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Abstract: Quantifying the change in land use and land cover (LULC) is critical for revealing the
impact of human activities on the environment of the Earth’s surface. Although some studies were
conducted on the change in LULC in rapidly urbanizing areas, conventional methods could not
provide a systematic understanding of the changes and their underlying causes. This study adopted
an enhanced Intensity Analysis and landscape matrices to deeply explore the change information and
expansion modes of LULC in the Chang-Zhu-Tan Metropolitan Region (CZTMR). This exploration
was based on remote sensing images from the past 40 years and GIS tools. The results show that the
overall change in the LULC accelerated during the period 1980–2020, with its intensity expanding by
16 times. The Built gain and the Crop loss were steadily active. The Built gain was derived mainly
from Crop and Forest, and its mode was dominated by edge expansion. It was detected that the Built
gain steadily targeted Crop but avoided Forest despite Built gaining a large area from Forest. The
reason for this is because Forest initially had the largest area. The measurement results contribute
to the formulation of urban plans and land policies for sustainable development in the CZTMR.
Our study explained the evolution of Intensity Analysis and its analytical thought, which could be
employed in other regions for the detection of land change to help decision makers develop more
targeted and sustainable land management strategies.

Keywords: land use and land cover change; Intensity Analysis; change detection; Chang-Zhu-Tan
Metropolitan Region

1. Introduction

Rapid urbanization comes with successful socioeconomic development but profoundly
intensifies the evolution of global land use and land cover (LULC) [1]. A change in
LULC reflects landscape dynamics on the Earth’s surface and significantly impacts global
ecosystems, food security, climate change, and biodiversity [2]. At the same time, urban
areas and their inhabitants face severe risks due to these effects [3]. Thus, quantifying and
understanding the spatiotemporal dynamics of LULC is critical in revealing the interaction
mechanism between human activities and the natural environment [4,5]. Measuring LULC
change information is not only important for identifying land transformation characteristics
but is also an indispensable step in revealing the factors influencing land change, evaluating
the impact of change on ecosystem services, and modeling change projections [6–9]. Hence,
it is crucial to quantify land change in a straightforward and detailed way.

The most practical approach to analyzing the change in LULC is to access maps of
Time 1 and Time 2 and then examine these changes, using a transition matrix to identify the
most important transitions [10]. Finally, scientists investigate the processes that produced
these transitions. The transition matrix (also known as cross-tabulation) method is widely
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employed to analyze differences in the size of transitions among LULC categories at a single
time interval [10–12]. As traditional analyses typically concern the size of the transition,
scientists tend to detail the larger transitions and neglect the smaller ones [13]. For example,
when Xie et al. [14] investigated transitions among different LULC categories in Wuhan,
they detailed the categories that experienced more significant changes and analyzed their
influencing factors. Yu et al. [15] applied the size of the change in the transitions to detect
the contributions of the impact of land cover change to the land surface temperature. Some
studies identified the main land transitions of LULC via the size of change to forecast
categorical land change [16–18]. These studies believed that a larger change is a more
considerable sign of dramatic land changes. Though the size of the change is intuitive, it
cannot convey useful information about the proportion of the size of the change in the
category’s area to the category’s area. Therefore, it is hard to effectively characterize the
intensity of change in LULC categories. More and more scientists have suggested that
the intensity (proportion) of the change might be more meaningful than the size of the
change for understanding the processes and causes of LULC change. Unlike conventional
methods and models, Aldwaik and Pontius Jr. [19] proposed an Intensity Analysis to as-
certain which changes and transitions of categorical land dynamics are more intense. This
method is a hierarchical framework for the detection of the size, intensity, temporal sta-
tionarity in the time interval, category, and transition level of land change [20,21]. It can
compensate for the limitations of traditional measurements [22] and has been extensively
applied worldwide [23–27]. This advanced analytical technique has advantages in identi-
fying historical land use classification errors [28] and explaining the results of changes in
LULC dynamics [29]. Some scholars have also applied the method to investigate urban
expansion intensity [30], the dynamic characteristics of desertification [31], and regional
comparisons [22,32,33].

Early versions of the Intensity Analysis, which emerged from earlier measurements of
single intervals, have achieved popularity [34–37]. Nevertheless, interpreting the Intensity
Analysis is more straightforward because of its clear hierarchies, graphical expressions,
and, in particular, more insightful explanations of the causes of temporal changes in
LULC [26,38,39]. For example, why is the transition size from category M to category N
larger than the transition size from other categories to category N? There are two reasons for
this [33]. Firstly, suppose category M has a larger area than the other categories at the initial
point. In that case, it naturally has more area to transition to N. Therefore, even if category
N gains transited area from the other categories at a uniform transition intensity, category
N will also gain more area from category M. Secondly, at the initial point, category N
gains transited area from category M at a greater transition intensity compared to the other
categories. Sometimes these two situations may exist simultaneously. Intensity Analysis
provides a pathway for scientists to associate patterns with processes [40]. To reflect the
stationary characteristics in detail and intuition, Deng and Quan (2022) proposed a novel
“transition pattern” to enrich the original Intensity Analysis [20] which can help decision
makers formulate more targeted management strategies and improve the reliability of the
simulated results via modeling to emphasize the stationary process of the change.

Chang-Zhu-Tan is a rapidly developing region in central China. Massive rural popu-
lations migrated to the urban area, and the urban sprawl has encroached on many other
lands over the last four decades, leading to a series of concerns such as local climate change,
water shortages, and air pollution. These issues have brought challenges with fulfilling
the sustainable development goals (SDGSs e.g., 11.3, sustainable urbanization). Most
existing studies in the Chang-Zhu-Tan area focused on the change in a single category,
such as built-up land, and they carried out research on the scales of the Chang-Zhu-Tan
urban agglomeration and the central region of Changsha. Moreover, these research studies
were mainly concentrated on the assessment of ecosystem services [41,42], urban land
scenario projections [43,44], the delineation of urban growth boundaries [45], and land use
carbon emissions [46]. However, few studies have reported on an in-depth analysis of the
change in LULC over a long time series at the scale of the metropolitan region. In February
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2022, the development plan of the Chang-Zhu-Tan Metropolitan Region was officially
approved by the Central Government of China, making the Chang-Zhu-Tan Metropolitan
Region (abbreviated as CZTMR) the first Metropolitan Region in central China [47]. The
establishment of the CZTMR aims to expedite the pace of integration in the future, which
inevitably accelerates urban area growth and causes tremendous pressure on the ecological
environment. Therefore, for the rapid expansion and sprawl of urban areas, it is natural
to raise questions. (1) How do the size and intensity of changes in LULC vary temporally
in the CZTMR? (2) What are the patterns and processes of urban sprawl and its possible
causes over the past 40 years?

To solve the problems above, we took the CZTMR as a case study and combined the
enhanced Intensity Analysis with landscape matrices to better evaluate the LULC change in
the CZTMR. Specifically, the two objectives of this study were to analyze the size, intensity,
and stationary characteristics of the changes in the LULC during the period of 1980–2020
and reveal how processes of urban expansion affect the changes in the landscape pattern
in the CZTMR. This topic is of major importance in the CZTMR for providing a scientific
basis for eco-environmental protection and sustainable urban development.

2. Materials and Methods
2.1. Study Area

This study took the regional extent of the CZTMR delineated in the development
plan of the Chang-Zhu-Tan Metropolitan Region as the study area. The CZTMR includes
the whole of Changsha City, the central urban areas of Zhuzhou City, Liling City, Xi-
angtan City, and Shaoshan City, and Xiangtan County, with a total area of 18,900 km2

(Figure 1). The CZTMR is a fundamental unit of urban agglomerations in the middle
reaches of the Yangtze River in the northern-central Hunan Province, located between
111◦53′32′ ′~114◦15′28′ ′ E and 27◦13′31′ ′~28◦39′56′ ′ N. It is also one of the core forces for
the promotion of the synergistic development of the Yangtze River economic belt. In
2021, the population was 14.84 million, with an urbanization rate reaching 80.9% and a
GDP of CNY 1.79 trillion, accounting for 40% of the province’s total economy [48]. For
industry scale, the CZTMR’s engineering and machinery industries ranked first in China
for a long time. In addition, its transportation advantage is prominent, with the Beijing–
Guangzhou and Shanghai–Kunming high-speed railways and the intersections of many
other transportation road networks.
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Figure 1. The location of the study area and the distribution of seven metropolitan regions in
China (the establishment of the seven Metropolitan Regions in time order: 1. Nanjing, 2. Fuzhou,
3. Chengdu, 4. Chang-Zhu-Tan, 5. Xi’an, 6. Chongqing, and 7. Wuhan).
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2.2. Data Source and Processing

The framework diagram of this study is shown in Figure 2. The LULC data were
obtained from China’s Multi-Temporal Land Use/Land Cover Remote Sensing Monitoring
Database by the Resource and Environmental Science Data Centre of the Chinese Academy
of Sciences (http://www.resdc.cn, accessed on 11 March 2022). These data are based
on a Landsat TM/ETM+/OLI multitemporal image interpreted via human–computer
interaction with a spatial resolution of 30 m. The mapping accuracy of the LULC category in
level II is above 90% [12,49,50]. Five time points of LULC data were used in this study: 1980,
1990, 2000, 2010, and 2020. The regional administrative boundaries, transport infrastructure
such as railways and highways, and government location data were downloaded from the
National Geographic Information Centre’s National Geographic Information Resources
Catalogue Service (http://www.webmap.cn, accessed on 18 March 2022). DEM data at
a resolution of 30 m were derived from the ASTER GDEM data product on the United
States Geological Survey (USGS) website (https://earthexplorer.usgs.gov, accessed on
26 May 2022). The land classification system categories are Crop, Forest, Grass, Water, and
Built and are based on ground surveys and previous research in the study area [42,44].
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Figure 2. The framework diagram.

2.3. Methods
2.3.1. Intensity Analysis

The methodology of Intensity Analysis based on a transition matrix consists of a
hierarchical, top-down interval level, category level, and transition level [33,51]. The
interval level is designed to analyze which intervals are fast or slow for the total change
in LULC. The category level can further analyze which categories are active or dormant
for the gains and losses of LULC categories. The transition level provides deeper insight
into whether transitions from other categories to a particular category are targeted or
avoided. This study adopted this method to characterize the intensity of the change in
LULC dynamics. This method program was designed based on the R language package
and is available on the website (www.clarku.edu/~rpontius, accessed on 14 July 2022).

The interval level examines the differences in the total change over multiple intervals.
The total change intensity St for a single interval and the uniform intensity U for all intervals
are calculated in Equations (1) and (2), respectively [19,52]. The total change in a single
interval is determined to be fast or slowvia a comparison of the magnitude of St with U. If
St > U, the interval’s change in the overall interval is fast; if St < U, the interval’s change in
the overall interval is slow.

St =
change size at interval [Yt, Yt+1]/(Yt+1 −Yt)

size o f study region
× 100% (1)

http://www.resdc.cn
http://www.webmap.cn
https://earthexplorer.usgs.gov
www.clarku.edu/~rpontius
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U =
sum o f change size at all intervals/(YT −Y1)

size o f study region
× 100% (2)

where t ranges from 1 to T − 1 and is an index for the initial time point; T is the number of
time points for the LULC maps; Yt is the year in time point t. The interpretation of these
symbols can apply to Equations (3)–(6).

The category level can investigate the differences in the category change via gain and
loss. Equations (3) and (4) define the annual loss intensity for category i and the annual gain
intensity for category j, respectively [19,52]. The loss and gain for a category are judged to
be active or dormant through a comparison of the magnitudes of Li and Gj with St. The loss
for category i is active if Li > S; otherwise, the loss for category i is dormant. Determining
the category’s loss is suitable for the category’s gain.

Lti =
Gross loss size f or category i at interval [Yt, Yt+1]/(Yt+1 −Yt)

size f or category i at initial time o f inteval [Yt, Yt+1]
× 100% (3)

Gtj =
Gross gain size f or category j at interval [Yt, Yt+1]/(Yt+1 −Yt)

size f or category j at f inal time o f inteval [Yt, Yt+1]
× 100% (4)

In this study, the transition level was used to evaluate the difference in the transitions
from the other non-Built categories to the Built category. Equations (5) and (6) define the
intensity of the transition from category i to category n and the uniform transition intensity
from other categories excluded from category n to category n, respectively [19,52]. The
category i transiting to category n is targeted, and category n’s gain targets category i if
Rin > Wn; otherwise, the category i transiting to category n is avoided, and category n’s
gain avoids category i.

Rtin =
size o f transition f rom category i to n at interval [Yt, Yt+1]/(Yt+1 −Yt)

size f or category i at initial time o f interval [Yt, Yt+1]
× 100% (5)

Wtn =
size o f transitions f rom other categories to n at interval [Yt, Yt+1]/(Yt+1 −Yt)

size f or others excluded f rom category n at initial time o f interval [Yt, Yt+1]
× 100% (6)

2.3.2. Transition Pattern

Given that the transition level of the original Intensity Analysis cannot be comprehen-
sive and intuitive to represent the size, intensity, and stationarity of various transitions, this
study employed a novel transition pattern approach to characterizing the transition for
LULC [20]. Figure 3 describes the transition pattern. In Aldwaik and Pontius Jr. (2012) [19],
the stationarity of the LULC transition was defined as the transition from category i to
category j that is greater or less than the corresponding uniform intensity at all intervals. If
all are greater than the uniform intensity, the transition is stationary targeting; otherwise,
the transition is stationary avoiding. The rows and columns in Figure 3 represent the
category at an initial time and the category at a final time, respectively. The bubble scale
represents the size of the transition; the bubble’s color represents the degree to which the
transition intensity deviates from the corresponding uniform intensity and can reflect the
degree to which the transition is targeted or avoided. By comparing the bubbles’ colors
horizontally, investigators can identify the stationarity of the transition process during the
overall period.
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2.3.3. Spatial Mode of Landscape Expansion

Urban expansion is frequently driven by socioeconomic factors, natural resources,
transport infrastructure, geographical location, eco-environment, urban planning, and
policy. Its growth mode is diverse. Liu et al. (2012) summarized the urban expansion
process into three main modes: infilling, edge expansion, and outflying (Figure 4) [53]. The
landscape expansion index (LEI) can help scientists determine the spatial expansion mode
of a new patch of Built land. If LEI = 0, the new patch belongs to the outflying mode; if
0 < LEI ≤ 50, the new patch belongs to the edge expansion mode; if 50 < LEI ≤ 100, the new
patch belongs to the infilling mode. The study applied the area-weighted mean expansion
index (AWMEI) to capture the agglomeration process of the Built expansion in this study. If
the value of AWMEI decreases, the development of the Built expansion is diffused; If the
value of AWMEI increases, the development of the Built expansion is compact [53].

LEI = 100× Ao

Ao + Av
(7)

AWMEI = ∑n
i=1 LEIi ×

( ai
A

)
(8)

where LEI is the expansion index of the newly Built patches, Ao is the intersection between
the buffer zone and its overlayed part, and Av is the intersection between the buffer zone
and its non-overlayed part. LEIi is the LEI of the newly Built patch i; ai is the area of the
newly Built patch i; A is the total number of the newly Built patches. The increasing value
of AWMEI indicates that the expansion and sprawl of the Built land have a compact trend;
inversely, the decreasing value of AWMEI indicates that the Built area’s expansion and
sprawl have a diffuse trend.

2.3.4. Landscape Pattern Matrices

The landscape pattern matrix is a series of indicators that can quantitatively describe
spatial patterns for categorical variables [54]. The LULC observation data were converted
into Tiff format using ArcGIS Pro software (Version 2.5, Esri, Redlands, CA, USA). We
calculated the pattern indexes at the class and landscape levels based on Fragstats software
(Version 4.2, Portland, OR, USA). In this study, we selected the indexes, including the
number of patches, patch density, mean patch size, edge density, fractional dimension,
aggregation index, Shannon’s diversity index, and Shannon’s evenness index. The above
eight indexes can acquire the landscape fragmentation, geometry, diversity, and aggregation
of the LULC in the CZTMR.
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3. Results
3.1. LULC Structure Analysis

Figure 5 shows the LULC structure and its spatial pattern. During the period 1980–2020,
the largest category in LULC area was Forest, followed by Crop. They comprise approx-
imately 90% of the study area, indicating that the ecological resources in this region are
widely distributed and have an excellent resource endowment. The growth of Built contin-
ues to rise, with the proportion increasing from 2.2% in 1980 to 7.52% in 2020.
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In contrast, Crop and Forest shrunk from 33.3% and 61.5% in 1980 to 30.0% and 59.3%
in 2020, respectively. A zoomed-in view of Figure 5 reveals the rapid outward expansion
and sprawl of the Built category in both Xiangtan and Liling Cities, encroaching by degrees
on the adjacent ecological environments, such as Crop and Forest. This reflects that the
growth in the quantity of Built land is the most significant feature in the CZTMR, despite
having had a small proportion in 1980.

3.2. Detection of LULC Change Size and Intensity
3.2.1. Change Detection at Time Interval Level

Figure 6 shows the size and intensity of the LULC’s total change at four intervals. As
shown in Figure 6, the size and intensity of the change in the LULC show an increasing
trend. The total change demonstrated non-stationary characteristics during the overall
period since the change intensities at four periods are not equal to the uniform intensity
(0.26%) on the right side of Figure 6. Interestingly, after 2000, the size and intensity of
the change increased sharply, from an annual change size of 6.32 km2 from 1980 to 1990
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to 103.90 km2 from 2010 to 2020. This suggests that the total change in the former two
intervals was relatively slow compared to the change in the latter two.
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3.2.2. Change Detection at Category Level

The annual sizes of the Built gain at four intervals from 1980 to 2022 were 3.5 km2,
7.6 km2, 51.6 km2, and 46.8 km2, respectively (Figure 7). Its gain intensity far exceeds
the uniform intensity, with an increasing trend from 1980 to 2010. Furthermore, the loss
size and intensity of the Built area are much smaller than its gain, further reflecting the
quantitative growth of the Built category with active status.
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Conversely, the intensities of Forest’s gain and loss are less than the uniform intensity
at all intervals, although the sizes of the gain and loss for Forest are not insignificant. Hence,
the gain and loss of Forest are stationary and dormant. Forest’s loss is greater than its gain
over the whole period, resulting in a net loss. The loss intensity of Crop is more robust than
its gain intensity. As the loss intensity of Crop is always greater than the uniform intensity,
it behaves as stationary and active. There is a tendency to find a steady increase in the
gain of Crop, which is possibly related to the decisive implementation of the land policy of
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balancing between occupation and compensation for Crop and the gradual popularization
of sustainable land development since the 21st century. The Water net increased slightly
its gain exceeded its loss. Regarding Grass, its gain intensity is greater than the uniform
intensity except for the fourth interval.

3.2.3. Change Detection at Transition Level

On the left side of Figure 8, the annual sizes of the transition from Crop to Built at four
intervals are 1.94, 4.00, 26.73, and 24.93 km2, respectively, showing a trend of increasing
first and then decreasing. The Built gain targeted Crop because its transition intensity was
always greater than the uniform intensity. Instead, the Built gain steadily avoided Forest as
its transition intensity was less than the uniform intensity at all intervals. Nevertheless, the
size of the transition from Forest to Built is enormous, with annual areas of 1.59, 3.11, 23.10,
and 20.84 km2 at four intervals, respectively.
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Additionally, Built’s gain steadily avoided Grass. The differences at intervals for the
transition intensity from Water to Built indicates that Water underwent a slight change to a
drastic change and a slight change transition process. The uniform intensity changes of its
transition to Built describe the aggressive dynamic of the Built expansion.

Figure 9 shows the transition pattern of the LULC throughout the study period. The
novel transition pattern represents the size and intensity of the categorical transition via the
scale and color of the bubbles. Checking the color consistency in the horizontal direction
can identify the stationary characteristic. It is shown in Figure 9 that not all of the LULC
transitions are stationary. Among them, some transition processes show a stationary
targeting characteristic: the transition of Crop to Water, the transition of Crop to Built, the
transition of Forest to Grass, the transition of Grass to Forest, and the transition of Water to
Crop. Other transition processes show a stationary avoiding characteristic: the transition of
Crop to Grassland, the transition of Forest to Crop, the transition of Forest to Water, the
transition of Forest to Built, the transition of Grass to Built, the transition of Water to Forest,
and the transition of Built to Grass.
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Figure 9. Transition pattern of intensity analysis at four intervals in the CZTMR. Note: Each bubble
represents the transition from i to j at the interval; intervals 1, 2, 3, and 4 represent the 1980–1990,
1990–2000, 2000–2010, and 2010–2020 periods, respectively; intensity deviation = Rtin −Wtn. The size
and the intensity of transition were grouped into different classes by Natural Break (Jenks).

3.3. Dynamic Process of the Built Expansion

Figure 10 shows the Built expansion process and its mode at different intervals. As
shown in Figure 10, the Built expansion is a distinct process that continues to sprawl
outwards, occupying other categories, especially Crop, followed by Forest.
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Figure 10. The dynamic process of built growth and its expansion mode at four intervals in the
CZTMR. Note: The zooming maps depict the region situation of Ningxiang City (a), Liuyang City (b),
Xiangtan City (c), and Zhuzhou City. (d) Percentages of growth area and patch number for three
types of built expansion at four intervals (e). Differences in area-weighted mean expansion index
(AWMEI) values for the Built expansion over the overall period (f).
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From 1980 to 2020, there was an apparent eastward expansion of Built land owing to
policy influences and the economic growth needs in Ningxiang (Figure 10a). Consequently,
a significant economic and technological development zone (dominated by food and bever-
age processing) was established between Ningxiang and Changsha to promote regional
manufacturing. Liuyang displayed a westward expansion to receive radiation from the
economic development of this core (Figure 10b). As a result, an enormous economic and
technological development zone (dominated by the biomedical industry) also formed be-
tween Liuyang and Changsha. Moreover, the expansion of Xiangtan to the north is evident
in Figure 10c. Zhuzhou shows an expansion of the Built environment from the north bank
to the south bank of the Xiangjiang River (Figure 10d). This expansion is attributed to the
more complicated topography and Forest on the north bank compared to the Crop land in
the flat area on the south bank, which makes it difficult and costly to develop. Figure 10e
shows that the edge-expansion mode area exceeds 75% of the new Built land during four
intervals, with the maximum (83%) reached during the 2010–2020 period. This reflects that
the edge-expansion type dominates the spatial expansion mode of the Built category.

Regarding the number of new patches of different expansion modes, the
edge-expansion type still dominates, while outflying expansion shows a trend of first
increasing and then decreasing. The AWMEI of Built expansion tends to decrease and then
increase, reaching a maximum during 2010–2020, demonstrating that the growth of Built
land in the study area exhibits a more compact development pattern due to the increase in
the infill expansion area (Figure 10f).

3.4. LULC Pattern Analysis

Figure 11 shows the spatial pattern trend at the class level from 1980 to 2020. As shown
in Figure 11a,b, the Built patch density maintains a relatively high level. Nevertheless, its
mean patch size continues to grow, indicating that the landscape fragmentation of Built
declines while the degree of aggregation rises. The patch densities of Crop and Forest
have increased remarkably since 2000. Meanwhile, the mean patch sizes show a distinct
decrease, indicating that the fragmentation of Crop and Forest is intensifying, with the
number of more significant ecology patches decreasing. Figure 11c,d show that the edge
density values for Crop and Forest are more prominent throughout the period, which may
be related to their proportion of the area. In addition, the edge densities and fractional
dimensions of Built and Water appear to increase and are clearer for Built. From 1980 to
2020, it is clear that the transport land (the line symbolized in red) of the Built area has
increased (Figure 10). Categories with a linear shape often have higher edge densities and
fractional dimensions; hence, the shape of the Built area becomes more complex.

The overall characteristic is that the turning point of the LULC landscape change LULC
is around 2000 (Figure 12). Specifically, at this point, the density and number of patches
gradually increase; conversely, the mean patch size displays a decreasing trend. This
suggests an increased fragmentation of the overall landscape in the CZTMR. When the edge
density tends to rise, the patch shape complexity is increased (Figure 12c). The aggregation
index and the contagion show slight fluctuations, followed by a decline. Together, the
Shannon diversity index (SHDI) and the Shannon evenness index (SHEI) can characterize
the landscape’s diversity, and they indicate that the landscape diversity increased over the
study period, with a balanced development trend for various land categories.
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“−” in figure represent net increase and net decrease, respectively, during 1980–2020.
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4. Discussion
4.1. Intensity Analysis Compared with Other Methods

With the rapid growth of the urban population and socioeconomic development,
human activities are altering LULC at an unprecedented size, intensity, and spatial extent [1].
The intensity of the land change is a vital signal for detecting and appraising categorical land
variations. It can characterize the dynamic process of the spatial extent using land categories
and the transition between land categories [20]. This study discusses methods related to the
detection of change after classification based on remote sensing images rather than detecting
change by applying remote sensing images directly. Until now, most of the indicators and
methods for detecting land change reflected the intensity of the change to various extents,
such as the transition matrix [50], the change area of the category’s extent [55], the single
and comprehensive land use dynamic degree (SLUDD, CLUDD) [56], systematic transition
analysis [36], and Intensity Analysis adopted in our study. In conventional research on
land change, one current thought is that the transition size in the transition matrix is a
signal of the intensity of land transition [13]. For example, Zhang et al. investigated land
use transitions in Hengyang during the 2010–2015 and 2015–2018 periods [57]. They found
that the transition of Woodland to Construction land was the largest, but a deeper analysis
can generate more insightful interpretations [20]. We analyzed the transition matrix during
the two periods in their study using Intensity Analysis, which identified that the transition
from Arable land to Construction land was more intense than the transition from Woodland
to Construction land. Since the gain of Construction land steadily avoids Woodland, the
enormous loss of Woodland to Construction land can be explained by the greater initial
size of Woodland.

In the transition matrix, the total column and row provide the most general informa-
tion: the quantity of each category at an initial time and a final time, respectively. The net
change is the difference between them, and its analysis also is a prevalent study [58,59].
A lack of net change does not necessarily represent a lack of change in a category, al-
though the net change can be helpful. A land category’s total quantity may mostly stay
the same at a time interval. However, it may undergo significant exchange changes, los-
ing a certain amount to other land classes while gaining an equal amount from them in
different locations. The SLUDD is the annual net change for one category as a proportion
of the category’s size at the initial time, and it is widely used to express the intensity of
the category’s change [12,60]. The SLUDD can show a positive or negative net change.
However, the degree does not synchronously portray the category’s loss and gain, so it
lacks the exchange component of change that is vital information. The category’s total
change contains its gain and loss instead of the net change [61].

Moreover, the SLUDD is confusing, as the gain part of the category is not directly
related to its initial status but constitutes the final status, and the lost part of the category
is necessarily composed of its initial status. In essence, the CLUDD is the sum of the
loss intensities of different categories [22]. Scientists frequently employ it to compare the
intensities of the total change at different intervals [50,62]. Nevertheless, it underestimates
the actual change occurring at a time interval because it misses the gain component of the
total change. Some scientists discovered that the CLUDD needs more practical interpreta-
tion by comparing the CLUDD with Intensity Analysis methods in Longhai, China [22].
Furthermore, Pontius Jr. et al. demonstrated that the CLUDD is confusingly vague and
easily misleads readers with unclear mathematical expressions [63].

We have tracked the evolution of the Intensity Analysis and found some concerns
that require significant attention in some of the literature regarding the use of this method.
The early version of the Intensity Analysis was known as the systematic transition analy-
sis. Scientists adopted the early version extensively to identify systematic versus random
transitions between categories. As the method only analyzed transition level information,
it is therefore no longer suitable for researchers and decision makers who want to detect
the land change in detail. Aldwaik and Pontius Jr unified the size, intensity, and tempo-
ral stationarity at the interval, category, and transition levels of land change [19]. They
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also proposed systematic characteristics based on Intensity Analysis [28]. The systematic
characteristics of the land transition were first defined by Alo and Pontius Jr. [34]. The
transition from category m to category n is a systematically targeting transition in which the
gain of n targets m while n targets the loss of m, i.e., when Rtmn > Wtn and Qtmn > Vtm [28].
Qtmn and Vtm are defined in detail in Equations (7) and (8) of Aldwaik and Pontius Jr. [19].
Precisely, Qtmn equals the annual area of transition from category m to n as the percentages
of the sizes of the category n at the end of the time interval. The systematic criterion is the
investigation of a category’s transitions with respect to the category’s loss and gain. For
example, the transition from Crop to Forest is analyzed from two perspectives: the loss
of Crop and the gain of Forest. However, many subsequent works have shown that the
perspective for the category’s loss should be removed from the transition level of Intensity
Analysis [24,64–66]. Quan et al. [33] realized that the transition intensity for a category’s
loss did not have a precise interpretation when analyzing temporal change because the
transition process influences the category’s end size during the time intervals. However,
they still applied the definition to analyze the systemic characteristics of categorical land
transition in their studies [27,67–70]. The definition of “systematic” and the transition
intensity of a losing category should be eliminated when using Intensity Analysis to detect
land changes. Therefore, this study also aims to remind scientists that they can consider
this issue when using the method. Finally, we consider that a good method for detecting
land changes should include at least five characteristics:

• Containing information on the size and the intensity of a change rather than only
evaluating the size of change;

• Distinguishing the losses and gains of land categories instead of focusing only on
net change;

• Providing multiple levels of connectivity, allowing scientists to carry out any levels of
land change analysis according to the needs of their study;

• Comparing and analyzing the overall change in LULC during different periods;
• Facilitating the comparison of land change patterns and processes across regions to

help guide the design of regional land management policies.

4.2. Patterns and Processes of LULC Change

The results of the intensity of LULC change show a significant acceleration in the
overall speed of change in the two intervals after 2000 (Figure 6). The change in value
in the pattern indexes in Figures 11 and 12 also demonstrates a turning point in change
around the year 2000. This change might be closely associated with population growth
and economic development. At the category level, the Built category has the largest gain;
conversely, Crop demonstrates the largest category loss. Forest is declining over a large
area, undergoing a dormant decrease. The process is described as the “large dormant
category phenomenon” [29]. At the transition level, the gain of Built derived mainly
from Crop and Forest (Figure 9), while the landscape fragmentation of Crop and Forest
intensified (Figure 11). The likelihood of Crop being encroached upon or abandoned
might then increase because smaller patches are more vulnerable to being occupied by
dominant neighbor patches and are easily ignored by land regulators. As seen in Figure 8,
the transition from Crop to Built shows stationary targeting. This transition might be
closely related to urban–rural population migration. Figure 13a shows that in Chang-Zhu-
Tan, the total population has steadily increased since 1984. The increased speed of the
urban population during the period of 2001–2019 is three times the speed that during the
1984–2000 period in the region. Figure 13b shows that economic development has become
a more rapid process since the 21st century. The sharp increase in the urban population
has caused the need for more housing, transportation, and other infrastructures to meet
the needs of human activities. The process is also interpreted as population urbanization
driving land urbanization forward [71].
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Moreover, this study found that the intensity of the transition from other categories to
the Built category increased in the early three intervals but decreased in the fourth interval
(Figure 9). This is possible response to the national emphasis on the shift from incremental
to stock planning for the quality of the Built category in recent years. The transition pattern
in Figure 8 also suggests the gain of Built targeted Crop during 2000–2010 and 2010–2020.
In the urbanization scenario, Built seldom transits to Crop, so the occurrence of this process
is often regarded as a data quality issue [33]. However, it might be related to the land
policies announced by the Central Government of China. To alleviate the net decrease in
Crop caused by the rapid expansion of Built, the Central Government of China published
relevant regulations, policies, and laws to control the dynamics of arable land [72]. In
1986, the Central Government of China set up the China Land Administration Bureau, and
in 1987, the Land Management Law was promulgated, symbolizing the beginning of the
institutionalization of arable land protection and quality construction in China. The law
proposed that protecting arable land is a basic national policy. Subsequently, the Land
Management Law was revised and improved in 1999, and The National Land Use Overall
Planning was issued in 1993, 1999, and 2008, respectively, with the approval of the Central
Government of China. These documents have undergone a temporal evolution with respect
the requirements for arable land protection. For example, the initial “protection of arable
land quantity” was improved to “maintain the dynamic balance of the total amount of Crop,
and equal the quantity and quality of arable land occupation”, and the “protection of basic
arable land” was adjusted to “protection of permanent basic arable land”. The Central Rural
Work Conference of China proposed a red line of 1.8 billion mu of arable land in 2013. Some
studies have shown that in underdeveloped regions of China, the requisition–compensation
balance of Crop can effectively curb the shrinkage rate of Crop [52].

The CZTMR setting aims to fully release the potential of the three regions of Changsha,
Zhuzhou, and Xiangtan. They complement each other and achieve high-quality devel-
opment and the UN Sustainable Goals (e.g., SDGs, 11.3). Compared to the Shenzhen,
Guangzhou, Nanjing, and Wuhan Metropolitan Regions in China, the CZTMR has a gap in
economic development. Hence, the appropriate expansion of Built land in the study area is
still necessary for the region’s economic development. However, urban growth must meet
the requirements of ecological civilization construction and the guarantee of food security
in the CZTMR. Urban expansion causes a sharp decrease in Crop and Forest around the
cities and generates negative impacts on the ecological environment [73], while sustainable
urban development depends on the stability and sustainability of the landscape, which
comprises various ecological elements and processes in the CZTMR. Therefore, the major
tasks ahead is to comprehensively construct an ecological network and optimize the urban
growth boundary by coupling a patch-generating land use simulation (PLUS) model in the
CZTMR [74]. It can help policy-makers formulate strategies to control urban growth.

5. Conclusions

The main categories of LULC structure in the CZTMR are Forest and Crop, which
account for about 90% of the extent of the study. During the period 1980–2020, the size of
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the change in LULC continued to rise, and the intensity of this change was increased by
16 times. The growth is associated with the rapid economic development and urbanization
that took place in central China over several decades. At the category level, the Crop’s loss,
Built’s gain, and Water’s gain were steadily active. Adversely, Forest’s loss was dormant
despite its significant loss.

The fragmentations of Crop and Forest have intensified. The gain of Built derived
mainly from the Crop and Forest categories and steadily targeted Crop but avoided For-
est and Grass. Since 2000, it has been detected that Crop’s gain has targeted Built due
to the influence of the requisition–compensation balance of the arable land policy. Dur-
ing 1980–2020, the fragmentation of Built alleviated, and its aggregation intensified. The
growth mode of Built is mainly edge-expansion, and patches of outflying mode experi-
enced a process of increasing and then decreasing, reflecting urban dispersal followed
by coalescence.

Finally, this study tracked the evolution of Intensity Analysis and explained its ana-
lytical thought with other methods. A suitable method for the detection of land change
should not be limited to the size of the change and the net change.
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