average of 0.823. The mean of expected heterozygosity was slightly
higher than the mean of observed heterozygosity. This indicates that some genetic variation
in the population has not been detected. The polymorphism information (PIC) content
ranged from 0.542 to 0.943, with an average of 0.806. The results show that the sites we
selected are all above moderate polymorphisms, most of which are high polymorphisms.
The level of genetic diversity of the breeding population is high.

3.2. Construction of Alternative Core Collection

The differences in the genetic diversity parameters of alternative populations with
different sampling methods are shown in Appendix A. Compared with the genetic diver-
sity parameters of the breeding population, the capture of genetic diversity of alternative
populations with different sampling ratios is displayed in Figure 1. As seen from the figure,
the captured Na, Ne, and Ho values screened by Core Hunter 3 showed obvious fluctuations,
while the captured genetic diversity parameters, I, He, and PIC, showed no obvious differ-
ences. However, the captured genetic diversity parameters (except Na and Ho) of these six
alternative populations were all greater than 100%, indicating that alternative populations
screened by Core Hunter 3 could represent the genetic diversity of the whole population to
a certain extent. Among the alternative populations screened by Powermarker, the captured
two genetic diversity parameters, Ho and He, in some alternative populations reached 100%,
but the rest failed to capture all the genetic diversity of the breeding population. In sum-
mary, the results of Core Hunter 3 screening are more representative of the genetic diversity
of the breeding population. In addition, according to the screening results of Core Hunter 3
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with different proportions, the alternative population, 20% of the breeding population, had
Na values of more than 85%. The alternative population, 10% of the breeding population
had Ho values of 85%, and the Ne, I, He, and PIC values could capture all the entire genetic
diversity of the breeding population. Several alternative core collections were obtained
with different sampling strategies, and the captured genetic diversity parameters were
different. To preserve the genetic diversity of the breeding population and minimize the
core collection as much as possible, we determined 20% as the sampling ratio and selected
Core Hunter 3 software to construct the core collection.

Table 2. Genetic diversity of different EST-SSR loci.

Loci Na Ne I Ho He PIC

TC10 27 9.922 2.7 0.639 0.899 0.893
TC11 20 3.869 1.572 0.481 0.742 0.697
TcB27 15 4.138 1.63 0.643 0.758 0.721
XC107 35 13.137 2.906 0.506 0.924 0.919
XC193 26 11.259 2.756 0.513 0.911 0.906
XC227 22 11.281 2.608 0.811 0.911 0.905
XC239 19 2.234 1.482 0.524 0.552 0.542
XC301 41 9.807 2.807 0.448 0.898 0.892
XC316 30 18.419 3.084 0.603 0.946 0.943
XC320 23 5.995 2.282 0.942 0.833 0.822
XC35 15 5.284 1.976 0.696 0.811 0.792
XC41 20 7.263 2.319 0.779 0.862 0.851
XC66 9 2.879 1.292 0.498 0.653 0.59
Mean 23.231 8.114 2.263 0.622 0.823 0.806

Na: number of alleles; Ne: number of effective alleles; I: Shannon diversity index; Ho: observed heterozygosity;
He: expected heterozygosity; PIC: polymorphic information content.
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Abscissa: These represent alternative core collections, accounting for 5%, 10%, 15%, 20%, 25%, and
30% of breeding populations using Core Hunter 3 and Powermark, respectively. Ordinate: The
numerical value represents the proportion of the genetic diversity parameters of alternative core
populations compared to the breeding population.
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3.3. Genetic Structure Analysis of the T. sinensis Breeding Population

The neighbor-joining (NJ) tree of all the T. sinensis individuals was constructed by
MEGA 11 (Figure 2A). The genetic structure of the breeding population was detected
according to the numbering order of the evolutionary tree, and the alternative population
number was calculated by Structure Harvest. The graph of the relationship between Delta
K and K values shows that the maximum value of Delta K occurs when K = 2 (Figure 2B).
The genetic components of individual plants at multiple K values (K = 2 - 7) were compared,
and the distribution was reasonable when K = 2 (Figure 2C). The result of grouping was
basically consistent with the two types of individuals in the evolutionary tree. The genetic
composition of some samples between two genetic clusters is not single, which may be
the offspring of gene exchange between two genetic clusters. In conclusion, a breeding
population of 1040 members could be divided into two genetic clusters.
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2 represent two genetic clusters in the phylogenetic tree of the breeding population. (B) A graph
showing the relationship between Delta K and K values. (C) Estimation of the genetic structure of the
T. sinensis breeding population with different K values (K = 2–7).

Principal coordinate analysis (PCoA) was used to analyze the distribution of core
collections in the breeding population (Figure 3). The results showed that the first and
second coordinates of PCoA accounted for 11.45% and 8.44% of the total genetic variation,
respectively. Regardless of the first coordinate or the second coordinate, the whole popula-
tion is roughly divided into two groups, and the core collection is also divided into two
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groups (Table 3). The distribution of the core collection and the breeding population is
basically the same.
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individuals excluding core collection in breeding population.

Table 3. Statistics of selected individuals of the core collection of different genetic clusters.

Cluster Number Proportion

Cluster1 263 25.29%
Core 23 2.21%

Retain 240 23.08%

Cluster2 777 74.71%
Core 185 17.79%

Retain 592 56.92%
Total 1040 100.00%

Cluster: two genetic clusters of the genetic structure of the breeding population; Number: number of individuals;
Proportion: the proportion in each cluster and breeding population.

3.4. Comprehensive Evaluation and Analysis of Core Collection
3.4.1. Descriptive Statistics

As shown in Table 4, the coefficient of variation (CV) of different traits had a large
difference. FYTL had the largest coefficient of variation (92.16%) and ZCFY had the smallest
coefficient of variation (only 18.69%). The results indicated that there was a large difference
in the number of basal compound leaves shed among different individual plants, and the
difference in the length of the longest compound leaves was small.

Table 4. Statistics of eight agronomic traits in the core collection.

Traits Min Max Mean ± SD CV

H/cm 40.00 280.00 160.09 ± 45.058 28.15%
FZS/unit 1.00 9.00 3.04 ± 1.584 52.15%
ZCFY/cm 25.00 102.67 63.50 ± 11.866 18.69%
FYDS/pair 8.00 24.50 15.25 ± 3.260 21.38%
FYSL/unit 10.00 70.00 33.03 ± 10.879 32.93%

YBM/grade 1.00 5.00 2.04 ± 1.309 64.06%
FYTL/unit 0.00 9.00 2.31 ± 2.127 92.16%
FYBS/unit 0.00 34.00 4.82 ± 3.713 77.07%

FYSL: number of compound leaves, H: height of tree, FZS: number of branches, ZCFY: length of longest compound
leaves, FYDS: logarithm of compound leaves, YBM: number of leaf dorsal hairs, FYTL: number of basal compound
leaf shedding, FYBS: number of basal compound leaf discoloration, CV: coefficient of variation.
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3.4.2. Correlation Analysis of Eight Agronomic Traits

Figure 4 shows the correlation and significance of the eight traits in the core collection
of T. sinensis. There is a positive correlation between FYDS, H, and ZCFY, while there is a
negative correlation between FYDS and FYBS; the correlation coefficients are 0.64, 0.15, and
−0.26, respectively. Among them, the correlation between FYDS, H, and FYBS reaches a
very significant level, and the correlation between FYDs and ZCFY reaches a significant
level. H was positively correlated with ZCFY, and the correlation coefficient reached 0.36.
ZCFY was positively correlated with FYDS and YBM, and the correlation coefficients were
0.50 and 0.29, respectively. FYDS was positively correlated with YBM and FYBS, and the
correlation coefficients were 0.39 and 0.2, respectively. YBM was positively correlated with
FYTL and FYBS, and the correlation coefficients were 0.24 and 0.19, respectively. FYTL was
positively correlated with FYBS, with a correlation coefficient of 0.21.
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3.4.3. Weight Determination of Each Trait Based on PCA

Principal component analysis (PCA) is a very effective method to reduce the dimen-
sionality of high-dimensional data while retaining most of the information in the set. Using
KMO and Bartlett’s test, the results show that KMO is 0.568, which meets the basic require-
ments of KMO values greater than 0.5 in PCA. The corresponding p value of the Bartlett’s
test is less than 0.05, indicating that it is suitable for PCA. In this study, three principal
components were extracted after the standardization of the above eight agronomic traits
by the PCA method (Table 5). Their variance interpretation rates are 24.47%, 23.73%, and
14.15%, respectively. The cumulative variance interpretation rates are 62.35%. The linear
combination coefficient matrix was calculated by dividing the load coefficient by the square
root of the corresponding characteristic root, and the linear combination coefficient was
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multiplied by the variance interpretation rate. Then, they were divided by the cumulative
variance interpretation rate to obtain the comprehensive score coefficient, which was nor-
malized to obtain the weight value of each trait. The weight values of each character were
15.42%, 8.97%, 12.01%, 15.00%, 14.20%, 13.37%, 10.49%, and 10.53%, respectively.

Table 5. Weight value of each trait based on PCA.

Traits PCA1 PCA2 PCA3 Comprehensive Score Weight

H 0.412 0.482 0.138 0.377 15.42%
FZS 0.078 0.080 0.696 0.219 8.97%

ZCFY 0.574 0.006 0.290 0.293 12.01%
FYDS 0.479 0.299 0.284 0.366 15.00%
FYSL 0.265 0.543 0.160 0.347 14.20%
YBM 0.420 0.317 0.182 0.327 13.37%
FYTL 0.112 0.282 0.462 0.256 10.49%
FYBS 0.084 0.445 0.243 0.257 10.53%

Eigenvalue 1.958 1.899 1.132
Variance interpretation rate 24.47% 23.73% 14.15%

3.4.4. Comprehensive Evaluation of Core Collection Based on the TOPSIS Method

The TOPSIS analysis method calculates the distance between ideal solutions by using
positive and negative ideal solutions of each trait to sort all individuals and comprehen-
sively evaluate the performance of the selected traits of each individual plant. Based on the
weight value of each trait calculated by PCA, all dimensionless indicators were weighted to
calculate the decision-making matrix R. The comprehensive score of each individual plant
is shown in the Appendix B, and the comprehensive phenotype of each individual plant is
judged according to the relative proximity of the ideal solution (Ci). The greater the Ci is,
the stronger the comprehensive performance of the plant is, and the stronger the plant’s
adaptability to the environment is, and vice versa. As seen from the following table, the
highest comprehensive score is N0237, with a score of 0.734, and the lowest comprehensive
score is N0196, with a score of 0.379. The comprehensive rank of the top ten individual
plants is N0237, N0972, N0409, N0783, N0048, N0802, N0845, N0981, N0125, and N0074.
The scores of these ten individual plants are all greater than 0.48, which is the best selection
and breeding target for the current eight trait evaluation indices.

4. Discussion
4.1. Construction of Core Collection

Different software programs use different methods to construct core collections [43,44].
Core Hunter 3 evaluates individual plant differences based on SSR marker data using the
modified Roger’s distance [45,46]. In this study, average entry-to-nearest-entry (E-NE) [46]
was selected as the calculation standard of genetic distance, which refers to the average
genetic distance between each selected individual plant and other selected individual plants.
In this way, the entire core collection, including extreme values, can be screened to maximize
the construction of highly polymorphic core collections. In contrast, Powermarker uses the
principle of the simulated annealing algorithm and linkage imbalance of markers to select
a core collection with maximum genetic diversity from a larger germplasm resource [37,47].
The genetic diversity parameters captured by Core Hunter 3 and Powermarker are quite
different under the same sampling ratio. Except for Ho, Core Hunter 3 has an advantage in
capturing the amount of other genetic diversity parameters. Moreover, the Ne, I, He, and
PIC of Core Hunter 3 were higher than those of the breeding population, indicating that the
alternative core collections had higher genetic diversity. We compared the quality of the
core collections constructed by the two software programs and found that a comparison is
more convincing than a core collection constructed by a single method [48,49]. Therefore,
in this study, we adopted alternative core collections constructed by Core Hunter 3, which
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includes more extreme individuals of the breeding population, resulting in more abundant
genetic diversity and better representation of the breeding population’s genetic variation.

The sampling ratio is crucial to the construction of core collection. Brown proposed
core collection in 1989 and used a sampling ratio of 10% [50]. However, with ongoing
research, the sampling ratio of the core collection of different species is not exactly 10%,
basically ranging from 5% to 40% [51,52]. For example, a core collection of just 5% of
mulberry germplasm could represent the genetic diversity of 560 mulberry samples [52].
A sampling ratio of 11% was deemed suitable for constructing a core collection of Perilla
frutescens L., which could include all alleles in the germplasm resource [53]. Similarly,
45 samples of Catalpa fargesii f. could represent the phenotypic and genetic variation of
252 breeding populations, with a sampling ratio of 17.9% [54]. Liu et al. constructed the
core collection of yeast with a 30% sampling ratio. In this study, we compared the sampling
proportions of 5%, 10%, 15%, 20%, 25%, and 30% to determine the best sampling proportion
for constructing the T. sinensis core collection [55]. Finally, we determined that a sampling
ratio of 20% was optimal in constructing a core collection with 208 samples, a size similar to
core collections constructed for Zantedeschia hybrida, masson pine, and Eucalyptus cloeziana
F. Muell [32,56,57]. The reason for this may be that the size of the breeding population
and the level of genetic variation are similar. When constructing the core collection, we
must fully consider the level of genetic diversity and population structure of the breeding
population. Based on the genetic structure analysis and PCoA, the core collection was
evenly distributed in the breeding population, with an appropriate distribution across the
two genetic clusters of the breeding population. The T. sinensis core collection constructed in
this study removed redundant individual plants of the breeding population, improving the
preservation efficiency of germplasm resources of T. sinensis, and providing experimental
materials with higher genetic diversity for the subsequent studies.

The distribution of a provenance Is closely linked to genetic variation [58]. Many
studies have used provenance information to construct core collections. For instance,
the researchers constructed the core collection of Arachis hypogaea L. using taxonomical,
geographic, and morphological descriptors [59]. Similarly, studies of Zea mays L. in the
Chinese National Genebank used geographical distribution and trait data to construct
the core collection [60]. In this study, we constructed the T. sinensis core collection using
representative SSR data. The provenance distribution of the core collection resembled
that of the breeding population, where germplasm resources from the North China Plain
accounted for the largest proportion, with 41.44% and 45.19% in the breeding population
and core germplasm, respectively. Even though there were only a few individuals in the
breeding population from the Guanzhong Plain, Shandong Hills, Yunnan-Guizhou Plateau,
Wuyi Mountains, and Britain, some of them were included in the core collection. This
finding suggests that the constructed core collection can be considered highly representative.
However, the provenance from New Zealand was not included in the core collection,
possibly due to a closer genetic distance between that individual and the other provenances.

4.2. Comprehensive Evaluation of Multiple Traits of Individual Plants in the Core Collection

Different traits have varying impacts on plant growth [61]. To evaluate the adapt-
ability and value of plants in the same growth environment, relying on a single trait to
score individual plants is insufficient [62,63]. It is necessary to comprehensively score
various related economic traits and growth indicators [64]. With different index scores
occupying different proportions in comprehensive evaluation scores, weight assignment is
necessary [65]. Weight calculation methods include PCA [66–68], AHP [69], and the entropy
method [70]. Additionally, we used the TOPSIS comprehensive evaluation method, which
ranks the relative merits based on the distance between evaluation objects and positive and
negative ideal solutions [71–73]. This method is widely used in the electric power industry,
building science, agriculture, and forestry. For example, Liang et al. used the TOPSIS
method and combination weighting to comprehensively evaluate the drought-resistance
traits of maize and identified the best drought-resistance measures [74]. The study above
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uses the combination of analytic hierarchy process (AHP) and entropy weight (EW) to
determine the weight. This method needs to consider the consistency of expert judgment
and requires strong independence among the traits [75]. The correlation coefficient among
many selected traits in this study was 0.01–0.64, indicating that the correlation of some
traits was not strong. Thus, the entropy method might be more suitable for assessing
certain traits. The principal component analysis used in this study helps to reduce the
index’s dimensions and extract principal components that explain the highest variance
of the data [76]. The weight of the index is determined based on the principal compo-
nent’s contribution rate. The weights of different traits were calculated using principal
component analysis. The weights obtained are mainly influenced by the data’s degree of
variation, the number of principal components, and the data distribution. In this study,
three principal components were selected, and the cumulative variance explanation rate
was 62.35%, indicating that the selected principal components could adequately capture the
data’s variation. However, there is still something that cannot be explained. In the results
of the principal component analysis, tree height (H) occupied the largest weight value of
15.42%, indicating that H had a great influence on the plant’s comprehensive performance.
In the comprehensive evaluation, the combination of multiple methods may be helpful in
reducing the limitations of a single method and improving the evaluation’s accuracy. This
study conducted a correlation analysis and comprehensive evaluation of eight agronomic
traits of T. sinensis [77]. The results showed that the Ci values of many varieties, such
as N0237, N0972, and N0409, were higher than those of other varieties, indicating that
these individual plants play a dominant role in the current environment and are important
candidates for the breeding of excellent varieties. Among the top ten individual plants, not
all indicators are in the top ten, but most of the indicators are in the forefront. The excellent
individual plants we selected are based on the current agronomic traits. As phenotypes
change, different target individuals will be obtained. This study provides a preliminary
exploration of the T. sinensis’s main growth indices’ comprehensive evaluation. However,
adding more traits to gradually increase the comprehensive evaluation and analysis of
different varieties is necessary to make a more reasonable judgment.

5. Conclusions

The preservation and utilization of genetic diversity are key to fully utilizing germplasm
resources. Firstly, this study analyzed the genetic diversity of the T. sinensis breeding
population and constructed a core collection consisting of 208 individual plants. The aim was
to efficiently retain the genetic diversity at the lowest cost, providing an effective scheme for
the collection of T. sinensis resources. Secondly, we comprehensively evaluated each plant’s
advantages and disadvantages in selected traits using PCA weight assignment and the
TOPSIS method. This evaluation aimed at utilizing the excellent individual plants in the core
collection. We screened plants with strong adaptability, providing a reference for cultivating
new T. sinensis varieties with excellent traits and strong resistance. In conclusion, this study
gradually analyzed the preservation of genetic variation in the T. sinensis population and
comprehensively evaluated each individual’s traits. Our findings provide new ideas for the
subsequent genetic improvement and utilization of other populations.
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Appendix A

Sampling Method Na Ne I Ho He PIC

CH52_5% 15.923 8.668 2.317 0.487 0.856 0.841
CH104_10% 18.231 9.324 2.359 0.538 0.854 0.839
CH156_15% 19.385 9.437 2.361 0.555 0.849 0.834
CH208_20% 20.154 9.622 2.365 0.581 0.847 0.833
CH260_25% 20.692 9.649 2.370 0.589 0.847 0.832
CH312_30% 21.462 9.495 2.362 0.595 0.843 0.828
PM52_5% 15.308 7.031 2.145 0.614 0.811 0.794

PM104_10% 16.231 7.573 2.168 0.647 0.819 0.801
PM156_15% 17.923 7.391 2.163 0.630 0.806 0.786
PM208_20% 20.154 8.043 2.241 0.610 0.819 0.800
PM260_25% 19.538 8.046 2.241 0.627 0.824 0.807
PM312_30% 20.000 7.939 2.227 0.624 0.817 0.799
1040_100% 23.231 8.114 2.263 0.622 0.823 0.806

Appendix B

Number Rank
Relative Proximity of the

Ideal Solution (Ci)
>Positive Ideal Solutions (X+) Negative Ideal Solutions (X−)

N0237 1 0.734 0.241 0.667
N0972 2 0.725 0.252 0.663
N0409 3 0.711 0.261 0.642
N0783 4 0.707 0.279 0.673
N0048 5 0.696 0.28 0.641
N0802 6 0.683 0.3 0.646
N0845 7 0.676 0.31 0.647
N0981 8 0.675 0.317 0.659
N0125 9 0.665 0.323 0.641
N0074 10 0.664 0.325 0.642
N0989 11 0.663 0.321 0.631
N0064 12 0.663 0.35 0.688
N0300 13 0.661 0.314 0.612
N0165 14 0.66 0.317 0.616
N0556 15 0.659 0.346 0.669
N0397 16 0.657 0.334 0.642
N1002 17 0.656 0.323 0.616
N0569 18 0.656 0.335 0.638
N0814 19 0.656 0.316 0.601
N0750 20 0.653 0.328 0.619
N0820 21 0.65 0.331 0.616
N0842 22 0.646 0.336 0.612
N0002 23 0.644 0.337 0.61
N0986 24 0.641 0.323 0.577
N0192 25 0.641 0.352 0.63
N0844 26 0.641 0.351 0.626
N0082 27 0.64 0.351 0.622
N0424 28 0.638 0.329 0.581
N0522 29 0.638 0.332 0.585
N0068 30 0.636 0.342 0.599
N0303 31 0.633 0.351 0.604
N0525 32 0.632 0.345 0.591
N0853 33 0.631 0.371 0.634
N0326 34 0.63 0.342 0.583
N0123 35 0.628 0.361 0.611
N0324 36 0.625 0.36 0.6
N0041 37 0.625 0.361 0.602



Forests 2023, 14, 1269 14 of 19

Number Rank
Relative Proximity of the

Ideal Solution (Ci)
>Positive Ideal Solutions (X+) Negative Ideal Solutions (X−)

N0053 38 0.624 0.368 0.611
N0987 39 0.624 0.399 0.662
N0831 40 0.624 0.365 0.605
N0792 41 0.622 0.371 0.61
N0065 42 0.621 0.371 0.608
N0701 43 0.62 0.385 0.628
N0352 44 0.616 0.333 0.536
N0650 45 0.616 0.385 0.618
N0157 46 0.615 0.394 0.63
N0927 47 0.613 0.381 0.604
N0866 48 0.613 0.362 0.573
N0904 49 0.61 0.385 0.603
N0992 50 0.61 0.357 0.559
N0455 51 0.609 0.366 0.57
N0765 52 0.608 0.376 0.583
N0418 53 0.606 0.39 0.599
N0240 54 0.606 0.363 0.558
N0143 55 0.604 0.379 0.578
N0136 56 0.604 0.392 0.597
N0983 57 0.604 0.397 0.605
N0079 58 0.603 0.378 0.575
N0795 59 0.603 0.384 0.584
N0381 60 0.603 0.407 0.619
N0826 61 0.603 0.376 0.571
N0139 62 0.602 0.372 0.563
N0859 63 0.6 0.39 0.585
N0641 64 0.599 0.382 0.571
N0512 65 0.599 0.405 0.604
N0439 66 0.598 0.381 0.568
N0539 67 0.598 0.395 0.587
N0340 68 0.597 0.396 0.587
N0977 69 0.595 0.382 0.561
N0863 70 0.594 0.409 0.6
N0290 71 0.592 0.411 0.596
N0793 72 0.592 0.375 0.543
N0364 73 0.59 0.371 0.533
N0189 74 0.589 0.403 0.577
N0248 75 0.588 0.399 0.569
N0103 76 0.588 0.375 0.534
N0769 77 0.587 0.396 0.564
N0150 78 0.587 0.378 0.537
N0329 79 0.585 0.396 0.558
N0865 80 0.583 0.389 0.544
N0764 81 0.582 0.403 0.56
N0119 82 0.581 0.421 0.585
N0159 83 0.581 0.425 0.59
N0587 84 0.58 0.405 0.561
N0834 85 0.578 0.417 0.572
N0114 86 0.577 0.403 0.549
N0991 87 0.575 0.405 0.548
N0272 88 0.573 0.404 0.542
N0663 89 0.572 0.41 0.548
N0912 90 0.571 0.432 0.576
N0564 91 0.571 0.42 0.559
N0388 92 0.57 0.412 0.546
N0784 93 0.57 0.442 0.587
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Number Rank
Relative Proximity of the

Ideal Solution (Ci)
>Positive Ideal Solutions (X+) Negative Ideal Solutions (X−)

N0604 94 0.565 0.429 0.558
N0878 95 0.565 0.416 0.54
N0787 96 0.564 0.426 0.551
N0608 97 0.564 0.443 0.574
N0152 98 0.564 0.451 0.584
N0858 99 0.562 0.427 0.547
N0317 100 0.562 0.433 0.555
N0872 101 0.562 0.452 0.579
N0244 102 0.561 0.419 0.535
N0190 103 0.56 0.427 0.543
N0861 104 0.559 0.411 0.521
N0821 105 0.557 0.396 0.498
N0530 106 0.556 0.448 0.56
N1013 107 0.555 0.424 0.529
N0613 108 0.555 0.419 0.522
N0854 109 0.554 0.432 0.537
N0030 110 0.554 0.437 0.543
N0115 111 0.553 0.421 0.521
N0689 112 0.552 0.434 0.534
N0277 113 0.551 0.437 0.536
N0603 114 0.55 0.429 0.524
N0444 115 0.549 0.433 0.528
N0448 116 0.548 0.406 0.491
N0760 117 0.547 0.429 0.519
N0018 118 0.541 0.478 0.564
N1028 119 0.541 0.507 0.597
N0615 120 0.54 0.447 0.525
N0763 121 0.539 0.455 0.533
N0505 122 0.538 0.499 0.582
N0940 123 0.538 0.468 0.546
N0901 124 0.536 0.46 0.532
N1001 125 0.535 0.468 0.539
N0009 126 0.534 0.456 0.523
N0685 127 0.532 0.438 0.498
N0906 128 0.531 0.488 0.553
N0852 129 0.531 0.425 0.48
N0026 130 0.53 0.459 0.517
N0789 131 0.528 0.447 0.501
N0681 132 0.528 0.443 0.495
N0016 133 0.527 0.506 0.565
N0748 134 0.527 0.433 0.482
N0761 135 0.526 0.451 0.501
N0242 136 0.526 0.476 0.527
N0653 137 0.525 0.442 0.488
N0855 138 0.522 0.456 0.499
N0662 139 0.522 0.42 0.458
N0047 140 0.521 0.456 0.496
N0917 141 0.521 0.462 0.503
N0598 142 0.519 0.455 0.491
N0147 143 0.518 0.456 0.489
N0728 144 0.517 0.535 0.573
N0741 145 0.517 0.469 0.502
N0879 146 0.515 0.458 0.487
N0096 147 0.514 0.494 0.523
N0172 148 0.514 0.531 0.56
N0033 149 0.513 0.473 0.498
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Number Rank
Relative Proximity of the

Ideal Solution (Ci)
>Positive Ideal Solutions (X+) Negative Ideal Solutions (X−)

N0450 150 0.512 0.43 0.452
N0737 151 0.511 0.482 0.505
N0085 152 0.51 0.447 0.465
N0284 153 0.508 0.475 0.49
N0066 154 0.505 0.47 0.479
N0058 155 0.504 0.5 0.507
N0116 156 0.503 0.452 0.457
N0993 157 0.5 0.465 0.466
N0267 158 0.499 0.458 0.456
N0828 159 0.498 0.467 0.463
N0377 160 0.497 0.485 0.48
N0875 161 0.49 0.479 0.461
N0611 162 0.49 0.464 0.446
N0563 163 0.489 0.522 0.5
N0057 164 0.487 0.467 0.444
N0752 165 0.486 0.506 0.479
N0683 166 0.484 0.479 0.449
N0708 167 0.483 0.504 0.472
N0677 168 0.483 0.492 0.46
N0269 169 0.482 0.47 0.438
N0289 170 0.479 0.532 0.489
N0963 171 0.479 0.578 0.531
N0211 172 0.478 0.467 0.429
N0909 173 0.475 0.555 0.502
N0433 174 0.475 0.524 0.473
N0900 175 0.471 0.563 0.501
N0876 176 0.469 0.502 0.443
N0740 177 0.469 0.522 0.461
N0210 178 0.464 0.52 0.45
N0944 179 0.464 0.593 0.513
N0908 180 0.464 0.487 0.421
N0145 181 0.462 0.479 0.411
N0922 182 0.461 0.551 0.472
N0915 183 0.461 0.527 0.451
N0935 184 0.461 0.527 0.45
N1021 185 0.459 0.494 0.419
N0883 186 0.451 0.557 0.458
N0371 187 0.449 0.505 0.411
N0268 188 0.447 0.517 0.418
N0137 189 0.445 0.508 0.406
N0445 190 0.444 0.499 0.399
N0091 191 0.442 0.523 0.414
N0707 192 0.439 0.508 0.397
N0434 193 0.439 0.492 0.384
N0958 194 0.438 0.621 0.485
N0744 195 0.436 0.609 0.471
N0118 196 0.434 0.513 0.394
N0664 197 0.432 0.58 0.441
N0494 198 0.431 0.532 0.403
N0032 199 0.426 0.541 0.402
N0247 200 0.421 0.546 0.398
N0903 201 0.419 0.558 0.402
N0937 202 0.413 0.574 0.403
N0962 203 0.405 0.567 0.386
N0824 204 0.402 0.571 0.384
N0218 205 0.4 0.567 0.378



Forests 2023, 14, 1269 17 of 19

Number Rank
Relative Proximity of the

Ideal Solution (Ci)
>Positive Ideal Solutions (X+) Negative Ideal Solutions (X−)

N0051 206 0.4 0.57 0.38
N0036 207 0.384 0.589 0.367
N0196 208 0.379 0.58 0.355
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