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Abstract: Forests play an irreplaceable role in preserving soil and water, as well as realizing carbon
neutrality. However, logging and urban expansion have caused widespread forest fragmentation
globally, resulting in biodiversity loss and carbon emissions. Therefore, it is a prerequisite to develop
a comprehensive index for evaluating the degree of forest fragmentation to propose effective policies
for forest protection and restoration. In this study, a forest fragmentation comprehensive index (FFCI)
was constructed through principal component analysis (PCA) based on land-use data from 2000 to
2020 in Fujian Province, composed of five commonly used landscape metrics: patch density (PD),
largest patch index (LPI), mean patch area (MPA), aggregation index (AI), and division. Then, the
semivariogram function and moving windows method were employed to explore the scale effect and
spatiotemporal variations of FFCI. The spatial autocorrelation analysis was used to distinguish the
spatial relationship of forest fragmentation, while the driving mechanisms were explored using the
geographic detector (GD). The results show that the optimal scale to reflect forest fragmentation based
on the semivariogram and moving window method was 3500 m. The proposed FFCI could explain
more than 85% of the information for all landscape metrics, and the effectivity of FFCI was validated
by urban–rural gradient and transect analysis. We also found that, despite having the highest forest
coverage in China, Fujian Province has experienced severe forest fragmentation. High and medium
fragmentation accounted for over 50% of all types of fragmentation, with decreasing trends in low
and very low fragmentation and increasing trends in high fragmentation over time, indicating that
the degree of forest fragmentation in the study area was aggravated over time. Moreover, the
spatial distribution pattern of FFCI was mainly high–high clusters and low–low clusters, showing
a decreasing trend year by year. The areas with high fragmentation were mainly distributed in the
urban center of coastal cities, while the internal cities in western and central regions had a relatively
low degree of fragmentation. Additionally, the spatial differentiation in the variation in FFCI was
mainly influenced by elevation, slope, and nighttime light intensity. The superimposed impact of
two factors on the variation in FFCI was greater than the impact of individual factors. These results
provide an effective approach for assessing the degree of forest fragmentation and offer scientific
support for mitigating forest fragmentation.

Keywords: forest fragmentation; landscape metrics; principal component analysis; spatiotemporal
dynamic; geographic detector

1. Introduction

Forests play a key role in carbon sequestration, climate change mitigation, and protec-
tion of soil and water resources [1,2]. They cover 31% of the global land surface, and they
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harbor more than half of the terrestrial biodiversity worldwide [3]. However, deforestation
and other human activities have led to widespread forest loss globally, resulting in the
appearance of large, isolated forest patches and reduced connectivity between them. In
recent years, forest fragmentation has been found to widely occur [4,5], causing alarming
habitat loss, climate change, and carbon loss [6,7]. In this context, it is urgent to present
an appropriate index to evaluate the degree of forest fragmentation and understand its
driving forces.

Over the past few decades, the advancement of remote sensing (RS) and geographic in-
formation systems (GIS) have facilitated many studies monitoring forest fragmentation [8,9].
Using high-resolution satellite imagery, the characteristics of forest patches, such as number,
size, and geometry, have been employed to characterize the forest fragmentation [10,11]
and investigate the spatial pattern, causes, and consequences of forest fragmentation [2,12].
FRAGSTATS offers various landscape metrics to quantify landscape configuration and
composition at different levels [13], and it has been widely used to evaluate forest frag-
mentation [14,15]. FRAGSTATS metrics can be categorized into three types: patch-level
metrics, class-level metrics, and landscape-level metrics. As forest is commonly defined
as a class in landscape ecology [16], class-level metrics have been frequently used in the
studies of forest fragmentation [9,17–19]. Some of these metrics quantify the magnitude or
density of forest patches (e.g., patch density (PD), largest patch index (LPI), and mean patch
area (MPA)), while some metrics quantify the spatial distribution or connectivity of forest
class (e.g., division and aggregation index (AI)). These metrics offer information on forest
fragmentation pattern and were widely used in previous studies [20–22]. However, most
previous studies used single or multiple metrics to separately evaluate the degree of forest
fragmentation. These metrics have their own focus, and single or multiple metrics used
separately cannot comprehensively and systematically describe the overall characteristics
of a forest landscape. Additionally, some metrics are strongly correlated and provide
redundant information [23,24]. Therefore, it is necessary to build a comprehensive index to
evaluate forest fragmentation.

Many studies have been conducted to measure the driving force of forest fragmen-
tation, which includes socioeconomic, natural, and anthropogenic factors. Human ac-
tivities and socioeconomic change have a great impact on forest fragmentation in many
regions [25,26], and most studies employed population and nighttime light intensity as
proxies. In additional, natural factors such as altitude, temperature, and precipitation
determine the environmental condition of forests and are also considered to be related
to forest fragmentation [27]. However, forest fragmentation is a complicated evolution
process, and it may be influenced by the interaction of many factors [28]. In this context, the
geographic detector (GD) [29], a statistical method based on the theory of spatial stratified
heterogeneity, was used to analyze the relationship between forest fragmentation variation
and driving factors in this study. In addition to analyzing the explanatory power of single
driving factors, GD can quantitatively detect the interactions between driving factors [30].

Located in the southeast coast of China, Fujian Province has a subtropical climate, and
its terrain mainly features mountains and hills. It is one of four major forest areas in China.
Similar to other provinces in China, a series of reforestation projects were implemented
in Fujian, such as the “National Forestation Program”, “Natural Forest Conservation
Program”, and “Sloping Cropland Conversion Program” [31], leading to a constant increase
in forest coverage. However, numerous studies showed that forest cover increase does not
denote a decrease in forest fragmentation [32–34]. Previous studies indicated that Fujian
Province is one of the most active forest cover change regions in China [35,36]; frequent
changes in forest cover can lead to an increase in forest fragmentation.

In this context, this study aimed to construct a comprehensive index to evaluate the
extent of forest fragmentation; the aims of this study were to (1) identify spatiotemporal
variations characteristics of forest fragmentation in Fujian, (2) determine the dominant
driving factors influencing variations in forest fragmentation, and (3) identify the impact of
the interactions between driving factors.
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2. Materials and Methods
2.1. Study Area

Fujian Province (23◦30′–28◦19′ N, 115◦50′–120◦47′ E) is located on the southeast coast
of China, with an area of 121,400 km2 (Figure 1). The terrain is high in the northwest and
low in the southeast. The province is dominated by mountains and hills (over 80%). It has
an irregular coastline with numerous bays and islands. The climate is mild and humid,
with an annual average temperature of 16.3–23.3 ◦C, and an average annual precipitation of
800–1900 mm. The province is rich in forest and plant resources; the forest coverage rate of
Fujian Province is as high as 66.8% in 2022, ranking first in China for 43 consecutive years.
The main vegetation type is subtropical evergreen broad-leaved forest and subtropical
monsoon rain forest.
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Figure 1. Location of study area and status of forest cover in 2020.

2.2. Data Sources and Processing
2.2.1. Land-Use Data

The land-use/cover change (LUCC) data (including 2000, 2010, and 2020) with a spatial
resolution of 30 m were obtained from Data Center for Resource and Environmental Science,
Chinese Academy of Sciences (http://www.resdc.cn/) (accessed on 12 October 2021).
The dataset was constructed by human-computer interaction and visual interpretation
technology based on Landsat-TM/ETM+ and Landsat 8 satellite remote sensing images
data, with an accuracy of more than 93% [37]. The data divide land use into six primary
types (cultivated land, forest, grassland, water body, artificial land, and unused land) and
25 secondary types.

2.2.2. Driving Factor Data

Table 1 lists all the driving factors selected in this study, which included geomorphic,
anthropogenic, and socioeconomic factors. The digital elevation model (DEM) from the
ASTER GDEM V3 product with a spatial resolution of 30 m (https://www.gscloud.cn/)
(accessed on 6 December 2021) was used to extract elevation and slope data through
the Surface tool in ArcGIS 10.3 software. The population density data were taken from
the WorldPop dataset (https://www.worldpop.org/) (accessed on 12 December 2021)

http://www.resdc.cn/
https://www.gscloud.cn/
https://www.worldpop.org/
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with a spatial resolution of 1000 m. The meteorological data with a spatial resolution of
1000 m were taken from the National Earth system Science data Center (http://www.
geodata.cn/) (accessed on 12 December 2021), including monthly average temperature
and monthly precipitation in 2000, 2010, and 2020. The annual mean temperature and
annual precipitation data were calculated using the Raster Calculator tool in ArcGIS 10.3.
The nighttime light intensity data with a spatial resolution of 1000 m were taken from
the National Earth System Science Data Center (http://www.geodata.cn/) (accessed on
12 December 2021), representing the socioeconomic information. All data were converted
into the Albers coordinate system.

Table 1. List of driving factors.

Type Data Variable

Geomorphic factors DEM Elevation
Slope

Meteorological factors Monthly average temperature
Monthly precipitation

Annual mean temperature variation (AMTV)
Annual precipitation variation (APV)

Socioeconomic factors Population density
Nighttime light intensity

Population density variation (PDV)
Nighttime light intensity variation (NLIV)

2.3. Calculation of Forest Fragmentation Comprehensive Index
2.3.1. Selection of Landscape Metrics

Forest fragmentation refers to the process of subdividing the original large and con-
tinuous extensions of forests into relatively small and isolated patches [38]; therefore, the
landscape metrics which can characterize the size, shape, and distribution of forest patches
were mostly selected to characterize forest fragmentation in previous studies [39,40]. In
this study, we used FRAGSTATS 4.2 software to calculate the following landscape metrics
to construct the forest fragmentation comprehensive index: (1) patch density (PD), the
ratio of the number of forest patches and the total area; (2) largest patch index (LPI), the
proportion of the largest forest patch and the total area; (3) mean patch area (MPA), the
average area of all patches of forest class; (4) aggregation index (AI), the frequency of side
by side appearance of forest patches on the landscape; (5) division, the spatial proximity of
forest patches.

2.3.2. Construction of Forest Fragmentation Comprehensive Index

In this study, we aimed to construct a comprehensive index (i.e., FFCI) to evaluate
forest fragmentation. On the basis of the abovementioned landscape metrics, we used
principal component analysis to synthesize the FFCI and compute the weight of each metric
for the FFCI. Principal component analysis (PCA) is a multidimensional factor compres-
sion technique, which can be employed to reduce redundant information of landscape
metrics [21]. It analyzes the variance of a set of correlated variables and transforms them
into a new set of uncorrelated independent components (principal components, PCs).
Additionally, the weight of each variable can be calculated automatically according to its
contribution to the principal components, which provides more objective and robust results
compared to artificially determining weights.

The process of PCA was accomplished using the PCA Rotation tool in ENVI. All the
metrics were normalized to 0–1 before PCA. The percentage variance of PC1 was larger than
85%, indicating that PC1 represented most of the information from the original landscape
metrics. Thus, PC1 was used to construct FFCI images for all study years.

2.4. Moving Window and Semivariogram Method

To get the optimal analysis scale of landscape metrics in the study area, we calculated
three landscape metrics (division, LPI, and PD) at 10 moving window sizes (from 500 m to
5000 m with an interval at 500 m) through the moving window function of FRAGSTATS

http://www.geodata.cn/
http://www.geodata.cn/
http://www.geodata.cn/
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4.2 software. The semivariogram can reveal the spatial heterogeneity of variables by mea-
suring the relationship between the degree of variation and the distance between the spatial
attributes of two points. The spherical model is a function for fitting in the semivariogram,
and it contains three fitting indicators: nugget value (C), sill value (C0 + C) , and range
value (A 0). The nugget/sill ratio [C/(C0 + C)] reflects the degree of the spatial variability
caused by the random part in the total variation [41]. A higher value denotes more obvious
spatial autocorrelation. When the value reaches a relatively stable level, the scale can be
considered a suitable window size for the landscape metrics of the study area [42]. In this
study, we used ArcGIS 10.3 software to generate 10,000 random points in the study area
and extracted the three calculated landscape metrics at 10 moving window sizes into these
random points. The semivariogram model in GS+ 9 software was used to measure the
change in landscape metrics and determine the optimal characteristic scale. The value of
the semivariogram (γ(h)) was calculated using Equation (1).

γ(h) = (1/2N(h))
N(h)

∑
i=1

[Z(xi) −Z(xi + h)]2, (1)

where γ(h) is the semivariogram at the lag distance of h, N(h) is the number of pairs
separated by lag h, and Z(xi) and Z(xi + h) are the data values at position xi and position
xi + h.

2.5. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is used to reveal correlations of attribution values
between target units and neighboring target units, including global spatial autocorrelation
and local spatial autocorrelation [43]. Moran’s I value is the most used coefficient of spatial
autocorrelation analysis. In this study, to obtain the optimal analysis scale of the FFCI,
global spatial autocorrelation analysis was used to analyze the spatial autocorrelation of
FFCI at different spatial scales, and the global Moran’s I value of FFCI was calculated at
different spatial scales using Equation (2).

Global Moran’s I =
n∑n

i=1 ∑n
j=1 wij

(
xi −

-
x
)(

xj −
-
x
)

S0∑n
i=1

(
xi −

-
x
)2 , (2)

where n is the total number of spatial units at different spatial scales in the study area, wij
is the spatial weight between unit i and unit j, xi and xj are the FFCI values of unit i and
unit j,

-
x is the average FFCI value in all spatial units in the study area, and S0 is the sum

of all spatial weights. The global Moran’s I value varies from −1 to 1. A positive value
of Moran’s I represents a positive spatial correlation, while a negative value of Moran’s I
represents a negative spatial autocorrelation; a zero value of Moran’s I represents a random
spatial distribution.

Furthermore, local Moran’s I analysis is used to assess the spatial aggregation charac-
teristics (i.e., hot spots and cold spots) of variables in local areas. Local Moran’s I value was
calculated using Equation (3), and it was employed in the LISA (local indicator of spatial
association) diagram to identify the aggregation type of FFCI in the GeoDa 1.8 software.
Clusters are categorized as “high–high clusters (hot spots)”, “high–low clusters, “low–high
clusters”, and “low–low clusters (cold spots)” [44].

Local Moran’s I =
xi −

-
x

n
∑

i=1

(
xi −

-
x
)2

n

∑
j=1

wij

(
xj −

-
x
)

. (3)
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2.6. Geographical Detector

GD is a statistic method to measure the hierarchical spatial heterogeneity and driving
mechanism of geographic factors [45]. It measures the linear and nonlinear statistical
relationship between the dependent and the independent variables by comparing the
variance between them. It includes four detector modules, factor detector, interactive
detector, ecological detector, and risk detector, which are respectively used to analyze the
relative importance of different factors, significant differences, interaction mechanism, and
significant value distribution range, the first two of which were used in this study.

The factor detector can measure the explanatory power of driving factors, which was
used to reveal the contribution of explanatory variable to the spatial differentiation of
variation in FFCI in this study. It determines the explanatory power of the driving factors
by comparing the mathematical statistical relationship between the total variance of the
whole region and the intralayer variance. The q value is used to measure the interpretation
intensity, calculated using Equation (4).

q = 1 −∑L
h=1 Nhσ

2
h

Nσ2 , (4)

where q is the explanatory power of the driving factor, h is the strata number of the FFCI
or a certain driving factor (h = 1, 2, . . . , L), Nh and N are the number of samples in strata
h and the whole area, σ2

h is the variance in the value of the FFCI in strata h, and σ2 is the
variance of the FFCI value in the entire study area.

The interactive detector is used to judge whether the explanatory power of interaction
between two driving factors is enhanced or weakened. The q value of the interaction was
compared to assess whether there was an interaction between two factors with regard to
the variation in FFCL. The interaction types and judgment basis are shown in Table 2.

Table 2. Interaction types and judge basis.

Judge Basis Interaction Types

q(x1∩x2) < Min(q(x1), q(x2)) Nonlinear weakening
Min(q(x1), q(x2)) < q(x1∩x2) < Max(q(x1), q(x2)) Single-factor nonlinear weakening

q(x1∩x2) > Max(q(x1), q(x2)) Double-factor enhancement
q(x1∩x2) = q(x1) + q(x2) Independence
q(x1∩x2) > q(x) + q(x2) Nonlinear enhancement

3. Results
3.1. Scale Effects of Semivariogram Analysis

Figure 2 showed the nugget/sill ratio of three landscape metrics (division, LPI, and
PD) at different window sizes. When the window size was less than 3500 m, the nugget/sill
ratio of each landscape metrics increased with the increase in window size, indicating that
the degree of spatial variability was high and the spatial autocorrelation was not obvious.
The nugget/sill ratio of each landscape metrics tended to be stabilized when the window
size was 3500 m, which indicates that the spatial autocorrelation became obvious and
spatial variability was low. Therefore, the scale of 3500 m was selected as the optimal
moving window size to reflect the spatial variability characteristics of landscape metrics.

3.2. Principal Component Analysis

On the basis of the obtained results, five landscape metrics (AI, LPI, MPA, division,
and PD) were calculated with a moving window size of 3500 × 3500 m in FRAGSTATS
4.2 software. The principal component results of the five landscape metrics obtained by
principal component analysis are shown in Table 3. The results showed that PC1 explained
more than 85% of total variance for each study year, indicating that PC1 integrated most
of the information and characteristics of the five landscape metrics; therefore, PC1 was
proposed to construct the FFCI to characterize the degree of forest fragmentation in the
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study area, with the weights of AI, LPI, MPA, division, and PD being 0.599, 0.569, 0.175,
0.070, and 0.531 in 2000, 0.600, 0.526, 0.170, 0.071 and 0.574 in 2010, and 0.601, 0.525, 0,160,
0.577, and 0.071 in 2020, respectively. The resulting FFCI values were standardized within a
range of 0 to 1, with higher values indicating high level of forest fragmentation, and lower
values indicating low level of forest fragmentation.
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Table 3. Results of the principal components analysis.

Year Index PC1 PC2 PC3 PC4 PC5

2000

AI 0.599 −0.300 0.128 0.731 0.014
LPI 0.569 −0.479 −0.001 −0.661 −0.101

MPA 0.175 0.125 −0.966 0.079 −0.124
Division 0.070 −0.031 −0.123 −0.068 0.987

PD 0.531 0.815 0.190 −0.134 0.003
Eigenvalue 0.091 0.011 0.002 0.0001 0.0002

Percentage variance (%) 86.7 10.1 2.3 0.7 0.2

2010

AI 0.600 −0.293 0.122 0.734 0.026
LPI 0.526 0.819 0.188 −0.134 0.001

MPA 0.170 0.125 −0.966 0.076 −0.125
Division 0.071 −0.032 −0.125 −0.085 0.985

PD 0.574 −0.477 0.003 −0.656 −0.113
Eigenvalue 0.089 0.010 0.002 0.0007 0.0002

Percentage variance (%) 86.7 10.1 2.2 0.7 0.2

2020

AI 0.601 −0.290 0.124 0.734 0.024
LPI 0.525 0.822 0.175 −0.135 0.002

MPA 0.160 0.118 −0.967 0.084 −0.138
Division 0.577 −0.475 −0.003 −0.656 −0.110

PD 0.071 −0.031 −0.139 −0.080 0.984
Eigenvalue 0.089 0.010 0.002 0.0007 0.0002

Percentage variance (%) 86.9 10.2 2.0 0.7 0.2

3.3. Spatiotemporal Characteristics of FFCI

To facilitate the analysis of spatiotemporal variations of forest fragmentation, the FFCI
obtained by principal component analysis was classified into five categories (Figure 3):
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very low (0 ≤ FFCI < 0.2), low (0.2 ≤ FFCI < 0.4), medium (0.4 ≤ FFCI < 0.6), high
(0.6 ≤ FFCI < 0.8), and very high (0.8 ≤ FFCI < 1.0). The results showed that the areas
with lower fragmentation were mainly distributed in Longyan, the west of Nanping, and
Ningde, the areas with medium to high fragmentation were mainly distributed in Sanming,
Putian, and Zhangzhou, and the areas with higher fragmentation gathered in the central
urban area of coastal cities. Table 4 listed the proportion of each type of FFCI in 2000, 2010,
and 2020. The results show that high-fragmentation areas had the highest proportion in all
three periods (27.7%, 28.1%, and 27.7%), followed by medium-fragmentation areas. The
sum of the proportions of these two fragmentation types exceeded 50% in all 3 years. The
proportion of low fragmentation was the lowest, which indicated that the degree of forest
fragmentation in the study area was at an upper–middle level. From 2000 to 2020, the
very-low- and low-fragmentation areas showed a gradual decrease. The proportion of
medium-fragmentation areas decreased from 27.4% in 2000 to 27.1% in 2020; however, the
value was moderately increased to 27.6% in 2010. The proportion of high-fragmentation
areas also showed a slight increase from 27.7% in 2000 to 28.1% in 2010, but then decreased
to 27.7% in 2020. The areas with very high fragmentation showed a constant increasing
trend throughout the study periods, with a higher increase in the 2010–2020 period than
in the previous period. Thus, the degree of forest fragmentation in study area increased
over time.
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Table 4. Proportions of various types of forest fragmentation from 2000 to 2020.

Fragmentation Type 2000 (%) 2010 (%) 2020 (%)

Very low 9.1 8.6 8.3
Low 17.8 17.5 16.9

Medium 27.4 27.6 27.1
High 27.7 28.0 27.7

Very high 18.0 18.3 20.0

The temporal variation in the FFCI and the proportion of forest fragmentation change
types in two study periods (2000–2010 and 2010–2020) are shown in Figure 4 and Table 5.
In the periods from 2000 to 2010, the proportions of the three types of forest fragmentation
change types from large to small were in the order unchanged > increased > decreased. The
areas with decreased fragmentation accounted for 2.7%, which were mainly distributed in
Ningde and Sanming. The areas with increased fragmentation accounted for 4.8%, which
were mostly distributed in Longyan, Zhangzhou, Quanzhou, and Putian. The unchanged
areas had the largest proportion (92.5%) in the study area, indicating that the change in
degree of forest fragmentation was small in most areas. From 2010 to 2020, the proportion
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of areas with increased and decreased forest fragmentation both showed an increasing
trend compared to the last stage, and their spatial distribution was relatively scattered,
indicating that the degree of forest fragmentation in the study area increased.
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Table 5. Proportions of forest fragmentation change types from 2000 to 2020.

Period Decrease (%) Unchanged (%) Increase (%)

2000–2010 2.7 92.5 4.8
2010–2020 2.8 90.5 6.7

3.4. Analysis of Spatial Cluster of FFCI

Figure 5 shows that the Moran’s I values of FFCI at different spatial scales were all >0
and the z-scores were all >2.58 (statistically significant at the 1% level). Among them, the
Moran’s I value of spatial scales from 1000 m to 5000 m was higher, which was 0.731, 0.421,
0.296, 0.305, and 0.261 respectively, and the largest values of Moran’s I in the three periods
were all at the scale of 1000 m; therefore, 1000 m was selected as the analysis scale of the
spatial cluster pattern of FFCI.
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The analysis of local spatial autocorrelation of FFCI is shown in Figure 6. The spatial
distribution of the FFCI was dominated by high–high and low–low clusters, with limited
areas featuring high–low and low–high clusters. The high–high clusters representing the
agglomeration areas with a high value of the FFCI were mainly distributed in Nanping
and Ningde, mostly concentrating in the central urban areas of coastal cities. Low–low
clusters representing the agglomeration areas with a low value of the FFCI were primarily
distributed in Longyan, Wuyishan, and the junction of Quanzhou and Fuzhou. According
to Table 6, in the period from 2000 to 2010, the areas with high–high clusters in Fuzhou
slightly decreased, but expanded to varying degrees in other regions, with Zhangzhou
experiencing the greatest increase and Sanming experiencing the smallest. In Fuzhou,
Nanping, Sanming, Xiamen, and Zhangzhou, the areas with low–low clusters showed an
expansion trend, but contracted in other areas. From 2010 to 2020, the areas with high–high
clusters decreased in Putian, Sanming, Xiamen, and Zhangzhou, but expanded elsewhere.
Meanwhile, the low–low clusters areas expanded in Longyan, Ningde, Quanzhou, and
Xiamen, with the most significant increase in Ningde and the most significant decrease in
Nanping, Fuzhou, Putian, Sanming, and Zhangzhou. There was no significant variation in
the areas with high–low and low–high clusters during either study period.
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Table 6. Proportions of cluster types at 1000 m scale.

Type 2000 (%) 2010 (%) 2020 (%)

High–high clusters 27.2 27.0 27.0
Low–low clusters 24.4 24.3 24.3
High–low clusters 0.04 0.1 0.01
Low–high clusters 0.06 0.1 0.09

Nonsignificant 48.3 48.5 48.6

3.5. Driving Patterns of Forest Fragmentation Change
3.5.1. Factor Detector

The factor detector was used to determine the explanatory power of various driving
factors with regard to the variation in FFCI. We analyzed the q value of driving factors at
11 grid scales (Figure 7), and the q value showed a general increasing trend at a scale of
1000 m to 8000 m for each driving factor, indicating that the explanatory power of driving
factors with regard to the variation in forest fragmentation gradually increased in the range
of this scale. However, at the scale of 9000 m, the q values of elevation, slope, and NLIV
showed a significant decrease, indicating that the explanatory power was weakened. There
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was no obvious change in q value of AMTV and APV at scales from 8000 m to 11,000 m.
Therefore, the scale of 8000 m was selected as the optimal scale to analyze the impact of
driving factors on the variation in FFCI.
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Figure 8 shows the q value of driving factors at the scale of 8000 m (p < 0.01).
During periods from 2000 to 2010, the explanatory power of NLIV and elevation was
largest among all driving factors, with the q value being 0.116 and 0.084, respectively,
while the explanatory power of PDV was lowest, with the q value being 0.025. Re-
sults showed that the geomorphic factors and nighttime light intensity were the dom-
inant single factors influencing the variation in forest fragmentation. During the periods
from 2000 to 2010, the explanatory power of each driving factor from high to low was
elevation > NLIV > slope > PDV > AMTV > APV. Compared to last period, the explana-
tory power of APV and AMTV decreased, indicating that the impact of meteorological
factors on the variation in forest fragmentation was small in Fujian Province.

3.5.2. Interactive Detector

With the aid of the interactive detector in GD, we analyzed the superimposed impact
of interactions between different driving factors on the variation in FFCI (Figure 9). In
the period from 2000 to 2010, the explanatory power with regard to the variation in FFCI
by any two driving factors was greater than that of any single driving factors, indicating
that the impact of driving factors on spatial heterogeneity of the variation in FFCI was
not independent. Specifically, the interaction between APV and slope was the strongest
among all interactions (q = 0.174). It can be clearly seen that, while the individual impact of
meteorological factors on the variation in FFCI was small, the superimposed impact of the
interaction between them and geomorphic factors increased significantly with regard to
the variation in forest fragmentation. However, in the period from 2010 to 2020, the inter-
actions between APV and elevation (q = 0.009), and between ATMV and DEM (q = 0.117)
were nonlinear weakening, and the explanatory power was weakened; the interactions
between slope and APV, and between slope and AMTV were strongest, with q values above
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0.157. This indicates that the interaction between slope and meteorological factors jointly
contributed to the spatial differentiation of the variation in FFCI from 2010 to 2020.
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4. Discussion
4.1. Validation of FFCI

An ideal index must be both representative and effective [46,47]. The former requires
that the proposed index should comprehensively reflect the characteristics of forest fragmen-
tation. Forest fragmentation is a process in which forest tracts are progressively subdivided
into smaller, geometrically more complex patches [19]; this process involves changes in
landscape composition and structure. Class-level metrics can quantify the amount, size,
and distribution of each patch type in the landscape; thus, they can be considered as indices
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for fragmentation [11,17]. We selected five representative metrics (PD, LPI, MPA, AI, and
division) to construct the FFCI. To eliminate the multicollinearity among these metrics, PCA
was employed to construct a comprehensive index and calculate the weight of each metric
in terms of PCs. The PCA method has been commonly used to synthesize comprehensive
indices, proving to be adaptive to different regions and various spatial scales [48,49]. In
2000, 2010, and 2020, the percentage variance of PC1 exceeded 85% in all cases with a
window size of 3500 m, indicating that the FFCI could explain most of the fragmentation
pattern information.

To evaluate the effectiveness of FFCI, validity evaluations were implemented using
two approaches: urban–rural gradient-based and transect-based comparisons. For the
urban–rural gradient analysis, we computed the mean FFCI along the urban–rural gradients
in four prefecture-level cities (Fuzhou, Longyan, Nanping, and Sanming) in Fujian Province.
The results showed that the zone closest to the urban center had the highest mean FFCI
in all the cases (Figure 10). Urban areas normally have a higher population density and
public facility density, and these socioeconomic factors have a great impact on the change
of urban landscape [25,50]. With the development and expansion of urban areas, an
increasing amount of ecological land (including forests) has been transformed to satisfy
the requirement of economic and human activities, resulting in forest patches becoming
fragmented. Therefore, frequent land-use change in urban areas normally leads to severe
forest fragmentation. Many previous studies also indicated that forest fragmentation
is highly correlated with the degree of urbanization and the distance from the urban
center [51,52]. These results demonstrate that the FFCI had superior reliability in detecting
forest fragmentation.

For the transect analysis, we set up four transects with 15,000 m width (Figure 11a):
T1 connected three inland cities, oriented from northeast to southwest; T2 connected three
coastal cities, oriented from northeast to southwest; T3 connected inland and coastal cities,
oriented from southwest to northeast; T4 connected inland and coastal cities, oriented from
northwest to southeast. Sample units were set every 2000 m along the four transects, and
the average value of FFCI was calculated (Figure 11b–e). Transect T1 showed that the mean
FFCI value in Nanping was higher than that in the other two inland cities, with the mean
FFCI value being mostly lower than 0.6 in Sanming and Longyan city. In transect T2, the
mean FFCI value usually peaked in the urban center of coastal cities, being significantly
higher than the surrounding areas. In transect T3, the curve of the mean FFCI value was
flatter, with high values gathered in the urban center of Fuzhou. Transect T4 showed an
increasing trend of mean FFCI value from the inland city to coastal city. These results
indicated that areas with a low degree of forest fragmentation were mainly distributed in
the western and central regions in Fujian Province, while the fragmentation of coastal cities
was significantly higher than that of inland cities. As mentioned above, the coastal cities in
southeastern Fujian Province have a relatively lower terrain, which means that the human
disturbance to the forest landscape is stronger than in internal cities. This may involve high-
intensity deforestation and logging, which would exacerbate forest fragmentation. These
phenomena are consistent with previous conclusions on the forest fragmentation pattern in
China [53], which indicated that forest fragmentation is most severe at low elevations and
in developed areas. This also reflects the objectivity of the proposed FFCI index.

4.2. The Spatial Patterns of Forest Fragmentation

We used the FFCI to evaluate the forest fragmentation in Fujian Province, observing
that the degree of forest fragmentation was above the medium level in Fujian Province
during the study period. Although the forest coverage of Fujian province has increased
across decades, many studies also indicated that Fujian Province is undergoing severe
forest fragmentation [36,53]. This phenomenon can be attributed to forest displacement;
whereby deforestation and afforestation occur at the same time, while the locations of forest
loss and gain do not coincide. This results in the increased forest cover not necessarily
reducing the degree of forest fragmentation. We observed that the areas with high forest
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fragmentation were mainly distributed and clustered in coastal areas (Figures 3 and 6),
especially in urban centers. This is mainly attributable to the larger scale of urban expansion
in China’s coastal regions, which has resulted in more severe forest fragmentation [25]. We
also found that the degree of forest fragmentation of Nanping was higher than in other
inland cities, with high-fragmentation areas mainly distributed in the northeastern and
central regions of Nanping. Agricultural expansion and tourism development may have
caused this phenomenon in the local area [54], while the forest landscape in western regions
has been well protected by the Wuyi Mountain National Nature Reserve. In terms of the
temporal variation in forest fragmentation, we found that the degree of forest fragmentation
increased from 2000 to 2020, with this trend even more pronounced from 2010 to 2020.
This is mainly due to the recent rapid urbanization and infrastructure expansion in China,
contributing to the increased forest loss and fragmentation [55].Forests 2023, 14, x FOR PEER REVIEW 14 of 19 
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4.3. The Driving Pattern of Forest Fragmentation Dynamics

Forest fragmentation is normally influenced by socioeconomic, nature, and anthro-
pogenic factors. In this study, geomorphic factors (i.e., elevation and slope) were the most
prominent driving factors leading to the variation in forest fragmentation, similar to the
results in a previous study [56]. This is because gentle and low-elevation areas are suitable
for urban development and human activity, making forests vulnerable to occupation and
transformation into other types of land, which increases the degree of forest fragmentation.
However, due to the decrease in human disturbances, there are no significant changes to
forest fragmentation in steep and high-elevation areas.



Forests 2023, 14, 1135 16 of 19

As an indicator of human activity, the variation in nighttime light intensity is also
a major driving factor of variation in forest fragmentation. The variation in nighttime
light intensity can intuitively reflect the urbanization process [57]. Previous studies have
indicated that rapid urbanization is associated with a change in urban green areas, resulting
in the high fragmentation of urban green spaces [58].

The single impact of the variation in temperature or precipitation on the variation in
forest fragmentation was small, which is similar to the conclusion by Chen et al. [59]. This
is mainly due to there being sufficient natural conditions for vegetation growth available
in Fujian. However, we also found that the interaction between meteorological factors
and other factors could significantly amplify the impact on forest fragmentation in Fujian
Province, indicating that multiple factors jointly drive the variation in forest fragmentation.

5. Conclusions

In this study, we constructed a comprehensive index (i.e., FFCI) to evaluate the extent
of forest fragmentation, and we analyzed the spatiotemporal pattern of variation in forest
fragmentation in Fujian Province, as well as explored the driving factors of changes in FFCI
using GD. The conclusions are presented below.

The FFCI was synthesized using the PCA technique on the basis of five landscape
metrics: AI, LPI, MPA, division, and PD. PC1 with a window size of 3500 m could explain
more than 85% of the information from all selected landscape metrics in the study period.
Using the proposed FFCI, we found that the degree of forest fragmentation in Fujian was
at an upper–middle level. In 2000, 2010, and 2020, the proportion of areas with high
fragmentation (0.6≤ FFCI < 0.8) and medium fragmentation (0.4≤ FFCI < 0.6) was highest,
and the sum of these two proportions exceeded 50% in each year.

In terms of the temporal change of forest fragmentation, from 2000 to 2010, there was
a decrease in forest fragmentation in 2.7% of areas, whereas the areas with increased forest
fragmentation accounted for 4.8%. Quanzhou, Zhangzhou, and Longyan were the primary
areas where forest fragmentation increased, while Ningde had the largest decrease. From
2010 to 2020, the areas with increased fragmentation accounted for 6.7%, a slight increase
from the previous stage. The proportion of the areas with reduced forest fragmentation
was 2.8%, a slight decrease compared with the previous stage.

The spatial difference in FFCI was mainly characterized by high–high and low–low
clusters. The high–high clusters were mainly distributed in coastal areas, Nanping and
Ningde, mostly concentrating in the central urban areas of coastal cities. On the other hand,
the low–low clusters were mainly distributed in the western and central regions of Fujian
Province, including Longyan, Wuyishan, and the junction of Quanzhou and Fuzhou.

The explanatory power of each driving factor with regard to the variation in FFCI from
high to low in 2000–2010 was ranked as NLIV > elevation > slope > APV > AMTV > PDV,
and the interaction between APV and elevation had the greatest enhancement effect among
all interactions (q = 0.174). From 2010 to 2020, the explanatory power of each driving factor
was ranked as follows: elevation > NLIV > slope > PDV > AMTV > APV; the interaction
between slope and APV had the most obvious enhancement effect (q = 0.159).
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