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Abstract: Cadmium (Cd) accumulation in soil is a serious form of heavy metal pollution affecting envi-
ronmental safety and human health. In order to clarify the tolerance mechanisms to Cd-contaminated
soils under N deposition, changes in plant growth, root architecture and physiological characteristics
of Eleocarpus glabripetalus seedlings under combined nitrogen (N) and cadmium (Cd) treatments
were determined in this study. The results indicated that Cd-induced negative effects inhibited the
growth of E. glabripetalus seedlings through increased underground biomass allocation, and affected
transpiration and respiratory processes, resulting in a decreased soluble sugars concentration in
leaves and non-structural carbohydrates (NSC) in the roots. Root systems might play a major role in
Cd absorption. Cd stress restricted the growth of fine roots (<0.5 mm), and affected the uptake of
N and P. N addition alleviated the Cd-induced negative effect on plant growth through improving
the root system, increasing starch and NSC contents in the roots and increasing total biomass. These
findings have important implications for understanding the underlying tolerance mechanisms of Cd
pollution under N deposition in arbor species.

Keywords: cadmium; nitrogen deposition; plant growth; physiological characteristics;
Eleocarpus glabripetalus

1. Introduction

The rapid development of industrialization and urbanization has led to increasingly
serious soil heavy metal contamination. The accumulation of heavy metals could affect
plant growth and even cause ecological imbalance and environmental deterioration [1].
Cadmium (Cd) is a highly toxic heavy metal pollutant in agricultural soil [2] that could be
accumulated in plant organs after being absorbed by plant roots, causing serious damage
to plant growth [3,4]. Cd ions could affect the uptake, transportation and subsequent distri-
bution of nutrient elements in plants [5]. When Cd2+ is excessively accumulated by plants,
it can affect the physiology and biochemical activities of plants, such as photosynthesis,
respiration, transpiration, and even the expression of related genes [6–8].

Global atmospheric nitrogen (N) deposition is steadily increasing with the increased
burning of fossil fuels and the use of man-made fertilizers, and it has considerable effects
on terrestrial ecosystems [9]. Moderate N deposition can contribute to an increase in
plant biomass [10,11]. However, excessive N input can inhibit plant photosynthesis [12],
and cause changes in soil physicochemical properties, resulting in decreased root growth
and affecting plant root morphology [13]. As is widely known, nitrogen is essential for
plant growth and development [14,15]. Nitrogen also plays a crucial role in plant stress
resistance [15,16], and its supply may influence the plant’s ability to cope with abiotic
stress, e.g., heavy metal pollution [17,18]. Adequate N application could enhance plant
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adaptability and resilience under various environmental conditions through promoting the
synthesis of amino acids, enzymes and hormones [16,19,20].

Some research has revealed that N can effectively decrease the Cd toxicity for
plants [21–23]. This alleviation effect of N addition on Cd toxicity differs among plant
species and according to concentrations of Cd and N. It has been reported that appro-
priate N addition could promote root development and enhance Cd accumulation in
plants [24]. High-concentration N supplementation could enhance plants’ growth, as
well as the antioxidant enzymes’ activities, which may partially alleviate AOS accu-
mulation induced by Cd stress [25,26]. However, the exact mechanism of how addi-
tional N alleviates cadmium-induced stress responses remains unknown. Additionally,
many of the previous studies on Cd-stress in plants focused on vegetables [1,27–29]
and crops [30,31], and only a few on woody plants, which are more susceptible to soil
contamination because of their slow growth and the long generation time.

Eleocarpus glabripetalus is a dominant evergreen tree species in the subtropical forest
of China. According to our previous studies, E. glabripetalus seedlings showed a strong
plasticity to Cd stress and acid rain [32]. However, this could not fully explain the adaption
of E. glabripetalus to soil Cd pollution. Therefore, in this study we aimed to understand
the effects of Cd pollution on the morphology and physiology of E. glabripetalus under N
deposition. We hypothesized that (1) N addition could influence eco-physiological traits
under Cd stress, and (2) N addition could alleviate cadmium-induced stress responses.

2. Materials and Methods
2.1. Experiment Design

The experiment was carried out in a greenhouse of the Botanical Garden of Zhejiang
A&F University (119◦44′ E, 30◦16′ N), East China. One-year-old healthy E. glabripetalus
seedlings with a height of 60 cm and a ground diameter of about 0.9–1.0 cm were planted
in plastic pots with 30 cm inner diameter and 40 cm depth. There was one seedling in
each pot, with a PVC plate under the pot. E. glabripetalus seedlings were treated with Cd
treatments (no Cd and 100 mg·kg−1 Cd), N additions (no N addition and 90 kg N·ha−1·yr−1

N addition), and a combined treatment of Cd and N. In each treatment, 12 seedlings were
used as replicates to minimize sampling errors.

According to the reported average soil Cd concentration [33,34], Cd concentrations of
100 mg·kg−1 were selected. The Cd2+ solutions were prepared using CdCl2·5H2O (Chemi-
cal Co. Ltd., Shanghai, China) [32] and were sprayed evenly on the air-dried, reddish-brown
forest soil and mixed well until the soil Cd concentration reached 100 mg kg−1. Then, the
soil was potted, with 10 kg per pot. The same volume of soil with no Cd was also potted as
the control. Then, E. glabripetalus seedlings were planted in pots in January 2019. After two
months of growth, simulated nitrogen deposition treatment was carried out. According
to the atmospheric N deposition of 59.1–70.5 kg N ha−1·yr−1 in eastern China [35], the
average total N deposition of 80 kg N·hr−1·yr−1 [36], and the projected local N deposition
value by 2050 [37], we applied 90 kg N·ha−1·yr−1 as N addition treatments in this study.
Average weekly N deposition rate and N input amounts for each pot were calculated. A
dissolved ammonium nitrate (NH4NO3) solution was sprayed evenly onto leaves and soil
twice a week during the experimental period. The N treatments lasted 180 days, from April
to October.

2.2. Measurements of Gas Exchange Parameters

Three individuals from each treatment were chosen randomly to measure leaf gas
exchange from 8:00 a.m. to 11:30 a.m. after 180 days of treatments. The 3rd to 5th leaves with
the same orientation were selected for gas exchange parameter measurements using LI-6400
system (Li-Cor Inc., Lincoln, NE, USA). The conditions were 25 ◦C leaf temperature, 50%
relative air humidity, 400 ± 5 µmol·mol−1 CO2 concentration and 1000 µmol m−2·s−1 light
intensity. The net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance
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(gs) and intercellular CO2 concentration (Ci) of plants were recorded. Then, the intrinsic
water use efficiency (WUE) was calculated with the following formula:

WUE = Pn/Tr

2.3. Measurements of Root Morphology and Biomass

At the end of treatments, four individuals of each treatment were harvested and
separated into roots, leaves and stems after washing with deionized water. The root system
was imaged using a scanner (LA2400 Scanner, Seiko Epson Corp., Nagano, Japan). A
WinRHIZO System (Version 2012b, Regent Instruments Inc., Québec, QC, Canada) was
used to analyze the total root length, average diameter, root diameter classes, root surface
area, and root volume. Then, the samples were oven-dried to reach a constant dry weight.
Total biomass (TB) was the sum of root biomass (RB), stem biomass (SB) and leaf biomass
(LB). Biomass distributions were calculated with the following formula:

Root to shoot ratio(RSR) = (root biomass)/(stem biomass + leaf biomass)

Then, dried leaves, stems and roots were ground separately and sieved through a
100-mesh sieve for determining the contents of N, phosphorus (P), Cd, starch and soluble
sugar contents.

2.4. Measurements of N, P and Cd Contents, and Non-Structural Carbohydrate (NSC) Contents

The semi-micro-Kjeldahl acid-digestion method was used to determine the N con-
tent in leaves, stems and roots using an Alpkem Auto Analyzer (Kjektec System 2300
Distilling Unit, Tecator AB, Hoganas, Sweden). H2SO4-H2O2 decoction and molybdenum-
antimony colorimetry was used to determined P content. ICP-MS was used to determine
the Cd contents.

The total NSCs contents were considered as the sum of soluble sugars and starch.
Soluble sugars were extracted from dried leaves, stems, and roots in 80% (v/v) ethanol.
Then, the extraction was centrifuged at 5000× g for 20 min. Then, 80% (v/v) ethanol was
added to the pellet, and centrifugated for 5 min at 5000× g. The soluble sugars content in
the supernatant was measured colorimetrically at 620 nm using the phenol-sulfuric method.
Then, starch content was determined from the remaining pellet after the soluble sugars
were extracted. After incubation in sodium acetate and amyloglucosidase solution, starch
content was measured colorimetrically at 650 nm using the phenol-sulfuric method, as
described by Newell et al. [38].

2.5. Data Analysis

Statistical analyses were performed using SPSS v22.0 software (SPSS, Inc., Chicago,
IL, USA). The normality of the data were tested using Levene’s test before analysis, and,
if necessary, natural log transformations were performed. One-way analysis of variance
(ANOVA) was used to analyze the significant difference between the N treatments or Cd
treatments. Two-way ANOVA was used to analyze the interactions of Cd and N treatments.
Statistically significant difference was set at a 95% confidence level. All data were expressed
as means ± standard error (SE, n ≥ 3). Correlation analyses between two variables were
tested with Spearman’s rho correlation coefficients using Origin 2020 (Origin 2020, Origin
Lab, Northampton, MA, USA). Graphs were prepared in Origin 2020.

3. Results
3.1. Gas Exchange

The Pn, gs and Tr of E.glabripetalus seedlings decreased significantly under Cd treat-
ment and N treatment compared with the control group (p < 0.05) (Figure 1). However,
the combined N + Cd treatment increased the Pn, gs and WUE of E. glabripetalus seedlings
significantly compared with the Cd-treated group (p < 0.05). A significant interactive effect
between Cd treatment and N treatment on Pn, gs and Tr was detected (p < 0.05).
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Figure 1. Effects of Cd and N addition on leaf net photosynthesis rate (Pn) (A), stomatal conductance
(gs) (B), intercellular CO2 concentration (Ci) (C), transpiration (Tr) (D) and water use efficiency (WUE)
(E) in E. glabripetalus seedlings. Different letters indicate significant differences between groups (mean
± SE, n = 3) (p < 0.05). PCd, Cd effect; PN, N effect; PN × Cd, the interactive effect of N and Cd.

3.2. Biomass

The total biomass and leaf and stem biomass in the Cd-treated group were significantly
decreased compared with control plants (p < 0.05) (Figure 2). N addition significantly
increased the leaf biomass, while the combined N and Cd treatment significantly increased
the leaf biomass, root biomass and total biomass, compared to the plants under single
cadmium treatment (p < 0.05). Compared with control plants, RSR was significantly
increased under the Cd treatment and combined N + Cd treatment. The Cd and N treatment
had a significant interactive effect on root biomass (p < 0.05).
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Figure 2. Effects of Cd and N addition on leaf biomass (A), stem biomass (B), root biomass (C), total
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3.3. Root Architecture

Cd treatment, N addition and their combination significantly altered the root pheno-
typic traits (Table 1). Cd treatment significantly increased the root average diameter, and
the proportion of the length of fine roots with 0.5–1 mm- and 1–2 mm-diameter classes to
total root length, but decreased the proportion of the length of <0.5 mm-diameter fine roots
to the total root length. N treatment increased the total root length and total root surface
area significantly compared with control groups (p < 0.05). Compared to the Cd- treated
seedlings, the combined N + Cd treatment increased the total root length, total root surface
area, total root volume and the proportion of fine roots (<0.5 mm in diameter) significantly
(p < 0.05), but decreased the root mean diameter and length of roots with 1–2 mm diameter.
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Table 1. Effects of Cd and N addition on root morphology of E. glabripetalus.

N
(kg N
ha−1

yr−1)

Cd
(mg

kg−1)

Total Root
Length

(cm)

Total Root
Surface Area

(cm2)

Average
Root

Diameter
(mm)

Total Root
Volume

(cm3)

The Proportion of the Length of Fine Roots
with Different Diameter Classes to Total Root
Length (%)

0–0.5 mm 0.5–1 mm 1–2 mm

0 0 6236.20 ±
626.70 b

1080.60 ±
34.40 b 0.52 ± 0.02 b 16.79 ± 0.54 b 66.88 ± 1.00 ab 24.97 ± 0.04 bc 8.15 ± 0.97 b

0 100 6445.24 ±
1815.82 b

1342.86 ±
389.49 b 0.64 ± 0.01 a 23.99 ± 3.72 b 56.53 ± 0.16 c 31.40 ± 0.26 a 12.07 ± 0.09 a

90 0 15,991.44 ±
1747.08 a

2318.75 ±
250.20 a 0.50 ± 0.02 b 23.18 ± 4.68 b 72.09 ± 3.01 a 21.88 ± 2.16 c 6.02 ± 0.91 b

90 100 14,579.63 ±
3224.05 a

2602.361 ±
549.36 a 0.55 ± 0.01 b 39.36 ± 5.53 a 64.37 ± 1.32 b 27.86 ± 0.59 ab 7.77 ± 0.73 b

PCd NS NS ** * * * *

PN ** ** * * * NS *

PN × Cd NS NS NS NS NS NS NS

Mean values ± SE (n = 4) are shown. Different letters indicate significant differences between groups (p < 0.05).
PCd, Cd effect; PN, N effect; PN × Cd, the interactive effect of N and Cd. NS, no significance; * p < 0.05 and
** p ≤ 0.01.

3.4. N, P and Cd Contents

N treatment and the combined N + Cd treatment significantly increased the leaf N con-
tent and N/P ratio (Figure 3). The phosphorus content in stems and leaves of E. glabripetalus
seedlings grown under Cd treatment decreased compared with the control group, while
the nitrogen–phosphorus ratio of stems and leaves was significantly increased. The highest
Cd content was found in the roots of the Cd treatment group (Table 2). Compared to Cd
treatment, Cd content in the above-ground parts was significantly increased under the
combined N + Cd treatment, indicating combined N + Cd treatment had a significant
impact on Cd accumulation in above-ground parts (p < 0.05).

Table 2. Effects of Cd and N addition on Cd contents in the root, stem and leaves of
E. glabripetalus seedlings.

N
(kg N·ha−1 yr−1)

Cd
(mg·kg−1 Dry Soil)

Root Cd
(mg·kg−1)

Stem Cd
(mg·kg−1)

Leaf Cd
(mg·kg−1)

0 0 1.95 ± 0.35 c 1.78 ± 0.19 c 0.18 ± 0.05 c

0 100 1701.01 ± 53.06 b 12.2 ± 0.64 b 2.08 ± 1.13 b

90 0 2.85 ± 0.02 c 2.78 ± 0.71 c 0.48 ± 0.11 bc

90 100 2451.07 ± 392.77 a 15.62 ± 0.93 a 5.43 ± 0.14 a

PCd ** ** **

PN NS * *

PN × Cd NS NS *

Mean values ± SE (n = 3) are shown. Different letters indicate significant differences between groups (p < 0.05).
PCd, Cd effect; PN, N effect; PN × Cd, the interactive effect of N and Cd. NS, no significance; * p < 0.05 and
** p ≤ 0.01.
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Figure 3. Effects of Cd and N addition on N contents (A), P contents (B), and N/P ratio (C) in roots,
stem and leaves of E. glabripetalus. Different letters indicate significant differences between groups
(mean ± SE, n = 3) (p < 0.05). PCd, Cd effect; PN, N effect; PN × Cd, the interactive effect of N and Cd.

3.5. Non-Structural Carbohydrate Content

Cd and N treatment decreased the soluble sugar contents in the roots and leaves
of E. glabripetalus (p < 0.05) (Figure 4). However, soluble sugars in the stems remained rela-
tively stable compared with control plants. Cd treatment decreased the stem starch content
but increased the leaf starch content. Combined N and Cd treatments increased the root
starch content but decreased the leaf starch content compared to Cd treatment. The NSCs
contents in root and stem decreased significantly under Cd treatment (p < 0.05). N treat-
ment increased NSCs contents in the root under Cd treatment. The soluble sugar/starch
ratio in leaves was significantly decreased, by 30%, under Cd treatment compared with the
control group. Cd and N treatment had a significant interactive effect on soluble sugars and
the non-structural carbon of leaves, as well as the non-structural carbon of roots (p < 0.05).

3.6. Correlation between the Indicators in E. glabripetalus Seedlings

The leaf biomass and stem biomass were negatively correlated with leaf non-structural
carbohydrate, leaf starch and root mean diameter, and positively correlated with N and P
contents in plants. Root biomass was negatively correlated with root soluble sugar/starch
ratio. Root length and root surface area were negatively correlated with leaf non-structural
carbohydrate and root soluble sugar/starch ratio, and positively correlated with N contents
in plants. Pn was positively correlated with non-structural carbohydrate in plants. Cd
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content in roots, stems and leaves was positively correlated with WUE, root biomass and
root surface area, and negatively correlated with root soluble sugars and non-structural
carbohydrates (Figure 5).
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the 0.05 level.
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4. Discussion
4.1. The Impact of N and Cd Treatments on the Gas Exchange of E. glabripetalus Seedlings

It has been reported that Cd has adverse effects on the gas exchange system in
plants [39–41]. Our results also found that E. glabripetalus seedlings responded to Cd with
an inhibited gas exchange system, which makes them vulnerable to environmental stress.
Previous studies have revealed that Cd could decrease gas exchange attributes [42,43].
Cd stress decreased the Pn, gs and Tr of E. glabripetalus in this study, indicating that Cd
has deleterious effects on transpiration and respiratory processes and stomatal conduc-
tance, ultimately leading to a decline in photosynthesis [44,45]. Inhibited photosynthesis
induced by Cd can be attributed mainly to stomatal and non-stomatal restriction [46]. The
former refers to Cd causing stomatal closure, while the latter refers to the regulation of
the plant’s intrinsic mechanisms. In addition, there was a significant linear correlation
(p < 0.05) between Pn, gs and Tr in seedlings, suggesting that Cd treatments may limit Pn by
affecting the stomatal factors of the plant. Since gs was not significantly correlated with Ci,
the significant decrease in Pn may be due to a combination of stomatal and non-stomatal
factors [46]. Ci was not significantly changed, indicating that leaf stomatal conductance was
decreased in order to reduce leaf transpiration and prevent excessive tissue water deficit,
keeping the rate of carbon dioxide, which indirectly led to the decrease in Pn. These results
indicated that declined Pn, gs and Tr are closely related to plant growth [47,48].

N addition altered the negative effects induced by Cd stress, which was reflected by
a significant increase in Pn, gs and WUE. This indicated that N addition could mitigate
the damage of the gas exchange system induced by Cd. N fertilization could have a
positive effect on Pn, gs and Tr, which are positively related to plant yield [48]. Nitrogen
supplementation helps stomatal opening, slightly restores the level of photosynthesis,
improves the water use efficiency, and reduces stomatal limitations induced by Cd stress.
These results indicate that N addition could help plants to increase their sensitivity to other
stresses [49–51].

4.2. The Impact of Cd and N Treatments on N, P and Cd Contents of E. glabripetalus Seedlings

In the present study, Cd accumulation in E. glabripetalus seedlings was mainly con-
centrated in the root system. Most studies have shown that plant root systems have a
greater capacity to accumulate cadmium than the aboveground parts [52–54]. Normally,
Cd absorbed by plants accumulates first in the root system and is subsequently distributed
to individual tissues [53]. To avoid adverse effects of Cd on the normal physiological
metabolism of the plant, Cd is usually stored in the underground parts, far from sensitive
photosynthetic organs [52,55]. Most of the Cd accumulated in the roots can reduce the
toxic effect of Cd on aboveground tissues and improve the Cd tolerance of seedlings to a
certain extent, which is a self-protection mechanism [53,56]. These results showed that root
systems have a major impact on heavy metal uptake. Root characteristics, such as root size,
root surface area and the fineness of roots, may play the key role in Cd absorption.

In order to avoid unfavorable environmental stresses, plants can adopt some adap-
tation strategies to adapt and protect themselves from stress [57]. For example, plants
could regulate nutrient allocation strategies to meet the nutrient requirements of different
organs under Cd stress [58]. The essential elements absorbed by plant root systems could
be transported to stems and leaves, in which equilibrium can be disturbed by the presence
of heavy metals, thus affecting the elements’ uptake and distribution in plant. This can be
explained by the competition for the same transporters, a disturbance in water uptake as a
result of Cd stress or disturbed key enzymes processes [59]. All these processes have effects
on plant growth, such as on photosynthesis, non-structural carbon distribution and biomass
allocation. According to the correlation analysis, the Cd content in plants was negatively
correlated with N and P content in plants. Thus, it is hypothesized that the allocation of N
and P in various plant parts may be affected by the accumulation of Cd through influencing
the changes and equilibrium regulation in biomass and nonstructural carbon.
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4.3. The Impact of N and Cd Treatments on the Non-Structural Carbohydrates of
E. glabripetalus Seedlings

As is well known, NSCs represent the photosynthesis products and have important
functions in plant development, carbon–nitrogen metabolism and resistance [60]. As the
energy supply substances in plant growth metabolism, NSCs comprise mainly soluble
sugars involved in nonstructural carbohydrate transport in plants or temporary storage,
and starch stored for a long time in different plant tissues for future use, maintaining
function when carbon demand is higher than supply under abiotic stress [61–63]. In this
study, no matter what kind of treatment, starch was the main fraction of NSCs (>69%)
in the roots and was the main storage system of carbohydrates in the roots. However,
soluble sugars are the main fraction of leaf NSCs (>63%) of E. glabripetalus seedlings.
Most of the NSCs were stored in the leaves and the roots, suggesting their importance in
carbohydrate production and NSCs’ storage in E. glabripetalus. Carbon storage in the root
plays a critical role in supporting plant growth under abiotic stress. Cd treatment decreased
root NSCs contents, which may be because the adaption strategies of E. glabripetalus
respond to Cd stress by decreasing carbohydrate temporary storage in the roots to restrict
the new fine root growth, which inhibits Cd uptake. Soluble sugars contribute to the
osmotic adjustment and can indicate an ability to adapt to environmental changes [64].
The decreased soluble sugars concentration induced by Cd in roots and leaves reflected a
decrease in carbohydrates produced by photosynthesis, shown by the decreased Pn, and
also as a result of carbohydrate conversion. These results indicated that the NSCs’ allocation
pattern changes in roots and leaves reflected the dynamic balance between assimilated
savings and growth investment allocation, and plant adaptation strategies to environmental
changes [65,66].

N treatment increased the root starch and NSC contents under Cd stress, with a
decrease in the soluble sugars to starch ratio, indicating the increased starch content to
maintain carbon demand under abiotic stress [67]. N alleviated the adverse effects on
root induced by Cd, since a large portion of starch and NSC were supplied to support
the production of new tissues (such as new fine roots). Furthermore, some of starch and
NSC were also used for plant respiration. The decrease in leaf starch and NSC under
the combined N and Cd treatment indicated that increased stomatal conductance and
photosynthetic rate resulted in less carbon synthesis than consumption [68], showing
that N addition alleviated leaf growth restriction by Cd. These results indicated that
carbohydrates invested in growth or storage may be affected by environmental changes.

4.4. The Impact of Cd and N Treatments on the Growth of E. glabripetalus Seedlings

It has been reported that Cd could have negative effects on plant growth [27,69], often
as the indicator for the toxicity assessment of heavy metals in plants [70,71]. Similar to
the findings of previous studies [32], this study also found that E. glabripetalus seedlings
responded to Cd with decreased above-ground biomass and total biomass. Interestingly,
Cd significantly increased the root biomass allocation, showing that more resources were
allocated to underground parts to resist Cd stress, which reflected the optimal allocation
partitioning in plant biomass [72]. More biomass allocation to the root system may be
associated with a reduction in resource uptake and photosynthesis. In general, heavy
metals may affect the ability of resources (e.g., carbon, nutrients, or water) to be transported
upward from the roots, thereby affecting plant growth [64,73]. The decreased leaf and stem
biomass might result from the large root Cd accumulation, which restricted the nutrient
transportation to stems and leaves. Single N addition has no effect on total biomass
accumulations. However, N addition improved the plant growth under Cd stress by
increasing the total biomass. Meanwhile, nitrogen has a positive influence on root growth
and development, as N treatment significantly increased root biomass and carbohydrate
storage in the root, with increased starch and NSC contents. These results revealed that N
addition effectively alleviated the inhibition of Cd on plant growth [74–76].
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Root morphology is an important indicator for environmental stress tolerance assess-
ment [77,78]. Roots have phenotypic plasticity under stress conditions, which allows plants
to obtain more resources from the surrounding soil environment [79]. In this study, the
roots of E. glabripetalus seedlings became significantly thicker, and the fine roots (<0.5 mm)
were significantly inhibited under Cd treatment, as reported in other studies, where high
Cd could inhibit root hair development and fine root production [80,81]. Lateral and fine
roots could increase the volume of soil reached by the root. However, Cd reduced the pro-
portion of the length of <0.5 mm fine roots to the total root length, making the root system
shorter and thicker and reducing root vigor, which in turn affected the nutrient uptake [80].
As is well known, root systems are extremely important in responding to heavy metals
because root systems can regulate plants’ responses to stress through coordinated nutrients
absorption and distribution in the whole plant [82]. There was a significant correlation
between the root morphology and biomass of E. glabripetalus seedlings, and the root system
of E. glabripetalus seedlings was inhibited by Cd treatment, which affected the nutrient
uptake and thus affected plant growth.

N treatment increased the root growth of E. glabripetalus under Cd treatment, which
was beneficial for increasing water and nutrient absorption. In fact, many studies
have found that moderate N addition could positively alleviate Cd’s adverse effects
on plants [50,76,83]. The reason might be that adequate N supply could alter the bio-
available Cd concentration in the soil [84], which is favorable for plants to absorb more
Cd from the soil. More importantly, N could regulate cell wall isolation, chelation
capacity and oxidative resistance to regulate Cd accumulation in plants [50]. Whether
for N addition or Cd stress, roots are pivotal for elemental iron absorption. Improved
root systems indicate that N addition alleviated Cd-induced toxicity.

Plants under adverse environmental conditions may show effective ecological strate-
gies [85,86]. The changes after N addition indicated that N improved plant stress resistance
by increasing photosynthesis and improving root growth, and affected carbon conversion.
These indicated plants needed response time to adverse environments for plant growth,
and often adopted the physiology-to-phenotype strategy. However, other influencing
factors, e.g., interactions of plant–microbes in the soil, may also participate in Cd stress
responses in E. glabripetalus, and should be considered in the future studies.

5. Conclusions

Our results suggested that Cd stress inhibited the growth of E. glabripetalus. Cd treat-
ment affected transpiration and respiratory processes and stomatal conductance, resulting
in a decline in photosynthesis, which led to decreased soluble sugar concentrations in
leaves and NSC in the roots. Cd affected biomass allocation by decreasing the above-
ground biomass and increasing underground biomass allocation. The growth of fine roots
(<0.5 mm) was restricted by Cd. Most Cd was retained in roots, which affected the distribu-
tion of N and P in the plant. N addition improved the root system by increasing root growth,
and increasing starch and NSC contents in the roots under Cd stress. With increased total
biomass, these results indicated that N addition alleviated Cd-induced growth inhibition.
These findings have important implications for understanding the underlying tolerance
mechanisms of Cd pollution under N deposition in arbor species.
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