The Impact of Roadkill on Cervid Populations in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.2.1. Lithuanian Police Traffic Supervision Service Data
2.2.2. Nature Research Centre Data
2.2.3. Cervid Population Size and Hunting Bag
2.3. Statistical Analyses
3. Results
3.1. Registered and Unreported Roadkill of Cervids
3.2. Roadkill Relation to Forest Habitat
3.3. Comparison of Cervid Roadkill and Hunting Bag
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Putman, R.J. Ungulates in temperate forest ecosystems: Perspectives and recommendations for future research. Forest Ecol. Manag. 1996, 88, 205–214. [Google Scholar] [CrossRef]
- Latham, J. Interspecific interactions of ungulates in European forests: An overview. Forest Ecol. Manag. 1999, 120, 13–21. [Google Scholar] [CrossRef]
- Corlatti, L.; Zachos, F.E. (Eds.) Terrestrial Cetartiodactyla; Springer Nature: Cham, Switzerland, 2022; pp. 51–86, 165–195, 215–245. [Google Scholar]
- Valente, A.M.; Acevedo, P.; Figueiredo, A.M.; Fonseca, C.; Torres, R.T. Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal Rev. 2020, 50, 353–366. [Google Scholar] [CrossRef]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Rev. 2021, 51, 95–108. [Google Scholar] [CrossRef]
- Boulanger, V.; Dupouey, J.-L.; Archaux, F.; Badeau, V.; Baltzinger, C.; Chevalier, R.; Corcket, E.; Dumas, Y.; Forgeard, F.; Mårell, A.; et al. Ungulates increase forest plant species richness to the benefit of non-forest specialists. Glob. Chang. Biol. 2017, 4, e485–e495. [Google Scholar] [CrossRef][Green Version]
- Fløjgaard, C.; Bruun, H.H.; Hansen, M.D.; Heilmann-Clausen, J.; Svenning, J.C.; Ejrnæs, R. Are ungulates in forests concerns or key species for conservation and biodiversity? Reply to Boulanger et al. (DOI: 10.1111/gcb. 13899). Glob. Chang. Biol. 2018, 24, 869–871. [Google Scholar] [CrossRef][Green Version]
- Kuijper, D.P.; Cromsigt, J.P.; Churski, M.; Adam, B.; Jędrzejewska, B.; Jędrzejewski, W. Do ungulates preferentially feed in forest gaps in European temperate forest? Forest Ecol. Manag. 2009, 258, 1528–1535. [Google Scholar] [CrossRef]
- Cirino, D.W.; Lupinetti-Cunha, A.; Freitas, C.H.; de Freitas, S.R. Do the roadkills of different mammal species respond the same way to habitat and matrix? Nat. Conserv. 2022, 47, 65–85. [Google Scholar] [CrossRef]
- Kałuziński, J. The occurrence and distribution of field ecotype of roe-deer in Poland. Acta Theriol. 1974, 19, 291–300. [Google Scholar] [CrossRef][Green Version]
- Balčiauskas, L.; Wierzchowski, J.; Kučas, A.; Balčiauskienė, L. Habitat suitability based models for ungulate roadkill prognosis. Animals 2020, 10, 1345. [Google Scholar] [CrossRef]
- Singleton, P.H.; Lehmkuhl, J.F. Assessing wildlife habitat connectivity in the Interstate 90 Snoqualmie Pass corridor, Washington. In Proceedings of the Third International Conference on Wildlife Ecology and Transportation, Tallahassee, FL, USA, 13–16 September 1999. [Google Scholar]
- Colino-Rabanal, V.J.; Peris, S.J. Wildlife road kills: Improving knowledge about ungulate distributions? Hystrix 2016, 27, 91–98. [Google Scholar] [CrossRef]
- Dekker, D. Road and rail fatalities of elk, bighorn sheep, and gray wolves in Jasper national park, Alberta, 1980–2018. Northwestern Nat. 2021, 102, 83–88. [Google Scholar] [CrossRef]
- Ha, H.; Shilling, F. Modelling potential wildlife-vehicle collisions (WVC) locations using environmental factors and human population density: A case-study from 3 state highways in Central California. Ecol. Inform. 2018, 43, 212–221. [Google Scholar] [CrossRef]
- Jakubas, D.; Ryś, M.; Lazarus, M. Factors affecting wildlife-vehicle collision on the expressway in a suburban area in northern Poland. North-West. J. Zool. 2018, 14, e171702. [Google Scholar]
- Torres, R.T.; Linck, P.; Pinto, N.; Ares-Pereira, G.; Barroqueiro, C.; Fonseca, C.; Carvalho, J. Landscape and population drivers of ungulate-vehicle collisions in Portugal. Appl. Geogr. 2023, 151, 102859. [Google Scholar] [CrossRef]
- Apollonio, M.; Andersen, R.; Putman, R. (Eds.) European Ungulates and Their Management in the 21st Century; Cambridge University Press: New York, NY, USA, 2010; pp. 578–604. [Google Scholar]
- Balčiauskas, L.; Kawata, Y.; Balčiauskienė, L. Moose Management Strategies under Changing Legal and Institutional Frameworks. Sustainability 2020, 12, 8482. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Kawata, Y. Red Deer in Lithuania: History, Status and Management. Sustainability 2022, 14, 14091. [Google Scholar] [CrossRef]
- Kuzyk, G.; Procter, C.; Marshall, S.; Schindler, H.; Schwantje, H.; Scheideman, M.; Hodder, D. Factors affecting Moose population declines in British Columbia. In 2019 Progress Report: February 2012–May 2019; Wildlife Working Report No. WR-127; Ministry of Forests, Lands, Natural Resource Operations and Rural Development: Victoria, BC, Canada, 2019; p. 73. [Google Scholar]
- Bruinderink, G.G.; Hazebroek, E. Ungulate traffic collisions in Europe. Conserv. Biol. 1996, 10, 1059–1067. [Google Scholar] [CrossRef]
- Mysterud, A. Temporal variation in the number of car-killed red deer Cervus elaphus in Norway. Wildl. Biol. 2004, 10, 203–211. [Google Scholar] [CrossRef]
- Seiler, A. Trends and spatial patterns in ungulate-vehicle collisions in Sweden. Wildl. Biol. 2004, 10, 301–313. [Google Scholar] [CrossRef]
- Rolandsen, C.M.; Solberg, E.; Herfindal, I.; Moorter, B.V.; Sæther, B.-E. Large-scale spatiotemporal variation in road mortality of moose: Is it all about population density? Ecosphere 2011, 2, 113. [Google Scholar] [CrossRef]
- Niemi, M.; Rolandsen, C.M.; Neumann, W.; Kukko, T.; Tiilikainen, R.; Pusenius, J.; Solberg, E.J.; Ericsson, G. Temporal patterns of moose-vehicle collisions with and without personal injuries. Accid. Anal. Prev. 2017, 98, 167–173. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nelli, L.; Langbein, J.; Watson, P.; Putman, R. Mapping risk: Quantifying and predicting the risk of deer-vehicle collisions on major roads in England. Mamm. Biol. 2018, 91, 71–78. [Google Scholar] [CrossRef]
- Raymond, S.; Schwartz, A.L.; Thomas, R.J.; Chadwick, E.; Perkins, S.E. Temporal patterns of wildlife roadkill in the UK. PLoS ONE 2021, 16, e0258083. [Google Scholar] [CrossRef]
- Shilling, F.; Perkins, S.E.; Collinson, W. Wildlife/roadkill observation and reporting systems. In Handbook of Road Ecology; van der Ree, R., Smith, D.J., Grilo, C., Eds.; John Wiley & Sons: Chichester, UK, 2015; pp. 492–501. [Google Scholar]
- Wright, P.G.; Coomber, F.G.; Bellamy, C.C.; Perkins, S.E.; Mathews, F. Predicting hedgehog mortality risks on British roads using habitat suitability modelling. PeerJ 2020, 7, e8154. [Google Scholar] [CrossRef][Green Version]
- Kent, E.; Schwartz, A.L.; Perkins, S.E. Life in the fast lane: Roadkill risk along an urban–rural gradient. J. Urban Ecol. 2021, 7, juaa039. [Google Scholar] [CrossRef]
- Morelle, K.; Lejeune, P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: A species distribution modelling approach. Eur. J. Wildl. Res. 2015, 61, 45–56. [Google Scholar] [CrossRef]
- Morelle, K.; Lehaire, F.; Lejeune, P. Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. Nat. Conserv. 2013, 5, 53–73. [Google Scholar] [CrossRef][Green Version]
- Sèbe, M.; Briton, F.; Kinds, A. Does predation by wolves reduce collisions between ungulates and vehicles in France? Hum. Dimens. Wildl. 2022, 28, 281–293. [Google Scholar] [CrossRef]
- Lagos, L.; Picos, J.; Valero, E. Temporal pattern of wild ungulate-related traffic accidents in northwest Spain. Eur. J. Wildl. Res. 2012, 58, 661–668. [Google Scholar] [CrossRef]
- Rodríguez-Morales, B.; Díaz-Varela, E.R.; Marey-Pérez, M.F. Spatiotemporal analysis of vehicle collisions involving wild boar and roe deer in NW Spain. Accid. Anal. Prev. 2013, 60, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Valero, E.; Picos, J.; Lagos, L.; Álvarez, X. Road and traffic factors correlated to wildlife–vehicle collisions in Galicia (Spain). Wildl. Res. 2015, 42, 25–34. [Google Scholar] [CrossRef]
- Sáenz-de-Santa-María, A.; Tellería, J.L. Wildlife-vehicle collisions in Spain. Eur. J. Wildlife Res. 2015, 61, 399–406. [Google Scholar] [CrossRef]
- Bíl, M.; Kubeček, J.; Sedoník, J.; Andrášik, R. Srazenazver. cz: A system for evidence of animal-vehicle collisions along transportation networks. Biol. Conserv. 2017, 213, 167–174. [Google Scholar] [CrossRef]
- Mrtka, J.; Borkovcová, M. Estimated mortality of mammals and the costs associated with animal–vehicle collisions on the roads in the Czech Republic. Transport. Res. D-Tr. E. 2013, 18, 51–54. [Google Scholar] [CrossRef]
- Bartonička, T.; Andrášik, R.; Duľa, M.; Sedoník, J.; Bíl, M. Identification of local factors causing clustering of animal-vehicle collisions. J. Wildl. Manag. 2018, 82, 940–947. [Google Scholar] [CrossRef][Green Version]
- Bíl, M.; Kubeček, J.; Andrášik, R. Ungulate-vehicle collision risk and traffic volume on roads. Eur. J. Wildl. Res. 2020, 66, 59. [Google Scholar] [CrossRef]
- Pokorny, B. Roe deer-vehicle collisions in Slovenia: Situation, mitigation strategy and countermeasures. Vet. Arhiv 2006, 76, 177–187. [Google Scholar]
- Vrkljan, J.; Hozjan, D.; Barić, D.; Ugarković, D.; Krapinec, K. Temporal patterns of vehicle collisions with roe deer and wild boar in the dinaric area. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2020, 41, 1–13. [Google Scholar] [CrossRef]
- Linnell, J.D.; Cretois, B.; Nilsen, E.B.; Rolandsen, C.M.; Solberg, E.J.; Veiberg, V.; Kaczensky, P.; Van Moorter, B.; Panzacchi, M.; Rauset, G.; et al. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe's Anthropocene. Biol. Conserv. 2020, 244, 108500. [Google Scholar] [CrossRef]
- Kruuse, M.; Enno, S.E.; Oja, T. Temporal patterns of wild boar-vehicle collisions in Estonia, at the northern limit of its range. Eur. J. Wildl. Res. 2016, 62, 787–791. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Balčiauskienė, L. Wildlife-vehicle accidents in Lithuania, 2002–2007. Acta Biol. Univ. Daugavp. 2008, 8, 89–94. [Google Scholar]
- Balčiauskas, L. Distribution of species-specific wildlife–vehicle accidents on Lithuanian roads, 2002–2007. Est. J. Ecol. 2009, 58, 157–168. [Google Scholar] [CrossRef]
- Balčiauskas, L. The Influence of Roadkill on Protected Species and Other Wildlife in Lithuania. In Proceedings of the ICOET 2011 Proceedings, Seatle, WA, USA, 21–25 August 2011. [Google Scholar]
- Balčiauskas, L.; Jasiulionis, M. Reducing the incidence of mammals on public highways using chemical repellent. Balt. J. Road Bridge Eng. 2012, 7, 92–97. [Google Scholar] [CrossRef]
- Wierzchowski, J.; Kučas, A.; Balčiauskas, L. Application of least-cost movement modeling in planning wildlife mitigation measures along transport corridors: Case study of forests and moose in Lithuania. Forests 2019, 10, 831. [Google Scholar] [CrossRef][Green Version]
- Kučas, A.; Balčiauskas, L. Temporal patterns of ungulate-vehicle collisions in Lithuania. J. Environ. Manag. 2020, 273, 111172. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Stratford, J.; Balčiauskienė, L.; Kučas, A. Importance of professional roadkill data in assessing diversity of mammal roadkills. Transp. Res. D Transp. Environ. 2020, 87, 102493. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Roadkill-data-based identification and ranking of mammal habitats. Land 2021, 10, 477. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Impact of road fencing on ungulate-vehicle collisions and hotspot patterns. Land 2021, 10, 338. [Google Scholar] [CrossRef]
- Orlowski, G.; Nowak, L. Factors influencing mammal roadkills in the agricultural landscape of south-western Poland. Pol. J. Ecol. 2006, 54, 283–294. [Google Scholar]
- Smits, R.; Bohatkiewicz, J.; Bohatkiewicz, J.; Hałucha, M. A Geospatial Multi-scale Level Analysis of the Distribution of Animal-Vehicle Collisions on Polish Highways and National Roads. In Proceedings of the International Conference “Vision Zero for Sustainable Road Safety in Baltic Sea Region”, Vilnius, Lithuania, 5–6 December 2018. [Google Scholar]
- Krukowicz, T.; Firląg, K.; Chrobot, P. Spatiotemporal analysis of road crashes with animals in Poland. Sustainability 2022, 14, 1253. [Google Scholar] [CrossRef]
- Basak, S.M.; O’Mahony, D.T.; Lesiak, M.; Basak, A.K.; Ziółkowska, E.; Kaim, D.; Hossain, M.S.; Wierzbowska, I.A. Animal-vehicle collisions during the COVID-19 lockdown in early 2020 in the Krakow metropolitan region, Poland. Sci. Rep. 2022, 12, 7572. [Google Scholar] [CrossRef]
- Borowik, T.; Ratkiewicz, M.; Maślanko, W.; Kowalczyk, R.; Duda, N.; Żmihorski, M. Temporal pattern of moose-vehicle collisions. Transp. Res. D Transp. Environ. 2021, 92, 1027. [Google Scholar] [CrossRef]
- Tajchman, K.; Gawryluk, A.; Drozd, L.; Czyżowski, P.; Karpiński, M.; Goleman, M. Deer-vehicle collisions in Lubelskie region in Poland. Safety coefficients. Appl. Ecol. Environ. Res. 2017, 15, 1485–1498. [Google Scholar] [CrossRef]
- Andersen, D.; Jang, Y. Biodiversity and Transportation Infrastructure in the Republic of Korea: A Review on Impacts and Mitigation in Developing the Country. Diversity 2021, 13, 519. [Google Scholar] [CrossRef]
- Kang, W.; Minor, E.S.; Woo, D.; Lee, D.; Park, C.R. Forest mammal roadkills as related to habitat connectivity in protected areas. Biodivers. Conserv. 2016, 25, 2673–2686. [Google Scholar] [CrossRef]
- Waetjen, D.P.; Shilling, F.M. Large extent volunteer roadkil16l and wildlife observation systems as sources of reliable data. Front. Ecol. Evol. 2017, 5, 89. [Google Scholar] [CrossRef][Green Version]
- Tiedeman, K.; Hijmans, R.J.; Mandel, A.; Waetjen, D.P.; Shilling, F. The quality and contribution of volunteer collected animal vehicle collision data in ecological research. Ecol. Indic. 2019, 106, 105431. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R. The effect of wildlife carcass underreporting on KDE+ hotspots identification and importance. J. Environ. Manag. 2020, 275, 111254. [Google Scholar] [CrossRef] [PubMed]
- European Environmental Agency. Lithuania Land cover Country Fact Sheet. 2012. Available online: https://www.eea.europa.eu/ds_resolveuid/1ca731f33d0c48a0a4ed60abe67fa6bf (accessed on 1 March 2023).
- Balčiauskas, L.; Trakimas, G.; Juškaitis, R.; Ulevičius, A.; Balčiauskienė, L. Lietuvos žinduolių, varliagyvių ir roplių atlasas. In Atlas of Lithuanian Mammals, Amphibians and Reptiles, 2nd ed.; Akstis: Vilnius, Lithuania, 1999; p. 112. [Google Scholar]
- Ministry of Transport and Communications. Roads and Road Transport. Available online: https://sumin.lrv.lt/en/sector-activities/roads-and-road-transport-1 (accessed on 12 March 2023).
- Valstybinės Reikšmės Kelių Duomenys. Available online: https://gis.ktvis.lt/webappbuilder/apps/35/ (accessed on 16 April 2023).
- G-Test Calculator. Available online: https://elem.com/~btilly/effective-ab-testing/g-test-calculator.html (accessed on 10 January 2023).
- How to Calculate CAGR (Compound Annual Growth Rate) in Excel. Available online: https://www.ablebits.com/office-addins-blog/calculate-cagr-excel-formulas/ (accessed on 22 March 2023).
- Pokorny, B.; Cerri, J.; Bužan, E. Wildlife roadkill and COVID-19: A biologically significant, but heterogeneous, reduction. J. Appl. Ecol. 2022, 59, 1291–1301. [Google Scholar] [CrossRef]
- ENETWILD-consortium; Illanas, S.; Croft, S.; Smith, G.C.; López-Padilla, S.; Vicente, J.; Blanco-Aguiar, J.A.; Scandura, M.; Apollonio, M.; Ferroglio, E.; et al. New models for wild ungulates occurrence and hunting yield abundance at European scale. EFSA Support. Publ. 2022, 19, 7631E. [Google Scholar] [CrossRef]
- Canova, L.; Balestrieri, A. Long-term monitoring by roadkill counts of mammal populations living in intensively cultivated landscapes. Biodivers. Conserv. 2019, 28, 97–113. [Google Scholar] [CrossRef]
- Fernández-López, J.; Blanco-Aguiar, J.A.; Vicente, J.; Acevedo, P. Can we model distribution of population abundance from wildlife–vehicles collision data? Ecography 2022, 5, e06113. [Google Scholar] [CrossRef]
- Moore, L.J.; Petrovan, S.O.; Bates, A.J.; Hicks, H.L.; Baker, P.J.; Perkins, S.E.; Yarnell, R.W. Demographic effects of road mortality on mammalian populations: A systematic review. Biol. Rev. 2023. [Google Scholar] [CrossRef]
- Grilo, C.; Koroleva, E.; Andrášik, R.; Bíl, M.; González-Suárez, M. Roadkill risk and population vulnerability in European birds and mammals. Front. Ecol. Environ. 2020, 18, 323–328. [Google Scholar] [CrossRef]
- Grilo, C.; Borda-de-Água, L.; Beja, P.; Goolsby, E.; Soanes, K.; le Roux, A.; Koroleva, E.; Ferreira, F.Z.; Gagné, S.A.; Wang, Y.; et al. Conservation threats from roadkill in the global road network. Global Ecol. Biogeogr. 2021, 30, 2200–2210. [Google Scholar] [CrossRef]
- Apollonio, M.; Belkin, V.V.; Borkowski, J.; Borodin, O.I.; Borowik, T.; Cagnacci, F.; Danilkin, A.A.; Danilov, P.I.; Faybich, A.; Ferretti, F.; et al. Challenges and science-based implications for modern management and conservation of European ungulate populations. Mammal Res. 2017, 62, 209–217. [Google Scholar] [CrossRef][Green Version]
- Martino, S.; Kenter, J.O. Economic valuation of wildlife conservation. Eur. J. Wildl. Res. 2023, 69, 32. [Google Scholar] [CrossRef] [PubMed]
Year | Route Length | Alces alces | Cervus elaphus | Capreolus capreolus |
---|---|---|---|---|
2002 | 2107.0 | 0 | 0 | 0 |
2003 | 1189.0 | 0 | 0 | 0 |
2004 | 1661.0 | 0 | 0 | 0 |
2005 | 2767.0 | 0 | 0 | 0.00022 ± 0.00022 |
2006 | 3735.5 | 0 | 0 | 0 |
2007 | 8423.2 | 0 | 0 | 0.00015 ± 0.00015 |
2008 | 14,630.9 | 0 | 0 | 0 |
2009 | 70,205.2 | 0.00002 ± 0.00002 | 0.00003 ± 0.00002 | 0.00011 ± 0.00006 |
2010 | 2338.2 | 0 | 0 | 0 |
2011 | 3100.2 | 0 | 0 | 0 |
2012 | 3916.0 | 0 | 0 | 0.00016 ± 0.00016 |
2013 | 18,079.0 | 0 | 0.00005 ± 0.00005 | 0.00006 ± 0.00005 |
2014 | 36,175.2 | 0 | 0 | 0.00051 ± 0.00020 |
2015 | 18,272.3 | 0 | 0 | 0.00018 ± 0.00011 |
2016 | 12,275.8 | 0.00013 ± 0.00013 | 0.00003 ± 0.00003 | 0.00126 ± 0.00052 |
2017 | 10,653.4 | 0 | 0.00015 ± 0.00015 | 0.00027 ± 0.00014 |
2018 | 8625.9 | 0 | 0 | 0.00003 ± 0.00003 |
2019 | 7029.3 | 0 | 0 | 0.00028 ± 0.00016 |
2020 | 29,382.5 | 0 | 0.00001 ± 0.00001 | 0.00022 ± 0.00010 |
2021 | 21,073.2 | 0 | 0.00019 ± 0.00011 | |
2022 | 18,737.2 | 0 | 0.00003 ± 0.00003 | 0.00013 ± 0.00007 |
Year | Non-Forest Roadkill, n | Forest Roadkill, n | Forest Roadkill, % | ||||||
---|---|---|---|---|---|---|---|---|---|
A. alces | C. elaphus | C. capreolus | A. alces | C. elaphus | C. capreolus | A. alces | C. elaphus | C. capreolus | |
2002 | 9 | 5 | 106 | 10 | 0 | 44 | 52.6 | 0.0 | 29.3 |
2003 | 7 | 6 | 128 | 5 | 1 | 38 | 41.7 | 14.3 | 22.9 |
2004 | 7 | 5 | 194 | 8 | 2 | 69 | 53.3 | 28.6 | 26.2 |
2005 | 13 | 2 | 205 | 13 | 2 | 86 | 50.0 | 50.0 | 29.6 |
2006 | 26 | 7 | 252 | 21 | 0 | 102 | 44.7 | 0.0 | 28.8 |
2007 | 37 | 8 | 342 | 28 | 3 | 152 | 43.1 | 27.3 | 30.8 |
2008 | 25 | 5 | 374 | 35 | 1 | 113 | 58.3 | 16.7 | 23.2 |
2009 | 17 | 10 | 376 | 21 | 3 | 111 | 55.3 | 23.1 | 22.8 |
2010 | 37 | 5 | 430 | 34 | 0 | 104 | 47.9 | 0.0 | 19.5 |
2011 | 48 | 15 | 356 | 34 | 1 | 110 | 41.5 | 6.3 | 23.6 |
2012 | 47 | 10 | 441 | 39 | 0 | 147 | 45.3 | 0.0 | 25.0 |
2013 | 79 | 17 | 555 | 47 | 8 | 159 | 37.3 | 32.0 | 22.3 |
2014 | 83 | 25 | 794 | 66 | 3 | 243 | 44.3 | 10.7 | 23.4 |
2015 | 112 | 30 | 1150 | 81 | 4 | 319 | 42.0 | 11.8 | 21.7 |
2016 | 144 | 37 | 1606 | 71 | 7 | 455 | 33.0 | 15.9 | 22.1 |
2017 | 103 | 25 | 1241 | 70 | 9 | 348 | 40.5 | 26.5 | 21.9 |
2018 | 167 | 66 | 2298 | 93 | 12 | 559 | 35.8 | 15.4 | 19.6 |
2019 | 188 | 96 | 2977 | 107 | 24 | 661 | 36.3 | 20.0 | 18.2 |
2020 | 138 | 62 | 2752 | 77 | 14 | 626 | 35.8 | 18.4 | 18.5 |
2021 | 150 | 83 | 3146 | 96 | 17 | 683 | 39.0 | 17.0 | 17.8 |
2022 | 162 | 91 | 3043 | 88 | 18 | 613 | 35.2 | 16.5 | 16.8 |
Country | Hunting Bag 1 | Roadkill 1 | % | ||||||
---|---|---|---|---|---|---|---|---|---|
A. alces | C. elaphus | C. capreolus | A. alces | C. elaphus | C. capreolus | A. alces | C. elaphus | C. capreolus | |
Germany | 76,794 | 1,190,724 | 2920 | 191,591 | 3.8 | 16.1 | |||
Sweden | 84,754 | 10,494 | 103,396 | 5941 | 425 | 45,863 | 7.0 | 4.0 | 44.4 |
Norway | 31,613 | 42,541 | 33,280 | 4226 | 3238 | 14,872 | 13.4 | 7.6 | 44.7 |
Austria 2 | 61,545 | 285,718 | 663 | 10,897 | 1.1 | 3.8 | |||
Belgium 2 | 5 | 5762 | 127 | 2.2 | |||||
Lithuania | 1999 | 6405 | 26,592 | 174 | 34 | 2258 | 8.7 | 0.5 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. The Impact of Roadkill on Cervid Populations in Lithuania. Forests 2023, 14, 1224. https://doi.org/10.3390/f14061224
Balčiauskas L, Kučas A, Balčiauskienė L. The Impact of Roadkill on Cervid Populations in Lithuania. Forests. 2023; 14(6):1224. https://doi.org/10.3390/f14061224
Chicago/Turabian StyleBalčiauskas, Linas, Andrius Kučas, and Laima Balčiauskienė. 2023. "The Impact of Roadkill on Cervid Populations in Lithuania" Forests 14, no. 6: 1224. https://doi.org/10.3390/f14061224