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D.; Pilaš, I. Mapping of Allergenic

Tree Species in Highly Urbanized

Area Using PlanetScope Imagery—A

Case Study of Zagreb, Croatia. Forests

2023, 14, 1193. https://doi.org/

10.3390/f14061193

Academic Editor: Elisabetta Salvatori

Received: 8 May 2023

Revised: 1 June 2023

Accepted: 7 June 2023

Published: 9 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Mapping of Allergenic Tree Species in Highly Urbanized Area
Using PlanetScope Imagery—A Case Study of Zagreb, Croatia
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Abstract: Mapping and identifying allergenic tree species in densely urbanized regions is vital for
understanding their distribution and prevalence. However, accurately detecting individual allergenic
tree species in urban green spaces remains challenging due to their smaller site and patchiness.
To overcome these issues, PlanetScope (PS) satellite imagery offers significant benefits compared
with moderate or high-resolution RS imagery due to its daily temporal resolution and 3 m spatial
resolution. Therefore, the primary objectives of this research were to: assess the feasibility of mapping
allergenic tree species in the highly urbanized area using high-resolution PS imagery; evaluate and
compare the performance of the most important machine learning and feature selection methods for
accurate detection of individual allergenic tree species. The research incorporated three classification
scenarios based on ground truth data: The first scenario (CS1) used single-date PS imagery with
vegetation indices (VI), while the second and third scenarios (CS2 and CS3) used multitemporal PS
imagery with VI, and GLCM and VI, respectively. The study demonstrated the feasibility of using
multitemporal eight-band PlanetScope imagery to detect allergenic tree species, with the XGB method
outperforming others with an overall accuracy of 73.13% in CS3. However, the classification accuracy
varied between the scenarios and species, revealing limitations including the inherent heterogeneity
of urban green spaces. Future research should integrate high-resolution satellite imagery with aerial
photography or LiDAR data along with deep learning methods. This approach has the potential to
classify dominant tree species in highly complex urban environments with increased accuracy, which
is essential for urban planning and public health.

Keywords: urban green area; random forest; neural network; extreme gradient boosting; PlanetScope;
feature selection

1. Introduction

Remote sensing utilizes satellite and/or airborne-based sensors that can provide useful
data for inventorying vegetation [1]. The population of individuals who have allergies
to pollen has been consistently increasing, particularly in urban and industrial areas [2].
Allergies are the most prevalent chronic disease in Europe, affecting over 150 million
European citizens, according to the European Academy of Allergy and Clinical Immunology
(EAACI). It is projected that by 2025, more than 50% of all Europeans will suffer from at
least one type of allergy, without distinction of age, social class, or geographical location.
The prevalence of allergic diseases is increasing rapidly in parallel with triggers such as
urbanization, industrialization, pollution, and climate change [3]. These diseases lead to a
reduction in productivity and an increase in sick leave among sensitive individuals, greatly
impacting European business and healthcare economies. It is estimated that asthma and
allergic rhinitis alone result in over 100 million lost workdays and missed school days in
Europe annually [4].
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Identifying and locating allergenic tree species in highly urbanized areas is crucial
as it allows for an understanding of their distribution and prevalence in urban areas.
Urbanization can lead to changes in the tree species composition, which can significantly
impact the health of residents, particularly those with allergies [5]. Pollen is defined as the
strongest natural aeroallergen and the most common causative agent of allergic diseases of
the respiratory system in Europe. The geographical distribution of plants has a significant
influence on their allergenic impact, e.g., the trees of the family Betulaceae are widespread
and shed large quantities of windborne pollen [6]. Peternel et al. [6] made an analysis of
the pollen count distribution for the central part of Croatia (Zagreb). As mentioned in their
research, the most common allergenic species in Croatia are particular tree species such
as alder (Alnus sp.), hazel (Corylus avellana L.), and birch (Betula pendula L.), weeds such
as Ambrosia sp., Parietaria sp., and Artemisia sp., and many types of grass, e.g., Poaceae. In
addition, these allergenic species are common in the temperate zones of Europe [7], and the
developed methodology from this research could also be applicable to other areas of Europe.
Furthermore, by identifying and mapping allergenic tree species, city planners and public
health officials can make informed decisions about tree planting and management [8].

Many studies used optical remote sensing satellite data to map allergenic pollen
vegetation on a large scale. Manzini et al. [9] developed the FlorTree model to evaluate
the pollution-removal capabilities of 221 urban tree species in various cities. The model
considers species-specific and local factors to maximize air quality improvements. Their
findings emphasize the necessity for strategic urban tree selection based on local conditions.
From the UK pollen network, McInnes et al. [10] used 12 major species and produced
detailed maps of pollen-producing plants’ locations. The results obtained demonstrate the
varying geographical patterns of allergies and allergic asthma, and the maps can be utilized
to investigate environmental exposure and its impact on human health. Integration of
remote sensing data (i.e., Rapid Eye, Landsat-8, and Sentinel-2 imagery) with in situ pollen
measurements was investigated by Lugonja et al. [1]. In this research, a top-down approach
that combines the distribution of suitable habitats and airborne pollen concentrations was
used, detailed crop classification maps were produced, and it was found that the strongest
correlation between pollen and variation was in areas with high soya bean and sugar
beet cultivation. Furthermore, Lara et al. [11] examined trends in annual Platanus pollen
concentrations in central Spain from 2003 to 2019. The findings suggest that variations in the
diversity and abundance of allergenic tree species in urban green spaces may be responsible
for the trends observed in the dynamics and behavior of airborne pollen from these species.
However, using remote sensing data to accurately identify individual allergenic tree species
is difficult due to their small area and patchiness in urban green spaces [12]. To address this
challenge, a key objective of this research will be to utilize high-resolution satellite imagery
for mapping allergenic tree species in urban areas, since the mapping of individual trees
becomes more feasible from a resolution of 3 m or higher [13].

In the past, mapping urban green areas usually employed field measurements [7],
which are time-consuming, labor-intensive, and ineffective since these areas change rapidly
over time. Currently, remote sensing (RS) technology has proven to be an efficient method
for the classification of urban green spaces [14]. Depending on the spatial resolution of
the RS dana used and the extent of the study area investigated, low-resolution imagery
(MODIS; [15,16]), with moderate resolution (Landsat, Sentinel-2; [17–19]), and with the
advancement of the satellite sensors with very high-resolution (WorldView; [20,21]), has
been utilized to acquire rapid and accurate information over green areas. However, the
temporal frequency of the above-mentioned satellite imagery may not be sufficient to
capture the variations in green spaces. In addition, the spatial resolution may not be
detailed enough to capture variations in urban green volumes accurately [18]. To overcome
these issues, PlanetScope (PS) satellite imagery [22] offers significant benefits over previous
RS data due to its daily temporal resolution and 3 m spatial resolution, providing an
effective solution to overcome existing issues. Hence, PS data has been successfully used,
for example, in mapping rubber plantations [23], snow-covered areas in forested mountain
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ecosystems [24], mapping of lava flows in barren regions [25], and land-cover classification
in urban areas [20]. Furthermore, in 2019, PlanetScope announced the general commercial
availability of the next generation of PS Monitoring product, which includes eight spectral
bands, instead of previously offering four bands [26]. Therefore, the performance of
the eight-band PS imagery is investigated in this research for tree species in a highly
urbanized area.

Image classification methods (e.g., unsupervised, supervised) are usually used to map
urban green areas. Mostly used unsupervised classification methods include ISODATA,
or k-means clustering [21,27,28], whereas the most important supervised classification
methods for urban green area mapping are random forest (RF), support vector machine
(SVM), and neural networks (NN). Puissant et al. [29] used an RF classifier and an object-
oriented approach for tree mapping in urban areas. The tests conducted using RF showed
that this classifier is highly effective in identifying wooded vegetation in terms of user’s
and producer’s accuracy. Furthermore, Chen et al. [30] proposed a method that utilizes
neural networks and crowdsourced geospatial big data to automatically map urban green
spaces (UGS). This method increased the user’s accuracy in UGS mapping using Sentinel-2
imagery with 10 m spatial resolution. Deep learning (DL) methods such as convolutional
neural networks (CNN) have been widely utilized for image classification in recent years.
Xu et al. [14] presented a DL method for UGS mapping based on the phenological features
using very high-resolution satellite imagery (i.e., GaoFen-2). The results indicate that the
above-mentioned method can efficiently solve the misclassification problem of evergreen
and deciduous trees. Furthermore, the integration of multiple sources and multi-spectral
RS datasets leads to the creation of large-scale datasets for classification. However, these
datasets often contain highly correlated features, which can introduce noise and negatively
impact the classification performance [31]. As a result, different feature selection (FS)
methods have been created that simplify the model and consequently help to accelerate the
classification. Dobrinić et al. [32] compared various FS methods for vegetation mapping
using multitemporal Sentinel-1 and Sentinel-2 imagery and additional data derived from
the RS imagery.

As mentioned above, still most studies concentrate on allergenic pollen vegetation
mapping on a large scale and the identification of individual allergenic tree species in urban
green spaces is difficult due to their small size and patchy distribution. Hence, the primary
goals of this study are to:

1. Assess the feasibility of mapping allergenic tree species in the highly urbanized area
using high-resolution PlanetScope imagery;

2. Compare and evaluate the effectiveness of the most important ML and FS methods
for the accurate detection of individual allergenic tree species.

The remainder of this paper is structured as follows: In Section 2, the research area and
datasets utilized in this study are discussed. Section 3 explains the various classifiers and
feature selection techniques used for identifying allergenic tree species. The results of the
study and their analysis are presented in Section 4. Lastly, the key findings and conclusions
are outlined in Section 5.

2. Materials
2.1. Study Area and Reference Data

In this research, the urban area of the city of Zagreb (Figure 1) was used for the
accurate detection of individual allergenic tree species, with a focus on protected green
areas, such as Botanical Garden, park Zrinjevac (Figure 1—Example subset 1), Lenuzzi’s
green “horseshoe”, and parks with developed and cultivated green infrastructures, e.g.,
Newlyweds Park (Figure 1—Example subset 2). According to the last population census
from 2021, the city of Zagreb has 769,944 inhabitants, with a positive yearly increase in the
number of inhabitants. Therefore, an extent of 27.84 square km (5.80 × 4.80 km) was used
in this research, mostly focusing on the central urban part of the city of Zagreb. Zagreb’s
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climate is classified as an oceanic climate (Cfb) [33] with warm summers and an average
annual precipitation and temperature of 840 mm and 11.6 ◦C, respectively.

Forests 2023, 14, x FOR PEER REVIEW 4 of 18 
 

 

Newlyweds Park (Figure 1—Example subset 2). According to the last population census 
from 2021, the city of Zagreb has 769,944 inhabitants, with a positive yearly increase in the 
number of inhabitants. Therefore, an extent of 27.84 square km (5.80 × 4.80 km) was used 
in this research, mostly focusing on the central urban part of the city of Zagreb. Zagreb’s 
climate is classified as an oceanic climate (Cfb) [33] with warm summers and an average 
annual precipitation and temperature of 840 mm and 11.6 °C, respectively. 

The forest vegetation in the Zagreb county is characterized primarily by forests of 
pedunculate oak, narrow-leashed ash, black alder, willows, and poplars [34]. In the urban 
area of the city of Zagreb, birch, sycamore, plane tree, and pine are the most dominant 
species. According to Peternel et al. [2], the most allergenic plant groups are: alder, hazel, 
yew/cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia, and 
ambrosia. 

 
Figure 1. Location and geographic extent of the study area with a PS true-color composite image as 
the background. The red rectangles represent examples of subset 1 and 2 of urban green areas with 
protected green areas and cultivated green infrastructures, respectively. 

For this research, the Web Map Service (WMS) of the Green Cadastre application was 
used as the reference dataset, which includes data on public green areas, playgrounds, 
and park equipment. The original dataset consists of 61,564 sample points, and after data 
filtering (e.g., trunk thickness higher than 10 cm, tree height higher than 5 m, etc.), 11,430 
sample points were included as reference point data in a final model. According to Peter-
nel et al. [2], three major allergenic tree species were chosen in this research, whilst the 
remaining tree species were categorized as other (Table 1). 

Table 1. List of the allergenic tree species, along with genera/families of the species and a number 
of samples used for classification purposes. 

ID Specie Genera Sample Count 

1 Ash 
Fraxinus Americana, Fraxinus Excelsior Diversifolia, 
Fraxinus Ornus, Fraxinus Excelsior Globosa, Fraxinus 
Excelsior, Fraxinus Angustifolia 

2709 

2 Birch Betula Pubescens, Betula Pendula, Betula Papyrifera 2808 
3 Plane tree Platanus x Acerifolia 2693 
4 Other Alnus Glutinosa, Populus Nigra, Carpinus Betulus 3220 

2.2. PlanetScope Satellite Imagery and Preprocessing 
In this research, the basis for mapping allergenic tree species is commercial Plan-

etScope (PS) data. The imagery used in this analysis was obtained from Planet Inc., the 
global leader in satellite constellations, which operates over 170 orbiting satellites [23]. 
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The forest vegetation in the Zagreb county is characterized primarily by forests of
pedunculate oak, narrow-leashed ash, black alder, willows, and poplars [34]. In the urban
area of the city of Zagreb, birch, sycamore, plane tree, and pine are the most dominant
species. According to Peternel et al. [2], the most allergenic plant groups are: alder,
hazel, yew/cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia,
and ambrosia.

For this research, the Web Map Service (WMS) of the Green Cadastre application was
used as the reference dataset, which includes data on public green areas, playgrounds,
and park equipment. The original dataset consists of 61,564 sample points, and after
data filtering (e.g., trunk thickness higher than 10 cm, tree height higher than 5 m, etc.),
11,430 sample points were included as reference point data in a final model. According to
Peternel et al. [2], three major allergenic tree species were chosen in this research, whilst
the remaining tree species were categorized as other (Table 1).

Table 1. List of the allergenic tree species, along with genera/families of the species and a number of
samples used for classification purposes.

ID Specie Genera Sample Count

1 Ash
Fraxinus Americana, Fraxinus Excelsior
Diversifolia, Fraxinus Ornus, Fraxinus Excelsior
Globosa, Fraxinus Excelsior, Fraxinus Angustifolia

2709

2 Birch Betula Pubescens, Betula Pendula, Betula Papyrifera 2808
3 Plane tree Platanus × Acerifolia 2693
4 Other Alnus Glutinosa, Populus Nigra, Carpinus Betulus 3220

2.2. PlanetScope Satellite Imagery and Preprocessing

In this research, the basis for mapping allergenic tree species is commercial PlanetScope
(PS) data. The imagery used in this analysis was obtained from Planet Inc., the global
leader in satellite constellations, which operates over 170 orbiting satellites [23]. Many
of these satellites are in a sun-synchronous orbit with 4- to 8-band radiance products at
3–4 m spatial resolution. According to Roy et al. [22], the global median average revisit
interval of PlanetScope observations is one day, whereby 71.8% of land is acquired with a
less than 36 h average revisit interval. In such a way, increased coverage of satellite imagery
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acquired from microsatellites provides more opportunities for obtaining images with 0%
cloud coverage.

PlanetScope satellites have been equipped, depending on the generation of the
sensor system, since 2016 with four bands (Blue, Green, Red, Near Infrared—NIR; PS2
and PS2.SD generation), while the new generation—since 2019 (SuperDove; PSB.SD) has
enabled eight-bands products (Coastal Blue, Green I, Yellow, and Red-Edge spectral bands
are added) [24]. Based on the newly added spectral bands, the Red-Edge band played
an important role in improving the accuracy of crop classification, due to the region
where the spectral reflectance of green vegetation rises rapidly [35]. For this research,
we selected six PlanetScope eight-band PSB.SD images that were acquired in a period
between April and July, with 0% cloud coverage. Furthermore, the PSB.SD imagery used
in this study (Table 2) included Ortho Tile Analytic (Level 3A) data products which are
orthorectified, and preprocessing has been made (i.e., sensor, radiation, atmospheric, and
geometric correction).

Table 2. The main characteristics of the PSB.SD sensor and dates used in this research.

Parameter Value

Spectral Band

Coastal Blue (431–452 nm) Yellow (600–620 nm)
Blue (465–515 nm) Red (650–680 nm)
Green I (513–549 nm) Red-Edge (697–713 nm)
Green (547–583 nm) Near Infrared (845–885 nm)

Date
6 April 2022 4 June 2022
30 April 2022 18 June 2022
15 May 2022 2 July 2022

Spatial resolution 3 m

Data product Ortho Tile Analytic Product Level 3A

Vegetation indices (VI) derived from RS satellite imagery are useful for evaluating
vegetation cover, growth, and other characteristics [36]. Along with the four typical spectral
bands (i.e., blue, green, red, and NIR), the PSB.SD sensor provides an additional four
multi-spectral bands (see Section 2.2), which are narrowly focused on a particular range
of the electromagnetic spectrum, which can be used for conservation, environmental
monitoring, and other applications. Therefore, five different vegetation indices were
used in this research, including NDVI (normalized difference vegetation index), NDWI
(normalized difference water index), EVI (enhanced vegetation index), SAVI (soil adjusted
vegetation index), and GNDVI (green normalized vegetation index). These indices provide
information on vegetation characteristics such as chlorophyll content, cover, and leaf
area [31]. The specific indices used in the research are listed in Table 3.

Table 3. Overview of the vegetation indices calculated from the PlanetScope (PS) imagery.

Vegetation Index PS Bands Used Reference

NDVI B8 − B6
B8 + B6

[37]

NDWI B8 − B4
B8 + B4

[38]

EVI 2.5 · B8 − B6
B8 + 6.0 · B6 − 7.5 · B2 + L*

[39]

SAVI B8 − B6
B8 + B6 + 0.5

· 1.5 [40]

GNDVI B4 − B6
B4 + B6

[41]

* The L factor is a coefficient that accounts for variations in terrain conditions and vegetation cover. It ranges from
0, indicating dense vegetation cover, to 1, representing areas without vegetation. In this research, the L factor was
set to 0.5 [42].
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This research also employed the gray level co-occurrence matrix (GLCM) in order to
incorporate texture information in the mapping of allergenic tree species in urban green
spaces. The GLCM function, introduced by Haralick et al. [43], analyzes the texture of
an image by determining the frequency of specific value-pair combinations and spatial
relationships among pixels in the image. This function is useful for extracting important
textural information from an image while reducing the number of correlated features [44].
Each spectral band was segmented individually, and multiple textural variables were
extracted (using the GLCM measures). However, after using multiple feature selection (FS)
methods (Section 3.2) with the above-mentioned GLCM features, only three GLCM features
were chosen in a final classification, namely, GLCM mean, variance, and correlation [45].
These texture features were calculated (Equations (1)–(3)) as follows [46,47]:

GLCM Mean = ∑
2Ng
i = 2iPx + y(i) (1)

GLCM Variance = ∑i∑j(i − µ)2 P(i, j) (2)

GLCM Correlation =
N−1

∑
i,j=0

Pi,j

[
(i − µi)(i − µj)/

√
(σ2

i )(σ
2
j )
]

(3)

where Pi,j are the probability values occurring in adjacent within a defined window or
neighborhood in the original image, and i is the column label and j is the row label of the
GLCM [47]. Px(i) is equal to the i-th entry in the GLCM matrix retrieved by the row sums
of Pi,j.

3. Methods
3.1. Algorithms for Image Classification

In the present research, three supervised classification algorithms (i.e., random forest
(RF), extreme gradient boosting (XGB), and multi-layer perceptron (MLP)) were selected.
The algorithms evaluated are those included in the ‘randomForest’, ‘xgboost’, and ‘keras’
packages using R statistical software, respectively.

The RF classifier works by constructing an ensemble of decision trees that each make
predictions about the class label of a given pixel in an image. The decision trees’ majority
vote determines the pixel’s final class label. It was introduced by Breiman [48] and has
been found to perform well with high-dimensional data and resist overfitting, making it
a robust choice for classification tasks [49,50]. There are two parameters that have to be
chosen before training the RF model. The mtry parameter sets the number of variables used
to split the nodes where each node in the decision tree is split using a random selection.
Furthermore, the ntree parameter defines the number of trees in the forest [49].

Extreme gradient boosting (XGB) is a regularized version of traditional boosting
techniques that belong to the CART (classification and regression trees) family. It is an
implementation of the gradient boosting algorithm, which involves training a series of
decision trees on the data and combining their predictions to make a final prediction [51].
The final classification is a combination of the improvements made by all of the previous
trees. Developed by Chen and Guestrin [52], XGB is particularly useful in remote sensing
because it can handle large datasets with high dimensional features and can also handle
missing values in the data.

Furthermore, an ensemble of feedforward NN, multi-layer perceptron (MLP), was
used for the allergenic tree species classification. The architecture of MLP includes three
layers of nodes: an input layer, one or more hidden layers, and an output layer [53]. The
input layer receives input data (e.g., a dataset of labeled satellite images), which is then
processed by the hidden layers using weighted connections and activation functions, and
finally produces output data at the output layer. The hidden layers process the input data
using a set of weights and activation functions, which are used to transform the input data
into a more suitable form for the output layer of the process. In a multi-layer perceptron
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(MLP), the strength of connections between nodes is adjusted during training to reduce the
difference between the predicted output and the actual output [54].

3.2. Feature Selection Methods

As mentioned in Section 2, this research used multitemporal PS imagery (Section 2.2.),
as well as vegetation indices and texture features derived from satellite imagery. While
additional derived input features, such as textural measures and vegetation indices, can
provide valuable information for classifying Earth observation image data, they can also
lead to a large number of irrelevant and redundant features [55]. In a highly dimensional
dataset, variables that are correlated or redundant can introduce noise into the dataset,
which can negatively impact prediction accuracy [56]. To address this issue, various feature
selection methods are used to select a subset of relevant variables for the classification
task [57]. Many R packages provide RF variable selection procedures (e.g., caret [58],
VSURF [59], boruta [60], varSelRF [61]); hence, three feature selection (FS) methods were
evaluated for mapping allergenic tree species using PS imagery: mean decrease accuracy
(MDA), mean decrease Gini (MDG), and variable selection using random forests (VSURF).

Mean decrease accuracy (MDA) is an FS method that is based on the idea of evaluating
how much the accuracy of a machine learning model decreases when a feature is removed
from the dataset [31]. The feature that causes the least decrease in accuracy is considered the
most important feature, and features that cause a large decrease in accuracy are considered
to be less important. The resulting importance scores can be used to rank the features and
select a subset of the most important features [62].

Similar to MDA, mean decrease Gini (MDG) is a feature selection method that uses
the Gini impurity as the measure of feature importance instead of using accuracy. Gini
impurity is a measure of the degree of homogeneity of the classes in a set of data, and it
is commonly used in decision tree-based models [63]. The feature that causes the least
decrease in Gini impurity is considered the most important feature, and features that cause
a large decrease in Gini impurity are considered to be less important [64].

Variable selection using random forests (VSURF) belongs to a stepwise selection
technique that uses the two-stage strategy based on backward elimination and then forward
selection [65]. The method also uses the Gini impurity criterion as the measure of feature
importance. It then generates a random forest model to measure the relationship between
the features and the target variable and uses this information to select the most important
features. The result is a subset of important features, which can be used for further analysis
or modeling [59].

In this research, RF was firstly used as a classifier with the above-mentioned FS
methods in order to select the most pertinent input features for mapping of allergenic tree
species, i.e., six PS imagery with eight spectral bands, five vegetation indices per date, and
three texture features per date and band were used as input features. The result was a
subset of the most important features for each FS method, which were then used as input
features using machine learning algorithms described in Section 3.1.

3.3. Accuracy Assessment

In order to divide the reference dataset (see Section 2.1.) into two parts: a training
set (70%), which was used for fitting models, and a test set (30%) used for evaluating
generalization error in the final selected model, a stratified random sampling design was
used [66]. This sampling procedure was repeated ten times for more robust results. In
addition, 10% of the training samples were used as validation data for the calculation of
the MLP loss function [67].
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Lastly, a confusion matrix was calculated for three classification scenarios (CS) based
on our ground control points. Hence, accuracy was compared across the first classification
scenario (CS1) which used single-date PS imagery with VI, second and third classification
scenarios (CS2 and CS3) which used multitemporal PS imagery with VI, and GLCM
and VI, respectively. In CS1, the PS from 15 May 2022 was used, whereas CS2 and CS3
used all available PS imagery. The results were also evaluated using traditional accuracy
metrics such as overall accuracy (OA), a Kappa coefficient (Kappa), producer’s accuracy
(PA), and user’s accuracy (UA). In addition, the F1 score and figure of merit (FoM) were
also calculated.

The F1 score is a measure of the balance between PA and UA, where PA is the propor-
tion of true positive predictions (correctly identified classes) out of all positive predictions,
and UA is the proportion of true positive predictions out of all actual positive reference
samples. A higher F1 score indicates a better balance between PA and UA, and a better
overall performance of the model. The F1 score was calculated as follows:

F1 = 2 · PA · UA
PA + UA

(4)

A figure of merit (FOM) is a single value that summarizes the performance of the
system or model across multiple performance metrics (i.e., overall accuracy, omission,
commission), and it is often used as a way to compare the performance of different systems
or models:

FoM =
OA

OA + OM + CM
(5)

where OA represents overall accuracy, and OM and CM refer to the errors of omission and
commission, respectively.

4. Results and Discussion
4.1. Most Suitable Classification Method

Overall, three classification scenarios (i.e., single-date PS imagery with VI—CS1,
multitemporal PS imagery with VI—CS2, and multitemporal PS imagery with VI and
GLCM—CS3) were computed using RF, XGB, and MLP classifiers. Table 4 shows the OA,
Kappa coefficients, F1 score, and FoM for each classification scenario (CS). For each CS, ten
random splits were performed to obtain ten corresponding validations (Table 4).

Table 4. Quantitative assessment results (i.e., overall accuracy, Kappa coefficient, F1 score, and figure
of merit) for different classification scenarios (the assessment numbers in bold denote the best results
among different classification scenarios).

Method OA K
Ash Birch Plane tree Other

F1 FoM F1 FoM F1 FoM F1 FoM

C
S1

RF 52.17 0.36 0.49 0.34 0.60 0.39 0.57 0.38 0.43 0.32
XGB 50.25 0.34 0.48 0.33 0.57 0.37 0.55 0.36 0.41 0.30
MLP 49.36 0.33 0.37 0.29 0.53 0.35 0.58 0.39 0.43 0.31

C
S2

RF 69.65 0.59 0.68 0.52 0.72 0.55 0.80 0.63 0.58 0.45
XGB 70.27 0.60 0.68 0.52 0.73 0.56 0.82 0.66 0.57 0.45
MLP 70.29 0.60 0.70 0.54 0.71 0.54 0.82 0.65 0.58 0.45

C
S3

RF 71.20 0.62 0.70 0.54 0.74 0.57 0.81 0.66 0.59 0.46
XGB 73.13 0.64 0.72 0.56 0.74 0.59 0.85 0.71 0.60 0.48
MLP 72.07 0.63 0.71 0.55 0.73 0.57 0.84 0.69 0.60 0.47



Forests 2023, 14, 1193 9 of 17

Interestingly, as shown in Table 4, different classifiers produced the best results de-
pending on the classification scenario (i.e., CS1 used single-date PS imagery, CS2 used
multitemporal (MT) PS imagery, and CS3 used MT PS imagery with ancillary data). In such
a way, RF, MLP, and XGB performed the best in CS1, CS2, and CS3, respectively. These
results confirm that an RF classifier produces solid results in complex areas mostly using
single-date imagery and NDVI [29,68], whereas the boosting classifier or neural network
(i.e., XGB or MLP, respectively) require more training data. Similarly, Le Louarn et al. [69]
achieved better results using an RF than an SVM classifier regardless of the classification
scheme using a single date and bi-temporal Pleiades imagery. Furthermore, by increasing
the number of training samples, MLP and RF achieved the best results for the classification
of six tree species [70]. Ballanti et al. [71] recommend more than 100 training samples for
every tree species in order to properly train a SVM and RF classifiers. In our research, the
classification scenario with the highest number of input features (i.e., CS3) demonstrated
the strength of the XGBoost classifier. Although XGB is a relatively new classifier in the
field of remote sensing and its application in tree species detection has been limited, an
increasing trend towards its usage has been reported in tree species classification, especially
when dealing with high-dimensional data [72]. These contrasting requirements and behav-
iors of RF, XGB, and MLP have important implications for our study. For research with
limited data, RF might be the most effective choice. Conversely, if a large volume of training
data is available, more complex models such as XGB or MLP could potentially deliver
superior performance, capturing subtle patterns and relationships in the data that RF might
miss. The overall accuracy increased from CS1 to CS2 and CS3 using multitemporal PS
imagery. In this context, since vegetation indices are influenced by many factors other
than vegetation (e.g., soil moisture, atmospheric conditions, and shadows), MT PS data
produced an improvement to capture changes in vegetation cover and reduced the impact
of non-vegetation factors. Vegetation indices derived from the MT data are related to the
biological behavior of the different species during the year, i.e., the phenological pattern
associated with each species [73]. Similar to this research, MLP outperformed other ML
classifiers using MT PS imagery [74], but with additional GLCM features, XGB performed
the best. In the study from Georganos et al. [51], XGB was found to outperform RF and
SVM tested in three different study areas, mainly in larger sample sizes. Although the F1
score is mostly used to measure a model’s performance where the classes are imbalanced,
both F1 and FoM were calculated to assess the ability of differentiation between different
allergenic tree species. From CS1 to CS3, both measures increase according to the temporal
information and ancillary data added, and in CS3, the XGB classifier obtained the highest
F1 and FoM values for each class, of which plane tree has the most accurately identified
positive cases. Furthermore, along with the above-mentioned accuracy measures, Stehman
and Foody [75] suggest reporting UA and PA, as well as their complementary measures
(i.e., commission errors or false positives, and omission errors or false negatives). Therefore,
from this point on, the best results from each classification scenario (i.e., RF from CS1, MLP
from CS2, and XGB from CS3) are analyzed more in detail and their visualizations are
shown (Table 5, Figures 2 and 3).

The lowest UA and PA values across all three classification scenarios were for other
tree classes, which highlights the difficulty distinguishing the primary chosen allergenic
tree species from the rest. Most misclassification occurs with the birch plant and ash. In
CS1, the birch plant had the highest UA and PA values, and in CS2 and CS3, the plane
trees were detected with the lowest number of false positives and false negatives. Overall,
results obtained in the classification scenario three are encouraging since most of the studies
focused on allergenic pollen vegetation mapping on a large scale [10,11]. If similar research
(i.e., tree species mapping in urban areas) are taken into comparison, Liu et al. [76] achieved
OA for each tree species ranging from 51% to 70% using integrated airborne hyperspectral
and LiDAR remote sensing data. Shojanoori et al. [77] used WorldView-2 satellite data
for three types of tree species and applied maximum likelihood classification (MLC) and
SVM classifier. The accuracy for MLC and SVM was 62.07% and 71.53%, respectively,



Forests 2023, 14, 1193 10 of 17

and misclassification was a common error due to the spectral similarity between tree
species classes. As such, our research extensively leveraged the potential of the vegeta-
tion indices and texture features in CS2 and CS3, respectively, culminating in an overall
accuracy value of 73.13%. However, we acknowledge that the aggregation of multiple tree
species into a single class named ‘other’ could have potentially influenced our reported
accuracy and presents a limitation to the precision with which we can distinguish individ-
ual allergenic tree species, especially since similar research, e.g., Kopecka et al. [78] and
Degerickx et al. [79] used 15 and 17 classes in their studies, respectively. Former research
achieved an OA of 90.79%, whereas the latter achieved an OA of 81%.

Table 5. Confusion matrix of the best classification scenario (CS1–3; bottom right corner), i.e., single-
date PS imagery using RF classifier, multitemporal PS imagery using MLP, and multitemporal PS
imagery with ancillary data using XGB classifier.

Classified
Reference

Ash Birch Plane Other UA [%]

Ash 366 50 90 189 52.66
Birch 99 552 118 244 54.49
Plane 184 103 498 161 52.64
Other 163 137 101 372 48.12
PA [%] 45.07 65.56 61.71 38.51 CS1

Classified
Reference

Ash Birch Plane Other UA [%]

Ash 501 43 44 144 68.44
Birch 21 454 10 128 74.06
Plane 41 26 535 63 80.45
Other 87 151 57 438 59.75
PA [%] 77.08 67.36 82.82 56.66 CS2

Classified
Reference

Ash Birch Plane Other UA [%]

Ash 599 31 35 145 73.95
Birch 37 652 22 201 71.49
Plane 51 16 699 64 84.22
Other 125 143 51 556 63.54
PA [%] 73.77 77.42 86.62 57.56 CS3

Beyond the scope of allergenic tree species detection, the utilization of multitemporal
PS imagery opens up novel possibilities for vegetation phenology monitoring. Its high
spatial and temporal resolution supports extensive, long-term ecological studies across large
geographical areas [80,81]. Such phenological databases can reconcile the scale discrepancy
between satellite phenology and ground observations and contribute to a more profound
comprehension of forest ecosystem dynamics and future climate change modeling [82,83].
In the present study, we tapped into the potential of multitemporal PS satellite imagery
in ecological research. This approach addresses a gap in the usage of remote sensing
with very high spatial resolution (e.g., WorldView) and moderate spatial resolution (e.g.,
Landsat) [84]. In doing so, our case study concerning allergenic tree species classification
significantly advances our understanding of urban vegetation specifics, thereby enhancing
our comprehension of urban ecosystem services [85]. In this context, the visualization of
each classification scenario with two example subsets, which show the improvement in
allergenic tree species detection, is shown in Figure 2.
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4.2. Most Suitable Feature Selection (FS) Method

Different FS methods were evaluated for allergenic tree species mapping using PS
imagery. Table 6 shows OA and Kappa values calculated for classification scenario 3
(i.e., multitemporal PS imagery with VI and GLCM). As an outcome of the FS approach
described in Section 3.2., MDA, MDG, and VSURF selected 28, 30, and 20 most important
features for tree species mapping, respectively. Out of the feature selection methods
evaluated, VSURF selected the smallest number of input variables. The best classification
results were achieved with RF and XGB when using this VSURF subset. VSURF method
has already confirmed its high performance in choosing an optimal subset of features for
classification [65]. Furthermore, FS methods are not suitable for MLP classifiers, since large
training datasets may avoid the overfitting problem [86,87].

Table 6. Accuracy results for classification scenario 3, based on different FS methods.

Method
MDA MDG VSURF

OA K OA K OA K

C
S3

RF 69.07 0.59 68.66 0.58 69.68 0.60
XGB 67.79 0.57 68.46 0.58 68.81 0.58
MLP 62.92 0.51 59.68 0.46 57.82 0.44

Although the tested FS methods did not increase the classification results (Table 6)
compared with the CS3 results (Section 4.1), individual input features from eight-band PS
imagery can be analyzed for allergenic tree mapping. Since the VSURF method produces
a list of the most pertinent input features [55], Figure 3 evaluates the number of input
features grouped by the source (i.e., PS spectral band, vegetation indices, or GLCM texture
feature). As expected, VI is the most represented group of input features for mapping
allergenic tree species, whereas PS bands and GLCM texture features are included in a final
model with five features each. In urban green areas, simple VI, which combines visible
and NIR bands, has significantly improved tree detection sensitivity [36]. Out of ten VI
input features, EVI and GNDVI were the most frequent. Furthermore, this research used
multitemporal PS imagery acquired from the new generation of the sensor system (i.e.,
PSB.SD). Out of four newly added spectral bands, red-edge and coastal blue showed to be
the most indicative input features. From GLCM texture features, the Variance was the most
indicative input feature in a final model. As mentioned in the research by Hall–Beyer [47],
variance is commonly associated with visual edges of land-cover patches. Finally, imagery
acquired in April, the peak pollination month [11], proved to be the most indicative date
for mapping allergenic trees.

4.3. Research Limitations and Prospects

The major limitations of this research include two facets, including (1) good classi-
fication results compared to the studies, which include LiDAR data combined with very
high-resolution satellite imagery [76,88–90], and (2) uncertainty concerning the reference
data since traditional mapping of urban green spaces (UGS) relies on field measurements,
which can be time-consuming, and UGS can change quickly over time [30]. Therefore,
two heatmaps were generated to identify and visualize newly discovered allergenic zones.
Figure 4 clearly shows some areas not included in the reference dataset (Figure 4; first row).
Later, they were detected through various classification scenarios (Figure 4; second row).
The reference data were retrieved from the Web Map Service (WMS) of the Green Cadastre
application, and the inventory of allergenic tree species included only the public area. A
subtraction of the previously described heatmaps (i.e., ground points map minus CS3 map)
resulted in a discrepancy map that shows newly detected zones where allergenic trees are
located (Figure 4; third row).
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Although airborne sensors currently obtain imagery with superior spectral and spatial
resolution, the unique potential of satellite sensors for conducting recurrent observations of
the same area presents promising prospects for enhanced multi-temporal data acquisition
and vegetation phenology-based mapping [13]. The integration of satellite imagery with
additional data types, such as LiDAR or aerial photography [88,91], can further augment
these capabilities. Furthermore, these datasets need to be used with deep learning (DL)
methods, e.g., Hartling et al. [89] used high spatial resolution imagery in combination with
LiDAR data for tree species classification in a complex urban environment, along with a
DenseNet DL classifier. For the classification of eight tree species, DenseNet significantly
outperformed RF and SVM regardless of training sample size.

5. Conclusions

Mapping allergenic tree species in highly urbanized areas is an important task as it
helps for an understanding of their distribution and prevalence in urban areas. Still, most



Forests 2023, 14, 1193 14 of 17

studies concentrate on allergenic pollen vegetation mapping on a large scale, and accurate
detection of individual allergenic tree species is challenging due to their smaller site and
patchiness in urban green spaces. Therefore, this research tried to assess the feasibility of
mapping allergenic tree species in highly urbanized areas using high-resolution PlanetScope
imagery. Secondly, to evaluate and compare the RF, XGB, and MLP classifiers and feature
selection methods for the accurate detection of individual allergenic tree species.

Therefore, this research showed the feasibility of using multitemporal eight-band Plan-
etScope imagery to detect allergenic tree species in highly urbanized areas. Furthermore, for
the supervised classification of the allergenic tree species in urban areas, the XGB method,
with an OA of 73.13%, outperformed the RF and MLP methods by using multitemporal
PS imagery with vegetation indices and texture features. In terms of OA, classification
accuracy increased by 22.88% and 2.86% from the classification on single-date imagery and
multitemporal imagery with VI, respectively. In the multitemporal classification scenarios
(i.e., CS2 and CS3), the plane trees were detected with the lowest number of false positives
and false negatives.

The PS imagery turned out to be highly useful for tree mapping in urban green areas.
By identifying and mapping allergenic tree species, city planners and public health officials
can make informed decisions about tree planting and management. Future research should
combine satellite imagery with very high-resolution (e.g., Pleiades, GeoEye) and LiDAR
datasets with deep learning methods because it has the capability to identify and classify
dominant tree species in highly complex urban environments with increased accuracy.
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45. Gašparović, M.; Dobrinić, D. Green Infrastructure Mapping in Urban Areas Using Sentinel-1 Imagery. Croat. J. For. Eng. 2021,
42, 337–356. [CrossRef]

46. Zakeri, H.; Yamazaki, F.; Liu, W. Texture Analysis and Land Cover Classification of Tehran Using Polarimetric Synthetic Aperture
Radar Imagery. Appl. Sci. 2017, 7, 452. [CrossRef]

47. Hall-Beyer, M. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of
Moderate Spatial Scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [CrossRef]

48. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm.

Remote Sens. 2016, 114, 24–31. [CrossRef]
50. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a

Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]
51. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very High Resolution Object-Based Land Use–Land

Extreme Gradient Boosting. IEEE Geosci. Remote Sens. Lett. 2018, 15, 607–611. [CrossRef]
52. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

53. Benediktsson, J.A.; Swain, P.H.; Ersoy, O.K. Neural Network Approaches versus Statistical Methods in Classification of Multi-
source Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 540–552. [CrossRef]

54. Ball, J.E.; Anderson, D.T.; Chan, C.S. A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and
Challenges for the Community. J. Appl. Remote Sens. 2017, 11, 42609. [CrossRef]

55. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less Is More: Optimizing Classification
Performance through Feature Selection in a Very-High-Resolution Remote Sensing Object-Based Urban Application. GIScience
Remote Sens. 2018, 55, 221–242. [CrossRef]

56. Zhang, F.; Yang, X. Improving Land Cover Classification in an Urbanized Coastal Area by Random Forests: The Role of Variable
Selection. Remote Sens. Environ. 2020, 251, 112105. [CrossRef]

57. Saeys, Y.; Inza, I.; Larrañaga, P. A Review of Feature Selection Techniques in Bioinformatics. Bioinformatics 2007, 23, 2507–2517.
[CrossRef]

58. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
59. Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R Package for Variable Selection Using Random Forests. R J. 2015, 7, 19–33.

[CrossRef]
60. Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [CrossRef]
61. Díaz-Uriarte, R.; Alvarez de Andrés, S. Gene Selection and Classification of Microarray Data Using Random Forest. BMC

Bioinformatics 2006, 7, 3. [CrossRef] [PubMed]
62. Potočnik Buhvald, A.; Račič, M.; Immitzer, M.; Oštir, K.; Veljanovski, T. Grassland Use Intensity Classification Using Intra-Annual

Sentinel-1 and -2 Time Series and Environmental Variables. Remote Sens. 2022, 14, 3387. [CrossRef]
63. Behnamian, A.; Millard, K.; Banks, S.N.; White, L.; Richardson, M.; Pasher, J. A Systematic Approach for Variable Selection with

Random Forests: Achieving Stable Variable Importance Values. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1988–1992. [CrossRef]
64. Cánovas-García, F.; Alonso-Sarría, F. Optimal Combination of Classification Algorithms and Feature Ranking Methods for

Object-Based Classification of Submeter Resolution Z/I-Imaging DMC Imagery. Remote Sens. 2015, 7, 4651–4677. [CrossRef]
65. Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A Comparison of Random Forest Variable Selection Methods for Classification Prediction

Modeling. Expert Syst. Appl. 2019, 134, 93–101. [CrossRef] [PubMed]
66. Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.I. Assessing the Suitability of Data from Sentinel-1A and

2A for Crop Classification. GIScience Remote Sens. 2017, 54, 918–938. [CrossRef]
67. Heaton, J. Introduction to Neural Networks with Java, 2nd ed.; Heaton Research, Inc.: Chesterfield, MO, USA, 2008;

ISBN 978-1-60-439008-7.
68. Chapman, D.S.; Bonn, A.; Kunin, W.E.; Cornell, S.J. Random Forest Characterization of Upland Vegetation and Management

Burning from Aerial Imagery. J. Biogeogr. 2010, 37, 37–46. [CrossRef]

https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/S0273-1177(97)01133-2
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.48550/arXiv.1904.06554
https://doi.org/10.5552/crojfe.2021.859
https://doi.org/10.3390/app7050452
https://doi.org/10.1080/01431161.2016.1278314
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.1109/LGRS.2018.2803259
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TGRS.1990.572944
https://doi.org/10.1117/1.JRS.11.042609
https://doi.org/10.1080/15481603.2017.1408892
https://doi.org/10.1016/j.rse.2020.112105
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.32614/RJ-2015-018
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1186/1471-2105-7-3
https://www.ncbi.nlm.nih.gov/pubmed/16398926
https://doi.org/10.3390/rs14143387
https://doi.org/10.1109/LGRS.2017.2745049
https://doi.org/10.3390/rs70404651
https://doi.org/10.1016/j.eswa.2019.05.028
https://www.ncbi.nlm.nih.gov/pubmed/32968335
https://doi.org/10.1080/15481603.2017.1351149
https://doi.org/10.1111/j.1365-2699.2009.02186.x


Forests 2023, 14, 1193 17 of 17

69. Le Louarn, M.; Clergeau, P.; Briche, E.; Deschamps-Cottin, M. “Kill Two Birds with One Stone”: Urban Tree Species Classification
Using Bi-Temporal Pléiades Images to Study Nesting Preferences of an Invasive Bird. Remote Sens. 2017, 9, 916. [CrossRef]
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