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Abstract: Pterocarpus santalinus is considered among the finest luxury woods in the world and has
potential commercial and medicinal value. Due to its rich hue and high price, Pterocarpus santalinus
has often been substituted and mislabeled with other woods of lower economic value. To maintain
the order of the timber market and the interests of consumers, it is necessary to establish a fast and
reliable method for Pterocarpus species identification. In this study, wood samples of Pterocarpus
santalinus and nine other wood samples commonly used for counterfeiting were analyzed by visible
light/near-infrared (Vis/NIR) hyperspectral imaging (HSI). The spectral data were preprocessed
with different algorithms. Principal component analysis (PCA) was applied in different spectral
ranges: 400~2500 nm, 400~800 nm, and 800~2500 nm. Partial least squares discriminant analysis
(PLS-DA) and square support vector machine (SVM) modeling methods were performed for effective
discrimination. The best classification model was SVM combined with a normalization preprocessing
method in whole spectral range (400~2500 nm), with prediction accuracy higher than 99.8%. The
results suggest that the use of Vis/NIR-HSI in combination with chemometric approaches can be
used as an effective tool for the discrimination of Pterocarpus santalinus.

Keywords: PLA-DA; SVM; chemometric; wood identification

1. Introduction

Pterocarpus santalinus, popularly known as “red sanders”, is a slow-growing
forest legume tree that can attain a harvestable size of 70 cm DBH at 80~100 years.
Pterocarpus santalinus has potential commercial and medicinal value, but due to poor
natural regeneration, illegal logging, over-exploitation, and microclimate changes causing
the degradation of natural populations, it has become an endangered species and was
listed as a vulnerable species by the International Union for Conservation of Nature in
1998 [1]. The value of wood per ton was US $12,000 [2] and the global demand was esti-
mated at 3000 tons per year [3]. Pterocarpus santalinus is considered among the finest luxury
woods in the world [4] and is in high demand for musical instruments, toys, furniture, and
handicrafts [5]. The wood is also considered as antipyretic, astringent, anthelmintic, and
diaphoretic in indigenous medicine [6].

Illegal trading and harvesting of Pterocarpus santalinus appears to be widespread due
to its rich hue and high price. It is often substituted and mislabeled with other woods
of lower economic value, like Pterocarpus soyauxii, Pterocarpus tinctorius, Dalbergia louvelii,
and Pterocarpus erinaceus, in the timber market [7]. Numerous seizures of Pterocarpus
santalinus have been reported in China and other countries [7]. The identification of
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Pterocarpus santalinus wood is difficult because it shares morphological and anatomical
similarities with other Pterocarpus species and some Dalbergia species [8]. Moreover, the
Convention on International Trade in Endangered Species (CITES) has limited resources to
assist in the identification of Pterocarpus wood [9].

To maintain the order of the timber market and the interests of consumers, it is
necessary to establish a fast and reliable method for Pterocarpus species identification.
Traditional wood identification methods were mainly carried out from the perspective
of physics and anatomy. Despite the effectiveness of these methods, they have intrinsic
disadvantages of high cost, lack of speed, and generally are only accurate to the genus
level [10,11]. By contrast, optical and chemotaxonomical methods had proven useful
in wood identification [12] and extremely similar wood species can be distinguished by
analyzing their spectral characteristics.

Visible light/near-infrared (Vis/NIR) hyperspectral imaging (his) is a simple, green,
effective, eco-friendly, and qualitative spectroscopic analytical technique [13]. NIR re-
sponds to the energy changing when the non-resonant molecular vibration changes from
the ground state to the excited state, mainly reflecting the overtone and combination of
hydrogen groups X–H [14]. Vis, as a very narrow part of the electromagnetic spectrum
near the NIR, has a similar spectral response to NIR light [15,16]. Spectroscopic analysis
combing Vis and NIR is an efficient and fast modern technology for quantitative and quali-
tative detections. Coupled with suitable modeling methods, Vis/NIR has been successfully
applied in many fields, such as the petrochemical [17,18], agricultural [19,20], food [21,22],
and pharmaceutical [23] industries. In recent years, Vis/NIR has also shown great potential
in forestry applications [24–26]. Compared with Vis/NIR, Vis/NIR-HSI provides simulta-
neous determination of the physical and chemical properties of the sample as well as their
spatial distribution, which overcomes some limitations of Vis/NIR spectroscopy. Therefore,
Vis/NIR-HSI is more suitable for the analysis of heterogeneous samples and allows more
reliable qualitative identification using both spatial and spectral information. Although this
technique requires strong professional judgment, it has greater potential when combined
with machine learning algorithms [27].

In this study, wood samples of Pterocarpus santalinus (expensive) and nine other highly
similar species (less expensive) were analyzed by the Vis/NIR-HSI technique with stan-
dard normal variate (SNV), Savitzky–Golay (SG) smoothing, normalization, and multiple
scattering correction (MSC) preprocessing methods. Different classification models have
been compared and ranked, with the aim of establishing a reliable approach for the iden-
tification of these woods. Furthermore, there are few studies comparing and discerning
which wavelength ranges are suitable for wood identification [28,29]. Using inappropriate
wavelength ranges not only reduces the accuracy of the identification but also increases the
computing costs. This study compared the reliability of spectral data in different ranges
(Vis range, NIR range, entire range) in order to select the optimal range for the identification
of Pterocarpus santalinus.

2. Materials and Methods
2.1. Samples

The scientific classification and number of wood samples are presented in Table 1.
Wood samples were obtained from China National Forestry and Grassland Administration
Wildlife Criminal Evidence Identification Center (Nanjing Forest Police College) including
eight Pterocarpus species and two Dalbergia species. We included only species that had at
least 20 individuals, with 4~8 samples taken from each individual. A total of 800 wood
samples were obtained. In order to develop models, 600 samples were randomly selected
as the calibration set for model calibration and 200 samples were selected as the validation
set for validation.

Air-dried samples (moisture content of 11.5%–12%) were polished using sandpaper
to reduce the roughness of surface and cut to 20 cubic mm (sap wood). According to our
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previous research, a transverse section of wood is more suitable for wood identification [27].
In this study, spectral data were scanned in a transverse section of the samples.

Table 1. The plant materials used in the study.

Scientific Classification Calibration Set Validation Set

Pterocarpus soyauxii 60 20
Pterocarpus tinctorius var. chrysothris 60 20
Pterocarpus santalinus 60 20
Pterocarpus erinaceus 60 20
Pterocarpus indicus 60 20
Pterocarpus macrocarpus 60 20
Dalbergia louvelii 60 20
Dalbergia melanoxylon 60 20
Pterocarpus tinctorius 60 20
Pterocarpus angolensis 60 20

2.2. Equipment and Spectra Acquisition

Vis/NIR spectra of wood samples were collected in a darkroom using a Vis/NIR spec-
trophotometer (ImSpectorV 10E, Specim, Oulu, Finland). The light source was provided
by a 350 W halogen lamp (Illumination Technologies, Liverpool, NY, USA) at a 45◦ angle.
The distance between the light source and the surface of the wood sample was 350 mm.
The spectroradiometer was located approximately 170 mm from the surface of the wood to
be analyzed. The detection wavelength range of the spectrometer was 400~2500 nm and
the sampling range of the Vis/NIR spectrophotometer was 6.2 nm. The light source was
turned on 15 min earlier to allow the halogen lamps to warm up prior to analysis. Before
spectrum acquisition, the instrument was calibrated with a black (covered camera lens)
and white image (99.9% reflectance Teflon white plate). Wood samples were placed on a
black cloth. For each sample, 80 spectra were scanned and averaged (Figures 1 and 2).
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2.3. Model Development

Wood identification is needed in qualitative analysis. Principal component anal-
ysis (PCA), partial least squares discriminant analysis (PLS-DA), and square support
vector machine (SVM) modeling methods were performed separately for the Vis range
(400 nm~800 nm), the NIR range (800 nm~2500 nm), and the entire spectral range with
PLS-toolbox 802 (Eigenvector Research, Inc., Manson, WA, USA). In addition, SNV, SG
smoothing, normalization, and MSC preprocessing methods were employed before model
development.

The value of accuracy rate, sensitivity, and specificity were used to determine the
performance of models. The accuracy rate is the ratio of true positives to the total number
of samples. Sensitivity allows for the assessment of how well the model can identify
samples that belong to a particular class, and specificity measures the capacity of the
model to reject nonbelonging samples. In this study, three statistical parameters were
considered to evaluate the models. The flowchart for the identification of wood samples
using Vis/NIR-HSI technique is shown in Figure 3.
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3. Results
3.1. Spectroscopic Characterization

Vis/NIR are highly suitable for assessment of heterogeneous organic matter, including
wood and wood products. The Vis/NIR spectrum contains information regarding both the
physical state and chemical composition of measured wood samples. The spectral peak
position and its shape corresponds to the presence of specific functional groups possessing
dipole momentum [30].

Figure 4 shows that the eight Pterocarpus species and two Dalbergia species had different
absorbance patterns, with prominent absorption peaks at 780, 980, 1240, 1660, 1930, 2080,
2230, and 2350 nm. The variation in the Vis range would be related to ASTA values
(extractable color) [31]. The peak around 980 nm may associated with the third stretching
overtone of the C-H bonds [32]. The peaks at 1240 nm may correspond to cellulose [33],
while the peak at 1660 nm corresponds to a C-H stretching vibration in the first and second
overtone. The peak at approximately 1930 nm corresponds to an O-H stretching vibration
or O-H-O combination of deformation, and might be due to water peaks [34]. The peaks
at 2080 and 2230 nm correspond to an N-H stretching vibration and are mainly related
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to lipids, carbohydrates, or protein macromolecular organic matter [35]. The peak at
around 2350 nm most likely originates from fat [36,37]. The above characteristic peaks are
associated with the chemical compound content in the wood samples. Overall, the NIR
range provided more useful information than Vis range, which may be more suitable for
wood identification.
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3.2. Principal Component Analysis

A PCA model was applied to preprocessed data to investigate the grouping possi-
bility in the data set. The best results of the PCA model were achieved by a normaliza-
tion algorithm, and therefore the 3D scatterplots of ten tree species were created based
on normalization preprocessed spectra. PCA were performed on three spectral ranges
(400~800 nm, 800~2500 nm, 400~2500 nm) including all wood samples. For three spec-
tral ranges, the first three principal components (PCs) can describe the most variance. In
Figure 5a, PC1 explains 79.2% of total variance, and PC2 explains 14.7% of variance.
Figure 5b represents 95.5% of total variance (PC1 = 79.1%, PC2 = 9.2%, PC = 7.2%). When
including the entire spectral range, the first three main components explain 90.3% of data
variance (PC1 = 66.7%, PC2 = 14.4%, PC = 9.2%).
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Figure 5 illustrates the ten tree species that were clustered into ten groups. How-
ever, there was a moderate overlap between wood samples of Pterocarpus soyauxii and
Pterocarpus tinctorius var. chrysothris and a small overlap between Pterocarpus soyauxii and
Pterocarpus tinctorius. This indicates that Pterocarpus soyauxii and Pterocarpus tinctorius var.
chrysothris were similar to each other in wood spectra. Moreover, the overlap of the groups
is stronger when using only the Vis range, compared to using the NIR and entire spectral
range. PCA scatterplots of spectral data from 800 nm to 2500 nm show the best clustering
compared to the other spectral data ranges. The Vis range was previously reported to be
related to pigment [38]. Some of the wood samples in this study had a similar pigment
composition [39], which may lead to close Vis spectral characteristics. From the outcomes
of PCA analysis, it can be concluded that the results of PCA model are dependent on the
range of spectral data.

3.3. Results Using PLS-DA

In this study, PLS-DA and SVM were used for spectral data classification. Both
chemometric methods belong to the group of supervised techniques and need complete
information regarding the membership of each wood sample to a certain category. These
algorithms are capable of classifying an unknown sample into one of the pre-defined classes
on the basis of its spectral pattern [40].

Tables S1 and S2, and Figure 6 summarize the accuracy, sensitivity, and specificity for
the PLS-DA model and compare different preprocessing algorithms. The PLS-DA model,
as a commonly used classification model, has the advantage of less computational cost; it
can find the best functional match for a set of data by minimizing the sum of squares of the
errors [41]. PLS-DA has been widely used in the analysis of multivariate data. However,
the calculation results show that the PLS-DA model performed poorly in the identification
of eight Pterocarpus species and two Dalbergia species. The best results were achieved for the
NIR range in both calibration and validation sets. The entire spectral range gave slightly
lower accuracy than the NIR range. Therefore, the best choice for modeling with PLS-DA
would be the NIR range.
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In this study, for the sake of suppressing the bad influence of noise, SNV, SG smoothing,
normalization, and MSC preprocessing were used to analyze the Vis/NIR spectra data.
The results for the preprocessed spectra data were improved compared to the raw spectra
data. It is apparent from Table 2 that PLS-DA combined with SG smoothing preprocessing
methods can achieve the highest prediction accuracy, while SNV and MSC treatment
performed relatively poorly. Additionally, there were some differences in the performance
of the preprocessing methods within each spectral range. In this study, the best PLS-DA
model was obtained using NIR spectral data with SG smoothing methods with 96.8% and
96.5% accuracy for calibration and validation sets, respectively. Furthermore, it can be seen
from Figure 6 that Pterocarpus santalinus can be easily confused with Pterocarpus erinaceus
when using Vis range, which may be related to the highly similar ASTA values of the two
species.

Table 2. The accuracy of PLS-DA model with different preprocessing method.

400~800 nm 800~2500 nm 400~2500 nm

Calibration
Set (%)

Validation
Set (%)

Calibration
Set (%)

Validation
Set (%)

Calibration
Set (%)

Validation
Set (%)

Preprocessing Raw 88 84.5 96.7 96.5 90.3 94
SNV 79.2 76 92.8 92 86 88
SG Smoothing 88.8 85.5 96.8 96.5 90.3 94
Normalization 88.8 85 96.5 96 90.3 94
MSC 88.8 85.5 92.7 92 85.8 88.5

Bold values indicate the best results.

3.4. Results Using SVM

SVM is a supervised machine learning algorithm useful for solving both regression
and classification problems. It is a nonlinear classification method that constructs a set of
hyperplanes in a high or infinite dimensional space, and a good separation is achieved
by the hyperplane that has the largest distance to the nearest training data point of any
class [42]. Compared with the PLS-DA model, SVM is not influenced by the distribution of
diverse sample classes.

In contrast to the results of PLS-DA model, the performance of the SVM was better.
The classification accuracy was lower for the spectral range from 400 nm to 800 nm as
compared with the other ranges, but still provided acceptable results. As shown in Table 2,
the best choice with SVM model would be with the entire spectral range, but the difference
was not significant compared to the NIR range. In the NIR and entire spectral range, the
sensitivity and specificity rates present similar values, which means that the error was
balanced.
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The classification accuracy of the SVM model for various preprocessing methods is
illustrated in Table 3. The best results for NIR and entire spectral range were obtained
with the normalization method, with 100% (validation set). In spite of weaker classifica-
tion results for PLS-DA in the Vis range, the SVM model combined with normalization
preprocessing was able to identify eight Pterocarpus species and two Dalbergia species with
an accuracy of 96.5% (calibration set) and 95% (validation set). It needs to be noted that
the use of the SVM model with Vis ranges does not improve the accuracy of identifying
Pterocarpus santalinus (Figure 7).

Table 3. The accuracy of SVM model with different preprocessing method.

400~800 nm 800~2500 nm 400~2500 nm

Calibration
Set (%)

Validation
Set (%)

Calibration
Set (%)

Validation
Set (%)

Calibration
Set (%)

Validation
Set (%)

Preprocessing Raw 96.3 94.5 99.7 99.5 99.8 99.5
SNV 93.2 92.5 97.3 99.5 95.8 98
SG Smoothing 96.5 95 99.7 99.5 99.8 99.5
Normalization 96.5 95 99.7 100 99.8 100
MSC 92.2 91.5 97.3 99.5 96.7 98.5

Bold values indicate the best results.
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4. Discussion

Pterocarpus santalinus has a higher economic value than Pterocarpus soyauxii, Pterocarpus
tinctorius var. chrysothris, and Pterocarpus erinaceus, et al. The identification of Pterocarpus
santalinus and its counterfeits requires specialist skills. In this study, we have used
Vis/NIR-HSI techniques to identify Pterocarpus santalinus and its nine common coun-
terfeit woods. It can be seen from the raw Vis-NIR spectra (Figure 4) that the wavelengths
with the highest variation for Pterocarpus santalinus were mainly at 780, 980, 1240, 1660,
1930, 2080, 2230, and 2350 nm, which were different from its counterfeits. Furthermore,
the original average spectra of all samples in the wavelength ranges of 400~955 nm and
800~2500 nm showed different absorbance peaks related to the vibration energy of the
molecular bonds of O–H, C–H, C–O, and N–H. This demonstrates the potential of using
the Vis/NIR-HSI technique for the identification of wood samples.

In recent years, many studies have focused on the identification of wood using
Vis/NIR techniques, [43] but the optimal wavelength range selection has rarely been
discussed. Choosing an unsuitable wavelength range not only reduces the accuracy of
identification, but it also increases the cost of the equipment. In this study, we developed
a classification model with spectral data in different ranges (Vis range, NIR range, entire
range). When compared to the results of the NIR spectra, the predictive accuracy of the
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classification model developed with full spectra was not enhanced. The reason behind this
may be that the Vis range cannot provide enough spectral information, and noise exists,
leading to the low quality of spectral data. This also demonstrated that few wavelengths are
needed for the identification of Pterocarpus and Dalbergia species. Wavelengths attributed
to wood compounds, such as cellulose and lignin, may have more effects on the prediction
accuracy [28,44,45].

The wood samples used in this study were natural and had not been treated with
formaldehyde, thermally modified, etc. The treatment of wood can significantly affect its
spectral characteristics [46,47]. As treated wood and wood products are very common
in the market, further research is needed in this important area. Furthermore, the wood
samples selected for this study were all sap wood. Different parts of the rosewood may
secrete different substances [48], which may affect the applicability of the models. To build
more accurate classification models, wood samples from different parts are needed in future
studies.

5. Conclusions

In this study, Vis/NIR-HSI techniques have been proven to classify eight Pterocarpus
species and two Dalbergia species. The variability of wood samples and the random
selection of samples for calibration and validation suggest the robustness of the models.
PCA was used to analyze the spectral data of the wood samples. PCA scatterplots of
NIR range show the best clustering compared to the other spectral ranges. Moreover,
it was found that the differences between Pterocarpus soyauxii and Pterocarpus tinctorius
var. chrysothris were not obvious due to similar spectral characteristics. The PLS-DA and
SVM models were established based on different spectral ranges of the raw data and
preprocessed data. The Vis range offered acceptable classification, whereas the NIR range
showed significantly higher identification accuracy based on differences in the absorbance
of lipids, carbohydrates, or protein macromolecular organic matter. It was found that the
SVM model performed better than the PLS-DA method, as shown by its discrimination
accuracy. Satisfactory identification accuracy was obtained, which was 99.5% for both
NIR and entire spectral range (validation set). It can be highlighted that the normalization
preprocessing method combined with SVM model can achieve the highest accuracy in the
whole spectral range (100%, validation set).

This study demonstrated that the Vis/NIR-HSI techniques combined with SVM have
the ability to identify wood from the genera Pterocarpus and Dalbergia. This method is rapid,
easy, and non-destructive, which could reduce the enormous workload of wood experts
and increase the accuracy of testing.

Supplementary Materials: The following supporting information can be downloaded at: https:
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using PLS-DA. Table S2: Results of calibration and validation sets using SVM.

Author Contributions: Conceptualization, X.X.; writing—original draft preparation, Z.C.; data
curation, H.W.; supervision, H.G.; software, J.N. and X.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Excellent scientific and technological innovation team
of higher education in Jiangsu Province, grant number 2019-29; the Qing Lan Project of higher
education of Jiangsu province; National College Student Innovation Training Programme, grant
number 202012213040, 202012213020; the 14th Five-Year Plan (2021–2025) Key Subjects of Jiangsu
province (Police technology).

Data Availability Statement: The datasets generated and analyzed during the current study are
available in the Figshare repository, [https://doi.org/10.6084/m9.figshare.22284712.v1 (accessed on
16 March 2023)].

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/f14061259/s1
https://www.mdpi.com/article/10.3390/f14061259/s1
https://doi.org/10.6084/m9.figshare.22284712.v1


Forests 2023, 14, 1259 10 of 11

References
1. Karthikeyan, A.; Arunprasad, T. Growth Response of Pterocarpus santalinus Seedlings to Native Microbial Symbionts

(Arbuscular mycorrhizal Fungi and Rhizobium aegyptiacum) under Nursery Conditions. J. For. Res. 2021, 32, 225–231. [CrossRef]
2. Soundararajan, V. A Review on red sanders (Pterocarpus santalinus linn.)-Phyto-Chemistry and pharmacological importance.

World J. Pharm. Pharm. Sci. 2016, 5, 667–689.
3. Kukrety, S.; Dwivedi, P.; Jose, S.; Alavalapati, J.R.R. Stakeholders’ Perceptions on Developing Sustainable Red Sanders

(Pterocarpus santalinus L.) Wood Trade in Andhra Pradesh, India. For. Policy Econ. 2013, 26, 43–53. [CrossRef]
4. Prakash, E.; Sha Valli Khan, P.S.; Sreenivasa Rao, T.J.V.; Meru, E.S. Micropropagation of Red Sanders (Pterocarpus santalinus L.)

Using Mature Nodal Explants. J. Res. 2006, 11, 329–335. [CrossRef]
5. Arunkumar, A.N.; Joshi, G. Pterocarpus santalinus (Red Sanders) an Endemic, Endangered Tree of India: Current Status, Improve-

ment and the Future. J. Trop. For. Environ. 2014, 4, 1–10. [CrossRef]
6. Arokiyaraj, S.; Martin, S.; Perinbam, K.; Arockianathan, P.M.; Beatrice, V. Free Radical Scavenging Activity and HPTLC Finger

Print of Pterocarpus santalinus L.—An in Vitro Study. Indian J. Sci. Technol. 2008, 1, 1–3. [CrossRef]
7. Jiao, L.; Yu, M.; Wiedenhoeft, A.C.; He, T.; Li, J.; Liu, B.; Jiang, X.; Yin, Y. DNA Barcode Authentication and Library Development

for the Wood of Six Commercial Pterocarpus Species: The Critical Role of Xylarium Specimens. Sci. Rep. 2018, 8, 1945. [CrossRef]
8. Braga, J.W.B.; Pastore, T.C.M.; Coradin, V.T.R.; Camargos, J.A.A.; Silva, A.R. da The Use of near Infrared Spectroscopy to Identify

Solid Wood Specimens of Swietenia Macrophylla0 (Cites Appendix II). IAWA J. 2011, 32, 285–296. [CrossRef]
9. MacLachlan, I.R.; Gasson, P. PCA of Cites Listed Pterocarpus santalinus (Leguminosae) Wood. IAWA J. 2010, 31, 121–138. [CrossRef]
10. Gasson, P. How Precise Can Wood Identification Be? Wood Anatomy’s Role in Support of the Legal Timber Trade, Especially

Cites. IAWA J. 2011, 32, 137–154. [CrossRef]
11. Ravindran, P.; Thompson, B.J.; Soares, R.K.; Wiedenhoeft, A.C. The XyloTron: Flexible, Open-Source, Image-Based Macroscopic

Field Identification of Wood Products. Front. Plant Sci. 2020, 11, 1015. [CrossRef] [PubMed]
12. Brunswick, P.; Cuthbertson, D.; Yan, J.; Chua, C.C.; Duchesne, I.; Isabel, N.; Evans, P.D.; Gasson, P.; Kite, G.; Bruno, J.; et al. A

Practical Study of CITES Wood Species Identification by Untargeted DART/QTOF, GC/QTOF and LC/QTOF Together with
Machine Learning Processes and Statistical Analysis. Environ. Adv. 2021, 5, 100089. [CrossRef]

13. Sun, X.; Li, H.; Yi, Y.; Hua, H.; Guan, Y.; Chen, C. Rapid Detection and Quantification of Adulteration in Chinese Hawthorn Fruits
Powder by Near-Infrared Spectroscopy Combined with Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021,
250, 119346. [CrossRef] [PubMed]

14. Chen, H.-Z.; Xu, L.-L.; Tang, G.-Q.; Song, Q.-Q.; Feng, Q.-X. Rapid Detection of Surface Color of Shatian Pomelo Using Vis-NIR
Spectrometry for the Identification of Maturity. Food Anal. Methods 2016, 9, 192–201. [CrossRef]

15. da Silva, V.A.G.; Talhavini, M.; Peixoto, I.C.F.; Zacca, J.J.; Maldaner, A.O.; Braga, J.W.B. Non-Destructive Identification of Different
Types and Brands of Blue Pen Inks in Cursive Handwriting by Visible Spectroscopy and PLS-DA for Forensic Analysis. Microchem.
J. 2014, 116, 235–243. [CrossRef]

16. Wu, D.; He, Y.; Nie, P.; Cao, F.; Bao, Y. Hybrid Variable Selection in Visible and Near-Infrared Spectral Analysis for Non-Invasive
Quality Determination of Grape Juice. Anal. Chim. Acta 2010, 659, 229–237. [CrossRef]

17. He, K.; Zhong, M.; Li, Z.; Liu, J. Near-Infrared Spectroscopy for the Concurrent Quality Prediction and Status Monitoring of
Gasoline Blending. Control Eng. Pract. 2020, 101, 104478. [CrossRef]

18. Jingyan, L.I.; Xiaoli, C.H.U.; Pu, C.; Songbai, T. Application of Spectral Automatic Retrieval Algorithm on the Rapid Establishment
of Gasoline Spectral Database. Acta Pet. Sin. (Pet. Process. Sect.) 2017, 33, 131.

19. Lin, Z.D.; Wang, Y.B.; Wang, R.J.; Wang, L.S.; Lu, C.P.; Zhang, Z.Y.; Song, L.T.; Liu, Y. Improvements of the Vis-NIRS Model in the
Prediction of Soil Organic Matter Content Using Spectral Pretreatments, Sample Selection, and Wavelength Optimization. J. Appl.
Spectrosc. 2017, 84, 529–534. [CrossRef]

20. Mishra, P.; Herrmann, I.; Angileri, M. Improved Prediction of Potassium and Nitrogen in Dried Bell Pepper Leaves with Visible
and Near-Infrared Spectroscopy Utilising Wavelength Selection Techniques. Talanta 2021, 225, 121971. [CrossRef]

21. Jiang, Y.; Li, C.; Takeda, F. Nondestructive Detection and Quantification of Blueberry Bruising Using Near-Infrared (NIR)
Hyperspectral Reflectance Imaging. Sci. Rep. 2016, 6, 35679. [CrossRef] [PubMed]

22. Santos, I.A.; Conceição, D.G.; Viana, M.B.; de J. Silva, G.; Santos, L.S.; Ferrão, S.P.B. NIR and MIR Spectroscopy for Quick Detection
of the Adulteration of Cocoa Content in Chocolates. Food Chem. 2021, 349, 129095. [CrossRef] [PubMed]

23. Lakeh, M.A.; Karimvand, S.K.; Khoshayand, M.R.; Abdollahi, H. Analysis of Residual Moisture in a Freeze-Dried Sample Drug
Using a Multivariate Fitting Regression Model. Microchem. J. 2020, 154, 104516. [CrossRef]

24. Amaral, E.A.; dos Santos, L.M.; Hein, P.R.G.; Costa, E.V.S.; Rosado, S.C.S.; Trugilho, P.F. Evaluating Basic Density Calibrations
Based on NIR Spectra Recorded on the Three Wood Faces and Subject to Different Mathematical Treatments. N. Z. J. For. Sci. 2021,
51. [CrossRef]

25. Blaschek, M.; Roudier, P.; Poggio, M.; Hedley, C.B. Prediction of Soil Available Water-Holding Capacity from Visible near-Infrared
Reflectance Spectra. Sci. Rep. 2019, 9, 12833. [CrossRef]

26. Pace, J.-H.C.; de F. Latorraca, J.-V.; Hein, P.; da Silva, C.-E.S. Wood Species Identification from Atlantic Forest by near Infrared
Spectroscopy. For. Syst. 2019, 28, 3.

27. Xue, X.; Chen, Z.; Wu, H.; Gao, H. Identification of Guiboutia Species by NIR-HSI Spectroscopy. Sci. Rep. 2022, 12, 11507.
[CrossRef]

https://doi.org/10.1007/s11676-019-01072-y
https://doi.org/10.1016/j.forpol.2012.08.014
https://doi.org/10.1007/s10310-006-0230-y
https://doi.org/10.31357/jtfe.v4i2.2063
https://doi.org/10.17485/ijst/2008/v1i7.3
https://doi.org/10.1038/s41598-018-20381-6
https://doi.org/10.1163/22941932-90000058
https://doi.org/10.1163/22941932-90000010
https://doi.org/10.1163/22941932-90000049
https://doi.org/10.3389/fpls.2020.01015
https://www.ncbi.nlm.nih.gov/pubmed/32754178
https://doi.org/10.1016/j.envadv.2021.100089
https://doi.org/10.1016/j.saa.2020.119346
https://www.ncbi.nlm.nih.gov/pubmed/33387806
https://doi.org/10.1007/s12161-015-0188-5
https://doi.org/10.1016/j.microc.2014.05.013
https://doi.org/10.1016/j.aca.2009.11.045
https://doi.org/10.1016/j.conengprac.2020.104478
https://doi.org/10.1007/s10812-017-0505-4
https://doi.org/10.1016/j.talanta.2020.121971
https://doi.org/10.1038/srep35679
https://www.ncbi.nlm.nih.gov/pubmed/27767050
https://doi.org/10.1016/j.foodchem.2021.129095
https://www.ncbi.nlm.nih.gov/pubmed/33545603
https://doi.org/10.1016/j.microc.2019.104516
https://doi.org/10.33494/nzjfs512021x100x
https://doi.org/10.1038/s41598-019-49226-6
https://doi.org/10.1038/s41598-022-15719-0


Forests 2023, 14, 1259 11 of 11

28. Ziyang, W.; Shikui, Y.I.N.; Ying, L.I.; Yaoxiang, L.I. Identification of common wood species in northeast China using Vis/NIR
spectroscopy. J. Zhejiang AF Univ. 2019, 36, 162–169.

29. Zhao, P.; Li, Z.-Y.; Wang, C.-K. Wood Species Recognition Based on Visible and Near-Infrared Spectral Analysis Using Fuzzy
Reasoning and Decision-Level Fusion. J. Spectrosc. 2021, 2021, e6088435. [CrossRef]

30. Sandak, J.; Sandak, A.; Zitek, A.; Hintestoisser, B.; Picchi, G. Development of Low-Cost Portable Spectrometers for Detection of
Wood Defects. Sensors 2020, 20, 545. [CrossRef]

31. Palacios-Morillo, A.; Jurado, J.M.; Alcázar, A.; Pablos, F. Differentiation of Spanish Paprika from Protected Designation of Origin
Based on Color Measurements and Pattern Recognition. Food Control 2016, 62, 243–249. [CrossRef]

32. Andrés, S.; Murray, I.; Navajas, E.A.; Fisher, A.V.; Lambe, N.R.; Bünger, L. Prediction of Sensory Characteristics of Lamb Meat
Samples by near Infrared Reflectance Spectroscopy. Meat Sci. 2007, 76, 509–516. [CrossRef] [PubMed]

33. Ali, M.; Emsley, A.M.; Herman, H.; Heywood, R.J. Spectroscopic Studies of the Ageing of Cellulosic Paper. Polymer 2001,
42, 2893–2900. [CrossRef]

34. Núñez-Sánchez, N.; Martínez-Marín, A.L.; Polvillo, O.; Fernández-Cabanás, V.M.; Carrizosa, J.; Urrutia, B.; Serradilla, J.M. Near
Infrared Spectroscopy (NIRS) for the Determination of the Milk Fat Fatty Acid Profile of Goats. Food Chem. 2016, 190, 244–252.
[CrossRef] [PubMed]

35. Badaró, A.T.; Morimitsu, F.L.; Ferreira, A.R.; Clerici, M.T.P.S.; Fernandes Barbin, D. Identification of Fiber Added to Semolina by
near Infrared (NIR) Spectral Techniques. Food Chem. 2019, 289, 195–203. [CrossRef]

36. Krähmer, A.; Engel, A.; Kadow, D.; Ali, N.; Umaharan, P.; Kroh, L.W.; Schulz, H. Fast and Neat—Determination of Biochemical
Quality Parameters in Cocoa Using near Infrared Spectroscopy. Food Chem. 2015, 181, 152–159. [CrossRef]

37. Lequeue, G.; Draye, X.; Baeten, V. Determination by near Infrared Microscopy of the Nitrogen and Carbon Content of Tomato
(Solanum lycopersicum L.) Leaf Powder. Sci. Rep. 2016, 6, 33183. [CrossRef]

38. Bonaccorsi, I.; Cacciola, F.; Utczas, M.; Inferrera, V.; Giuffrida, D.; Donato, P.; Dugo, P.; Mondello, L. Characterization of the
Pigment Fraction in Sweet Bell Peppers (Capsicum annuum L.) Harvested at Green and Overripe Yellow and Red Stages by Offline
Multidimensional Convergence Chromatography/Liquid Chromatography-Mass Spectrometry. J. Sep. Sci. 2016, 39, 3281–3291.
[CrossRef]

39. Tan, Y.; Chen, B.; Ren, C.; Guo, M.; Wang, J.; Shi, K.; Wu, X.; Feng, Y. Rapid Identification Model Based on Decision Tree Algorithm
Coupling with 1H NMR and Feature Analysis by UHPLC-QTOFMS Spectrometry for Sandalwood. J. Chromatogr. B 2020,
1161, 122449. [CrossRef]

40. Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A 2007,
1158, 196–214. [CrossRef]

41. Lestander, T.A.; Lindeberg, J.; Eriksson, D.; Bergsten, U. Prediction of Pinus Sylvestris Clear-Wood Properties Using NIR
Spectroscopy and Biorthogonal Partial Least Squares Regression. Can. J. For. Res. 2008, 38, 2052–2062. [CrossRef]

42. Tian, Y.; Wang, Z.; Han, X.; Hou, H.; Zheng, R. Comparative Investigation of Partial Least Squares Discriminant Analysis and
Support Vector Machines for Geological Cuttings Identification Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta
Part B At. Spectrosc. 2014, 102, 52–57. [CrossRef]

43. Li, Y.; Via, B.K.; Young, T.; Li, Y. Visible-Near Infrared Spectroscopy and Chemometric Methods for Wood Density Prediction and
Origin/Species Identification. Forests 2019, 10, 1078. [CrossRef]

44. Estimation of Pinus Radiata D. Don Tracheid Morphological Characteristics by near Infrared Spectroscopy. Available online:
https://www.degruyter.com/document/doi/10.1515/HF.2004.009/html (accessed on 3 May 2023).

45. Wang, C.-K.; Zhao, P.; Li, Z.-Y.; Li, X.-H. Comparison of VIS/NIR Spectral Curves plus RGB Images with Hyperspectral Images
for the Identification of Pterocarpus Species. Holzforschung 2022, 76, 579–591. [CrossRef]

46. Bächle, H.; Zimmer, B.; Wegener, G. Classification of Thermally Modified Wood by FT-NIR Spectroscopy and SIMCA. Wood Sci.
Technol. 2012, 46, 1181–1192. [CrossRef]

47. Bächle, H.; Zimmer, B.; Windeisen, E.; Wegener, G. Evaluation of Thermally Modified Beech and Spruce Wood and Their
Properties by FT-NIR Spectroscopy. Wood Sci. Technol. 2010, 44, 421–433. [CrossRef]

48. Karthick, M.; Parthiban, K.T. Chemical Characterization of Pterocarpus santalinus Wood Using GC-MS. J. Pharm. Phytochem. 2019,
8, 380–382.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/6088435
https://doi.org/10.3390/s20020545
https://doi.org/10.1016/j.foodcont.2015.10.045
https://doi.org/10.1016/j.meatsci.2007.01.011
https://www.ncbi.nlm.nih.gov/pubmed/22060994
https://doi.org/10.1016/S0032-3861(00)00691-1
https://doi.org/10.1016/j.foodchem.2015.05.083
https://www.ncbi.nlm.nih.gov/pubmed/26212967
https://doi.org/10.1016/j.foodchem.2019.03.057
https://doi.org/10.1016/j.foodchem.2015.02.084
https://doi.org/10.1038/srep33183
https://doi.org/10.1002/jssc.201600220
https://doi.org/10.1016/j.jchromb.2020.122449
https://doi.org/10.1016/j.chroma.2007.05.024
https://doi.org/10.1139/X08-047
https://doi.org/10.1016/j.sab.2014.10.014
https://doi.org/10.3390/f10121078
https://www.degruyter.com/document/doi/10.1515/HF.2004.009/html
https://doi.org/10.1515/hf-2021-0194
https://doi.org/10.1007/s00226-012-0481-z
https://doi.org/10.1007/s00226-010-0361-3

	Introduction 
	Materials and Methods 
	Samples 
	Equipment and Spectra Acquisition 
	Model Development 

	Results 
	Spectroscopic Characterization 
	Principal Component Analysis 
	Results Using PLS-DA 
	Results Using SVM 

	Discussion 
	Conclusions 
	References

