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Abstract: The drivers and spatial distribution trends for net primary productivity (NPP) in Ningxia
were studied to determine the priority vegetation restoration areas. NPP data from MOD17 A3 were
used to determine the future NPP trends through slope trend analysis and the Hurst index. Spatial
drivers were defined by a geographic detector and correlation analysis. Results indicate that NPP
positively fluctuated from 2000 to 2020 with an average range between 119.98 and 249.66 gC/m2a,
and a multi-year average of 190.15 gC/m2a. The spatial distribution has more obvious divergent
characteristics, showing distribution characteristics of low in the central and northern sides and high
in the southern and northern middle. Superimposed on the analysis of slope and Hurst indices,
the future vegetation NPP in Ningxia will show four scenarios of continuous increase, continuous
decrease, change from increase to decrease and change from decrease to increase, accounting for
22.35%, 1.36%, 71.42% and 2.86% of the area of the region, respectively. Driving factor influence can
be divided into dominant factors and important factors. The interaction between the two factors is
positive, and the maximum q value under the interaction of precipitation and temperature is 0.687.
NPP is mainly driven by climatic factors in 50.92% of the area and is mainly distributed in the central,
western and southern parts of Ningxia. The non-climatic-factor-driven areas can be used as priority
vegetation restoration areas, which accounting for 47.08%, are mainly concentrated in the northern
Yellow River irrigation area, the desert steppe in the central and eastern parts, and a small part in the
southern Liupan Mountains.

Keywords: net primary productivity of vegetation; temporal and spatial variation; driving factors;
spatial-temporal variation; Ningxia

1. Introduction

The net primary productivity (NPP) of vegetation refers to the total amount of organic
matter fixed by photosynthesis per unit area per unit time after deducting autotrophic
respiration consumption [1]. NPP reflects the ability of vegetation to fix CO2 under natural
conditions [2], is an important part of the carbon cycle and carbon budget of terrestrial
ecosystem, and is a key indicator for evaluating the health and potential sustainable
development of regional ecosystems of the Earth [3].

Vegetation NPP measurements are mainly divided into the field measurement method
and the model estimation method [4]. The field measurement method is based on harvest
weighing of the sample plot and is often used to test the effectiveness of other methods [5].
However, due to time and labor costs, this method is only suitable for small-scale ecosystem
monitoring and cannot predict the response relationship and variation trends of NPP to
future climate change [6]. Currently, to accurately reflect spatial and temporal patterns,
most scholars use the NPP estimation model supplemented by remote sensing data to apply
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real-time simulation and dynamic monitoring on medium to large scales. NPP estimation
models can be roughly divided into climate-related statistical models (Miami [7], Thornth-
waite Menorial [8] and Chikugo [9], etc.), ecosystem process models ([10], BIOME-BGC [11]
and BEPS [12], etc.) and light utility rate models (CASA [13] and GLO-PEM [14]) [15]. The
light utility rate model is used to establish an empirical equation and combine remote
sensing data to invert the regional NPP, which is suitable for large-scale estimation. This
model integrates the advantages of remote sensing data, geographic information system,
and model simulation, and is widely used to study vegetation NPP [16]. The NPP of vege-
tation is jointly affected by the physiological and ecological characteristics associated with
the plants themselves [17] and external environmental factors (precipitation, temperature,
etc.) [18]. Different climatic factors play different roles in the process of vegetation mech-
anisms. Ge et al. [19] found that the average contributions of precipitation, temperature,
solar radiation and other climatic factors to China’s NPP were 0.72, 0.24, 0.61 and 0.31 g
C m−2 a−1, respectively. Precipitation plays a decisive role in vegetation changes in arid
and semi-arid regions, and temperature is the dominant factor in vegetation dynamics in
alpine regions. Solar radiation is beneficial to the growth of vegetation in most regions, and
there is a hysteresis effect on the response of vegetation NPP to precipitation [20]. Addition-
ally, different timings and distributions of precipitation lead to variations in the temporal
distributions of water in the rhizosphere soil [21], which influences the productivity of
vegetation [22].

Ningxia is an important ecological safety barrier, node, and channel in China and
creates a monsoon boundary, regulates water–vapor exchange, and preserves the climate in
the northwest. However, the region faces a series of environmental issues such as: increas-
ing water pollution, destruction of grassland vegetation, and desertification. Few studies
have focused on vegetation NPP in this region, and the studies that have been conducted
are short-term. Here, we analyze the temporal and spatial variation pattern and future
variation trend of vegetation NPP in Ningxia from 2000 to 2020. A geographic detector was
used to analyze the driving factors of NPP from the aspects of natural environment and
human activities. The spatial distribution of driving types of vegetation NPP were obtained
through a correlation analysis and significance test. Using the main drivers governing
vegetation NPP, a priority vegetation restoration area was determined. Our suggestions and
theoretical basis are provided for vegetation restoration and construction work in Ningxia.

2. Materials and Methods
2.1. Study Area

The Ningxia Hui Autonomous Region (35◦14–39◦23 N, 104◦17–107◦39 E) is located in
the western region of China. The central and northern parts of the territory are irrigated
and nourished by the Yellow River, with a total flow of 397 km. Ningxia’s territory is long
from north to south and short from east to west, resembling the shape of a cross. The terrain
is high in the south and low in the north. The landform is divided into three parts: the
Northern Yellow River irrigation area, the central arid zone, and the southern mountainous
area, all with an altitude above 1000 m and a total area of about 66,400 km2. The climate
type is a typical continental semi-humid and semi-arid climate with strong solar radiation,
high evaporation, and poor water resources. The rainfall is scarce with a multi-year average
precipitation of approximately 300 mm. The primary vegetation types are coniferous
forests and broad-leaved forests in the south, desert and grassland in the middle, and
farmland in the north (Figure 1). Grassland coverage accounts for 79.5% of the natural
vegetation, and forest coverage accounts for 15.8%. Ningxia has unique geographical
advantages for ecological safety barriers, such as the Helan Mountains, Liupan Mountains
and Luo Mountains.
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Figure 1. Study area overview and vegetation type map. 
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Figure 1. Study area overview and vegetation type map.

2.2. Data sources and Processing

The 2000–2020 NPP data come from the MOD17A3HGF v006 series products released
by NASA and have a resolution of 500 m (https://lpdaac.usgs.gov/) (accessed on 23 March
2022). The MOD17A3 NPP dataset was obtained by combining the BIOME-BGC model and
the light utility rate model on the basis of MODIS remote-sensing monitoring [22]. This uses
meteorological factors, soil conditions, atmospheric CO2 concentration, and plant physical
indicators, and is widely used in global and regional carbon cycle studies [16]. The data
were re-projected, unit converted, and cropped in ArcGIS to obtain the NPP data for the
entire Ningxia region. Any invalid values in the dataset were eliminated. Precipitation and
temperature data from 2000 to 2020 were obtained from the daily values of 25 meteorological
stations throughout Ningxia, which were collated and interpolated by inverse distance
in ArcGIS. The accuracy of the free-grid dataset is mostly 1 km, and considering that
Ningxia is not a large area, the interpolation method is used to make the accuracy higher.
Population, GDP, land use, DEM, and vegetation type data were sourced from the Resource
and Environment Science and Data Center of Chinese Academy of Sciences (https://www.
resdc.cn/) (accessed on 1 April 2022). This dataset divides land types into 6 first-level
categories: cultivated land, water area, grassland, forest land, construction land, and
unused land. DEM was used to extract and classify slope information.

2.3. Methods
2.3.1. Variation Trend Analysis

Unary linear regression was used to analyze the temporal variation trend of vegetation
NPP in the Ningxia Hui Autonomous Region from 2000 to 2020. This method reflects the
temporal and spatial distribution characteristics of vegetation NPP variation over time.
When slope > 0, NPP showed a positive trend with time and when slope < 0, NPP showed a

https://lpdaac.usgs.gov/
https://www.resdc.cn/
https://www.resdc.cn/
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negative trend. The magnitude of the slope value reflects the rate at which the NPP rises or
falls. The calculation formula is as follows:

slope =
n×∑n

i=1 i× NPPi −∑n
i=1 i ∑n

i=1 NPPi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where n is the length of the study year (2000–2020, a total of 21 years); i represents the i-th
year; NPPi represents the NPP value of vegetation in the i-th year; slope represents the slope
of the trend line.

The Hurst index was used to explore the persistence of the NPP variation trend in
Ningxia. The Hurst index is an analysis method based on rescaled range (R/S) and is used
to quantitatively describe the long-term dependence of NPP time series information. The
calculation formula is as follows:

NPPt =
1
t
×∑t

i=1 NPPt (t = 1, 2, . . . . . . n) (2)

X(i, t) = ∑t
i=1

(
NPPi − NPPt

)
(3)

R(t) = maxX(i, t) −minX(i, t) (4)

S(t) =

[
1
t
×∑t

i=1

(
NPPi − NPPt

)2
] 1

2
(5)

where R(t), S(t) and t satisfy the following relationship:

Rt

S(t)
= c× tH (6)

where c is a constant, R(t) is the extreme deviation, S(t) is the standard deviation, and R(t)/S(t)
is the rescaled extreme deviation; the Hurst index ranges from 0 to 1. If H > 0.5, the study
series has positive persistence in time, i.e., there is a positive long-term dependence between
the past and the future, and the closer the H value is to 1, the stronger the persistence is; if
H = 0.5, the series has no correlation between the past and the future; if H < 0.5, the series
has reverse persistence, i.e., there will be an increase in the past but a decrease trend in the
future, and the closer the H value is to 0, the stronger the reverse persistence.

2.3.2. Geographic Detector

The geographic detector explains the spatial differentiation and reveals the driving
factors [23]. The impact factors of vegetation NPP mainly include vegetation type [24],
topography [25], soil moisture [26], meteorological factors, and human activities [27].
Vegetation cover and soil moisture are mainly affected by precipitation, temperature,
and topography. The land use type, population density, and GDP quantify the impact
of human activities. Therefore, precipitation, temperature, elevation, slope, land use,
population density, and GDP were selected as the driving factors to explore the differences
in vegetation spatial pattern for NPP in Ningxia. Differentiation, factor detection, and
interaction detection were used to explore the magnitude of influence for each driving
factor on vegetation NPP.

2.3.3. Single Correlation Analysis with Climatic Factors

The main controlling factors were analyzed from the results of the geographic detector.
Precipitation and temperature are the two most important climatic factors affecting the
variation of NPP in Ningxia. Based on raster data, precipitation and temperature from
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2000 to 2020 were used as the main controlling factors affecting the temporal and spatial
variation in the correlation analysis. The calculation formula is as follows [28]:

Rxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(7)

where Rxy denotes the correlation coefficient between variable x and variable y; xi is the
value of NPP in year i (gC/m2a); yi is the value of the climate factor in year i (precipita-
tion/mm or temperature/◦C); x and y denote the average of NPP and climate factor in n
years, respectively.

2.3.4. Bias Correlation Analysis with Climate Factors

The degree of correlation between the two factors (NPP and air temperature; NPP
and precipitation) is expressed by introducing the bias correlation coefficient, i.e., the
interference of precipitation (air temperature) needs to be excluded when studying the
effect of air temperature (precipitation) on NPP, and the bias correlation coefficient is
calculated as follows [29]:

Rxy,z =
Rxy − Rxz × Ryz√

(1− Rxz2)
√(

1− Ryz2
) (8)

where Rxy, Rxz, Ryz denote the correlation coefficients between NPP and air temperature,
NPP and precipitation, and air temperature and precipitation, respectively; and Rxy,z refers
to the bias correlation coefficient between NPP and air temperature when precipitation is
constant, i.e., the effect of precipitation is excluded when analyzing the correlation between
NPP and air temperature. The bias correlation coefficients were subsequently tested for
significance (t test method), and the statistics were calculated as follows [30]:

t =
Rxy,z√(

1− Rxy,z2
)√n−m− 1 (9)

where Rxy,z is the bias correlation coefficient, n is the number of samples (n = 21), and m is
the number of independent variables.

2.3.5. Multi-Correlation Analysis with Climatic Factors

A variable is often affected by multiple factors, and the factors affect and relate to each
other. Therefore, we introduced a multi-correlation coefficient to calculate the correlation
degree of multiple factors. The correlation of NPP with precipitation and temperature is
studied in this paper. The calculation formula is as follows:

Rx,yz =
√

1−
(
1− Rxy2

)(
1− Rxz,y2

)
(10)

where Rx,yz is the multi-correlation coefficient of NPP with temperature and precipitation;
Rxy is the correlation coefficient of NPP with temperature; Rxz,y is the bias correlation
coefficient of NPP with precipitation when the temperature is constant. A significance test
(F test method) was performed on the multi-correlation coefficients, and the statistics were
calculated as follows:

F =
Rx,yz

2

1− Rx,yz2 ×
n− k− 1

k
(11)

where Rx,yz is the complex coefficient, n is the number of samples, and k is the number of
independent variables.



Forests 2023, 14, 1170 6 of 17

2.3.6. NPP Driver Partition

Combining the results of the bias correlation coefficient (α = 0.01) and the significance
test (α = 0.05) of the NPP and climate factor, the driving partition of Ningxia NPP was
delineated according to the guidelines of the driving partition of NPP and the driving
factor [31] (Table 1).

Table 1. Ningxia NPP driver partition guidelines.

NPP Drive Type T Test (Temperature) T Test (Precipitation) F Test

Temperature, precipitation intensity drive |t| > tα=0.01 |t| > tα=0.01 F > Fα=0.05
Temperature dominated |t| > tα=0.01 / F > Fα=0.05
Precipitation dominated / |t| > tα=0.01 F > Fα=0.05

Temperature, precipitation weakly driven |t| ≤ tα=0.01 |t| ≤ tα=0.01 F > Fα=0.05
Non-climate driven / / F ≤ Fα=0.05

3. Results and Analysis
3.1. Temporal and Spatial Variation Characteristics of Vegetation NPP

The variation of NPP in the Ningxia terrestrial ecosystem from 2000 to 2020 is shown in
Figure 2, and its annual mean fluctuated between 119.98 and 249.66 gC/m2a, with a multi-
year mean of 190.15 gC/m2a. The annual average NPP exceeded the multi-year average for
10 years, all of which were after 2010. This indicated that the Ningxia ecological protection
and restoration project was effective. The linear trend analysis of the NPP variation value
in 21 years showed an annual growth rate of 5.17 gC/m2a, indicating that the NPP showed
a fluctuating rise. The ecosystem NPP peaked in 2018 at 249.66 gC/m2a. The minimum
value appeared in 2000 at 119.98 gC/m2a. The difference between the highest value and
the lowest value was 129.68 gC/m2a.
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Figure 2. Interannual variation characteristics of NPP in Ningxia from 2000 to 2020.

The spatial distribution of the multi-year average NPP value in Ningxia from 2000
to 2020 is shown in Figure 3, with obvious differentiation in characteristics. There are
more obvious divergent characteristics, showing distribution characteristics of low in the
central and northern sides and high in the southern and northern middle. Vegetation types
mainly included: forest land, shrub grassland, mountain meadows, meadow grassland,
desert steppe, and farmland. The vegetation NPP ranges primarily between 200 and
300 gC/m2a. The Liupan Mountains and Nanhua Mountains have high altitudes and
abundant precipitation with rich forest resources. The vegetation NPP was higher than
400 gC/m2a. Thus, the vegetation NPP level in southern Guyuan City is 77.17% higher
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than the multi-year average level of the whole region. The central part of Ningxia is an arid
zone, the central and southern parts are steppe grasslands, and the central and northern
parts are desert steppes. The vegetation NPP ranges mainly between 100 and 200 gC/m2a.
The steppe desert vegetation in the piedmont plain of the Helan Mountains on both sides of
the north and the edge of the Ordos platform have low vegetation coverage and the lowest
vegetation NPP (>100 gC/m2a). The northern Yellow River is nourished by Yellow River
irrigation, and a modern agricultural system was formed. The NPP of vegetation is slightly
higher than on both sides, at 200–400 gC/m2a. The multi-year average vegetation NPP of
each city in Ningxia is: Guyuan City (336.89 gC/m2a) > Yinchuan City (167.75 gC/m2a)
> Zhongwei City (159.85 gC/m2a) > Wuzhong City (153.31 gC/m2a) > Shizuishan City
(144.46 gC/m2a).
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3.2. Analysis of Vegetation NPP Variation Trend

The annual average vegetation NPP interannual variation value slope from 2000 to 2020
in Ningxia was between −21 and 18 gC/m2a (Figure 4). The NPP area with an increasing
trend (slope > 0) accounted for 93.78% of the area. The NPP area with a decreasing trend
(slope < 0) accounted for 4.22% and was partially concentrated in a shrub grassland zone in
the Helan Mountains and the northern Yellow River irrigation area and was sporadically
distributed in the desert steppe zone in central Ningxia. The interannual spatial variation of
the region gradually increased from north to south. The interannual variation value of the
desert steppe in the central and northern parts of Ningxia was between 0 and 2 gC/m2a,
accounting for 28.63% of total area in the region. The interannual variation value of the
steppe in the northern Yellow River irrigation area and the central and southern regions was
between 2 and 6 gC/m2a, accounting for 32.87% of the area of the region. The interannual
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variation value of the forest grassland zone in the south was 6–18 gC/m2a, accounting for
32.28% of the area of the region. Overall, the interannual variation value of vegetation NPP
in Ningxia was 4.89 gC/m2a, showing an increasing trend over the past 21 years.
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Figure 4. Variation trend of annual average NPP in Ningxia.

The Hurst index of vegetation NPP from 2000 to 2020 was calculated to predict the
future sustainability of NPP variation trends in Ningxia. Through spatial analysis, the
Hurst index range of Ningxia was between 0.13 and 0.88, and the regional average was
0.45 (Figure 5). H < 0.5 accounted for 74.28%, and H > 0.5 only accounted for 23.72% of
the total area. This indicated that vegetation NPP variation in Ningxia has a strong reverse
persistence. Most areas in Ningxia will have a reverse trend of vegetation NPP variation
in the future. Using superposition analysis of the interannual variation slope and Hurst
index of regional vegetation NPP, five variation trends of NPP in the future were obtained
(Table 2). In the future, the vegetation NPP will be continuously increasing, decreasing,
changing from increasing to decreasing and from decreasing to increasing, accounting for
22.35%, 1.36%, 71.42% and 2.86% of the whole area, respectively. The areas that show a
change from decreasing to increasing will be concentrated in the northern Helan Mountain
front. The areas that continue to increase will be mainly distributed in the southern hilly
mountains, the central and southern steppe, and the central and eastern desert steppe.
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Table 2. Classification of future trends in NPP.

Range of Values Future Trends of Change Range of Values Future Trends of Change

Slope > 0, H > 0.5 Continuous increase Slope < 0, H < 0.5 Change from decrease to increase
Slope < 0, H > 0.5 Continuous reduction H = 0.5 Unpredictable
Slope > 0, H < 0.5 Change from increase to decrease

3.3. Analysis of Vegetation NPP Driving Factors

The multi-year average vegetation NPP was selected as the variable Y. The multi-
year average temperature, multi-year average precipitation, elevation, slope and land use,
population density, and GDP were selected as the driving factors X. The influence of each
driving factor X on the variable Y is measured by the value q, and the range is between
0 and 1. The larger the q value, the stronger the influence of X on Y. Results from the
differentiation and factor detector show that the magnitude of value q for different factors
was ranked as precipitation (0.6646) > temperature (0.6286) > population density (0.0675) >
GDP (0.0283) > land use (0.0086) > elevation (0.0040) > slope (0.0034).

Driving factors on vegetation NPP were divided into two categories: dominant factors
at q ≥ 0.5 (precipitation and temperature) and important factors at q < 0.5 (population
density, GDP, land use, elevation, and slope). The interaction detector can assess whether
the influence on the variable Y is enhanced or diminished when the driving factors X1 and
X2 act together. As can be seen from Table 3, whether it is: dominant factor ∩ dominant
factor, important factor ∩ important factor, or dominant factor ∩ important factor, the metric
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q has increased, which is two-factor enhancement. Therefore, the spatial and temporal
differentiation pattern of vegetation NPP in Ningxia is the result of the interaction and
comprehensive action of multiple factors.

Table 3. Interactions between different factors.

Factors Temperatures Precipitation Slope Elevation Population
Density GDP Land

Utilization

Temperatures 0.6286
Precipitation 0.6871 0.6646

Slope 0.6294 0.6654 0.0034
Elevation 0.6292 0.6651 0.0058 0.0040

Population
Density 0.6875 0.6973 0.0712 0.0717 0.0675

GDP 0.6514 0.6879 0.0315 0.0334 0.2203 0.0283
Land Utilization 0.6364 0.6723 0.0161 0.0183 0.0756 0.0381 0.0086

3.4. Correlation Analysis between NPP and Climatic Factors
3.4.1. Single Correlation Analysis between NPP and Climatic Factors

The spatial distribution of the correlation coefficient between the multi-year average
vegetation NPP and temperature in Ningxia is shown in Figure 6, which was between−0.62
and 0.80. The average correlation coefficient for the region is 0.23. The regions showing
negative and positive correlations were 8.88% and 89.12%, respectively. The negative
correlation areas were mainly concentrated in the northern Yellow River irrigation area,
Helan Mountains area, and the central cultivated land with an area of about 5896.07 km2.
The very weak correlation (0–0.2) areas were concentrated in the desert steppe in the central
and eastern parts, with an area of about 18,931.21 km2. The weak correlation (0.2–0.4) areas
were mainly concentrated in the steppe of the eastern and central south of Yanchi County
and Guyuan City in the south, with an area of 49.22%. This indicated that most of the study
area is weakly correlated with temperature. The intermediate correlation (0.4–0.6) and
strong correlation (0.6–0.8) areas were sporadically distributed in the Liupan Mountains
and the desert steppe in the central and western regions.

The correlation coefficient between the multi-year average vegetation NPP and pre-
cipitation ranged from −0.55 to 0.91, and the average correlation coefficient of the whole
region was 0.47. The negative correlation area was less than 1%. The weak correlation
areas were mainly concentrated in the northern, central and eastern parts, at about 28.96%.
The intermediate correlation and strong correlation areas were mainly concentrated in the
central and southern parts and in the hilly mountains in the south, at about 62.88%. These
regions have low temperature, higher precipitation, and less human disturbance. Therefore,
vegetation NPP was more dependent on precipitation. The areas where vegetation NPP
showed consistent correlation with temperature and precipitation were Xiji, Yuanzhou and
Pengyang counties in the central and western parts of Ningxia.
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3.4.2. Bias Correlation Analysis between NPP and Climatic Factors

According to the bias correlation analysis (Figure 7), the bias correlation coefficient
between vegetation NPP and temperature in Ningxia fluctuated from −0.78 to 0.86. The
average correlation coefficient of the whole region was 0.21, showing an overall weak
correlation. The areas with bias correlation showed a positive and negative correlation, ac-
counting for 97% and 1.02% of the total regional area, respectively. The negative correlation
area was the central part of the Yellow River irrigation area in northern Ningxia. Results
from the two-sided t test show that the bias correlation coefficient between NPP and tem-
perature passed the significance test (|t| > tα=0.01) in an area of about 729.07 km2 (Table 4),
concentrated in the northeastern part of Shapotou District in the central and western re-
gions. The bias correlation coefficient between vegetation NPP and precipitation fluctuated
from −0.55 to 0.97. The average correlation coefficient for the region was 0.47, showing
an overall moderate correlation. The area with bias correlation showed that the negative
correlation was less than 1%. Results from the two-sided t test show that the bias correlation
coefficient between NPP and precipitation passed the significance test (|t| > tα=0.01) in
an area of 21,728.45 km2 (Table 4). Approximately 32.72% was concentrated in Haiyuan
County in the central and southern parts, the edge of Shapotou District, and Yuanzhou
District and Xiji County in the south of Ningxia. In general, the bias correlation between
vegetation NPP and precipitation in Ningxia was stronger than temperature.
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Table 4. Significance test statistics table.

Significance Test Area (km2) Percentage (%)

Precipitation bias correlation (|t| > tα=0.01) 21,728.45 32.72%
Temperature bias correlation (|t| > tα=0.01) 729.07 1.10%

Precipitation temperature complex correlation (F > Fα=0.05) 33,814.24 50.93%

3.4.3. Multi-Correlation Analysis between NPP and Climatic Factors

The spatial distribution of the multi-correlation coefficient between vegetation NPP,
precipitation, and temperature is shown in Figure 8. The coefficients ranged between
0.01 and 0.97, and the spatial mean was 0.53, indicating that regional multi-correlation is
evident between vegetation NPP and precipitation and temperature. The correlation is
significant in Haiyuan County in the central and western parts, and in Shapotou District
and Pengyang County, Yuanzhou District and Xiji County in the south of Ningxia. The
areas with weak multi-correlation were mainly concentrated in the northern Yellow River
irrigation area, the desert steppe in the central and eastern parts, and some mountainous
areas of the Liupan Mountains. Results from the F test show that the multi-correlation
coefficient between NPP and precipitation and temperature passed the significance test
(F > Fα=0.05) in an area of 33,814.24 km2. Approximately 50.93% was consistent with the
multi-correlation significance area.
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3.4.4. Driving Space Distribution

The spatial distribution of driving factors was determined according to the above-
mentioned driver partition criteria (Figure 8), which have strong spatial differentiation
characteristics. (1) The non-climatic factor-driven area was 31,258.39 km2, accounting
for 47.08% of the entire area (Table 5). The slope is primarily below 6◦, and the terrain
is relatively flat and is mainly concentrated in the northern Yellow River irrigation area
and in the desert steppe in the central and eastern parts. A small part is in the Liupan
Mountains in the south, with a higher altitude. (2) The area where precipitation is the
main driving factor of vegetation NPP accounted for 32.49% of the study area, with an
area of 21,575.38 km2. This area is mainly concentrated in Haiyuan County in the central
and southern parts and Xiji County, Pengyang County and Yuanzhou District in the south,
and a small part is in the Helan Mountains on the west side of the northern Yellow River
irrigation area. (3) Less than 1% of the area was driven by temperature as the main factor
and was distributed in the northeastern part of the Shapotou District. (4) The area is weakly
driven by rainfall and temperature. The size was 11,508.36 km2, about 17.33%, concentrated
in the Shapotou-Zhongning–Tongxin area and the east side of Pengyang County. The
remaining areas were strongly driven by rainfall and temperature, sporadically distributed,
and occupy a small area.
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Table 5. Driving space statistics.

Drive Type Area (km2) Percentage (%)

Precipitation dominated 21,575.38 32.49%
Temperature dominated 577.03 0.87%

Temperature and precipitation strong drive 1408.72 2.23%
Temperature and precipitation weakly driven 11,508.36 17.33%

Non-climatic factors 31,258.39 47.08%

4. Discussions

The vegetation NPP in Ningxia fluctuated with an annual growth rate of 5.17 gC/m2a
from 2000 to 2020. In addition to being related to the ecological restoration project carried
out in Ningxia, it may also be related to the CO2 concentration. Increases in CO2 con-
centration, promoted by CO2 fertilization, can promote the improvement of vegetation
productivity [32]. Vegetation NPP spatial patterns showed low distribution on both sides
in the middle and north, and high in the middle in the south and north. Precipitation in
Ningxia decreased from south to north [33]. The southern mountainous areas have high
altitude and abundant precipitation. The Liupan Mountains and Yunwu Mountains have
abundant forest resources. The central area has scarce rain and large evaporation and is
located in the arid zone with serious grassland desertification and a low vegetation NPP
value. The northern Yellow River irrigation area is nourished by the Yellow River, forming a
modern agricultural system. The interannual variation value, slope, and Hurst index of the
vegetation NPP in Ningxia show that the area has an increasing trend of NPP in Ningxia
(slope > 0). This accounts for 93.78% of the whole area, but with a strong reverse persistence.
Therefore, the future vegetation NPP changing from increasing to decreasing will account
for 71.42% of the whole area, most of which belong to non-climatic-driven areas and may be
related to human activities and economic development [34,35]. This should be considered
a key area for soil and water conservation and ecological restoration projects.

The spatial differentiation pattern of vegetation NPP in Ningxia is comprehensively
influenced by various factors. The geographic detector analysis shows that climatic factors
(temperature and precipitation) played a dominant role. When quantifying the impact of
human activities on vegetation NPP, three indicators of population density, GDP and land
use were selected. However, the effect was not ideal because human activities are a complex
and continuous process. The effect cannot be summarized by three indicators alone, and
the lag effect of human activities on changing the environment was not considered.

The results of the correlation analysis between vegetation NPP and climatic factors
showed that the positive correlation between NPP and precipitation was significantly
stronger than temperature. This may be related to the fact that Ningxia is located in a
semi-arid and semi-humid zone [36]. In the multi-correlation analysis between vegetation
NPP and climatic factors, the areas with weak multi-correlation may be related to important
factors in the driving factors of vegetation NPP. For example, they are related to vegetation
type, slope, land use type, etc. The terrain of Ningxia is high in the south and low in
the north, and the altitude difference is large. The vegetation types show the horizontal
distribution of forest grassland–steppe–desert steppe–steppe desertification from south
to north. Zhu et al. points out that the vegetation NPP in different grasslands in Ningxia
from large to small was: mountain meadows, grassland meadows, shrub meadows and
low wetland meadows, steppe meadows and desert steppes. The multi-year average NPP
for each vegetation type of land use is also different [37]: forest land (249.19 gC/m2a) >
cultivated land (229.47 gC/m2a) > grassland (176.89 gC/m2a) > bare land (113.46 gC/m2a).
According to Zhu et al. [37], the multi-year average grassland NPP in Ningxia from 2010
to 2015 was 148.28 gC/m2a, which was not meaningfully different from the results in
this paper.

The non-climatic factors driving space distribution of vegetation NPP in Ningxia were
mainly concentrated in the northern Yellow River irrigation area and the desert steppe
in the central and eastern parts. Most of this area is cultivated or construction land, and
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human activities are frequent. This area is greatly affected by human activities and less
affected by climatic factors; thus, it can be used as a priority vegetation restoration area. The
vegetation in the climatic factor-driven area should be protected. The carrying capacity of
water and soil resources in each area can be calculated to determine the vegetation carrying
capacity. Vegetation restoration and governance can be carried out in combination with
driver partition.

5. Conclusions

In this paper, the NPP data of MOD17 A3 were used to determine the future NPP
trend of Ningxia via slope trend analysis and the Hurst index. Spatial drivers were defined
by geographic detector and correlation analysis. The results showed that: (1) The NPP of
Ningxia fluctuated from 2000 to 2020. The annual average range was between 119.98 and
249.66 gC/m2a, and the multi-year average was 190.15 gC/m2a. The spatial distribution
has more obvious divergent characteristics, showing the distribution characteristics of low
in the central and northern sides and high in the southern and northern middle. (2) By
superposition analysis of the slope and Hurst index, vegetation NPP in Ningxia will be
continuously increasing, decreasing, changing from increasing to decreasing and from
decreasing to increasing, accounting for 22.35%, 1.36%, 71.42% and 2.86% of the whole area,
respectively. (3) The influence of driving factors can be divided into dominant factors and
important factors. The interaction between the two factors is positive, and the maximum q
value under the interaction of precipitation and temperature is 0.6871. (4) The vegetation
NPP in Ningxia is mainly driven by climate factors in 50.92% of the area (32.49% driven by
rainfall, less than 1% driven by temperature, and 17.33% driven by rainfall and temperature)
and is mainly distributed in the central, western and southern parts of Ningxia. The non-
climatic factor-driven areas can be used as priority vegetation restoration areas, which
account for 47.08%, mainly concentrated in the northern Yellow River irrigation area and
the desert steppe in the central and eastern parts, and in a small part in the southern
Liupan Mountains. In the future, the area of vegetation NPP from increasing to decreasing
should be taken as the key area of a soil and water conservation and ecological restoration
project. This study provides some theoretical basis for regional vegetation restoration and
high-quality development of the Yellow River Basin.
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