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Abstract: This paper aims to enhance the accuracy of predicting the mechanical behavior of wood
subjected to thermal modification using an improved dung beetle optimization (IDBO) model.
The IDBO algorithm improves the original DBO algorithm via three main steps: (1) using piece-
wise linear chaotic mapping (PWLCM) to generate the initial dung beetle species and increase its
heterogeneity; (2) adopting an adaptive nonlinear decreasing producer ratio model to control the
number of producers and boost the algorithm’s convergence rate; and (3) applying a dimensional
learning-enhanced foraging (DLF) search strategy that optimizes the algorithm’s ability to explore
and exploit the search space. The IDBO algorithm is evaluated on 14 benchmark functions and
outperforms other algorithms. The IDBO algorithm is then applied to optimize a back-propagation
(BP) neural network for predicting five mechanical property parameters of heat-treated larch-sawn
timber. The results indicate that the IDBO-BP model significantly reduces the error compared with
the BP, tent-sparrow search algorithm (TSSA)-BP, grey wolf optimizer (GWO)-BP, nonlinear adaptive
grouping grey wolf optimizer (IGWO)-BP and DBO-BP models, demonstrating its superiority in
predicting the physical characteristics of lumber after heat treatment.

Keywords: dung beetle optimization; BP neural network; wood heat treatment; timber mechanical
performance forecast

1. Introduction

Timber is a widely utilized material in the construction and furniture industries be-
cause it has numerous benefits, such as environmental sustainability, aesthetic appeal and
ease of processing. However, its limited stability and durability hinder its application [1,2].
These limitations have prompted the development of various wood modification tech-
niques, such as chemical, physical and biological methods [3]. Heat treatment is a prevalent
technique that enhances wood properties by altering its chemical, physical and structural
characteristics through exposure to specific temperature and humidity conditions [4]. This
treatment increases wood stability, durability and resistance to corrosion and hydroly-
sis while improving mechanical properties such as strength, stiffness and hardness [5,6].
Common heat treatment methods include vacuum, dry and moist treatments [7].

The improvement of timber properties via heat treatment has been demonstrated by
studies. Korkut et al. [8] examined how the thermal process affects red bud maple’s surface
roughness and mechanical behaviors. The results indicated that increasing temperatures
reduce density and moisture content but increase bending strength and surface rough-
ness. Icel et al. [9] demonstrated that heat treatment significantly improves the physical
properties, chemical composition and microstructure of spruce and pine, resulting in en-
hanced stability, durability performance and service life. Xue et al. [10] investigated how
high-temperature heat treatment and impregnation modification techniques affect aspen
lumber’s physical and mechanical characteristics and found significant improvements in
mechanical strength and preservation.
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Despite its effectiveness in improving wood mechanical properties, heat treatment
has certain limitations. Boonstra et al. [11] reported the decomposition of natural wood
components during heat treatment, resulting in reduced wood quality. Hill [12] noted
that the efficacy of heat treatment is influenced by various factors such as treatment time,
temperature, humidity and wood species, making it challenging to control and optimize
the process. Goli et al. [1] investigated the impact of heat treatment on the physical and
mechanical properties of birch plywood, revealing an increase in density and hardness but
a decrease in moisture content and bending strength.

To address these limitations, researchers have explored the use of neural network
models to predict wood mechanical properties. Kohonen [13] introduced self-organizing
mapping (SOM) as one of the earliest prototypes for applying neural networks to nonlinear
prediction problems. C.G.O. [14] highlighted the potential for neural networks to model
complex nonlinear relationships for predicting mechanical properties such as strength and
stiffness. Adamopoulos et al. [15] investigated the relationship between the fiber properties
of recycled pulp and the mechanical properties of corrugated base paper. Multiple linear
regression and artificial neural network models were used to predict the tensile strength
and compressive strength of corrugated base paper with different fiber sources, and the
results showed that the artificial neural network model was more accurate and stable than
the multiple linear regression model. You et al. [16] demonstrated that an artificial neural
network (ANN) model based on nondestructive vibration testing can successfully predict
the MOE of bamboo–wood composites with high accuracy.

Although employing the BP neural network models to forecast the physical character-
istics of heat-treated lumber reduces experimental costs, it presents certain challenges, such
as susceptibility to local minima during the learning process and a poor generalization
ability, resulting in the inaccurate prediction of new data. To address these limitations, some
researchers have explored combining BP neural networks with meta-heuristic algorithms to
improve prediction accuracy and model robustness. Chen et al. [17] integrated the Aquila
Optimization Algorithm (AOA) [18] with BP neural networks to accurately predict the
balance water rate and weight ratio of thermal processing timber, and Wang et al. [19]
utilized the Carnivorous Plant Algorithm (CPA) [20] to ameliorate BP neural networks
for predicting the adhesion intensity and coarseness of the surfaces of heat-treated wood.
Their results indicated that both the AOA-BP and CPA-BP models outperform traditional
BP neural network models.

Meta-heuristic algorithms can effectively avoid local optima and improve prediction
accuracy when combined with BP neural networks. However, local optima may still occur
due to inappropriate algorithm parameters or unreasonable algorithm combinations, re-
sulting in poor model performance. To address this issue, some researchers have suggested
improving the original meta-heuristic algorithms before applying them to optimize BP
neural networks, aiming to increase the model’s generalization ability and reliability. For
example, Li et al. [21] enhanced the sparrow search algorithm (SSA) [22] with tent chaotic
mapping and applied it to optimize BP neural networks for predicting the mechanical
characteristics of heat-treated timber. They found that the TSSA-BP model performs well.
Ma et al. [23] proposed a nonlinear adaptive grouping strategy for the Gray Wolf Opti-
mization (GWO) [24] algorithm and used it to optimize BP neural networks for timber
mechanical performance forecasts. They demonstrated that the proposed IGWO-BP model
has much higher prediction accuracy than that of conventional models.

Similarly, the original Dung Beetle Optimization (DBO) [25] algorithm has drawbacks
in avoiding local optima and achieving satisfactory algorithmic accuracy for practical engi-
neering applications. To address these flaws, this article proposes an Improved Dung Beetle
Optimizer (IDBO) for optimizing BP neural networks. The IDBO algorithm incorporates
three main improvements: first, utilizing piece-wise linear chaotic mapping (PWLCM) to
initialize the dung beetle population to increase diversity; second, introducing an adaptive
parameter adjustment strategy to enhance the early-stage best-finding ability and improve
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algorithmic search efficiency; and finally, balancing local and global search capabilities by
incorporating a dimensional learning-enhanced foraging strategy (DLF).

The rest of this article is structured as follows: Section 2 introduces the basic theory
of BP and DBO; Section 3 presents the IDBO algorithm model; Section 4 verifies the
performance of the IDBO algorithm using benchmark functions; Section 5 evaluates the
reliability of the suggested IDBO model for wood mechanical property predictions; and
Section 6 concludes.

2. Theoretical Analysis of the Algorithm
2.1. Back-Propagation (BP) Neural Network Models

The BP neural network is a multi-layered feedforward model primarily utilized for su-
pervised learning tasks. It typically includes input, hidden and output layers [26]. Neurons
receive inputs from preceding layers and compute a weighted sum that is transformed by
an activation function before being output to subsequent layers. The error between the de-
sired and actual outputs is calculated and propagated backward through the network via a
back-propagation algorithm. Weights are updated according to each neuron’s contribution
to the error using the chain rule. Multiple iterations minimize error and enable the network
to approximate desired outputs.

This paper used MATLAB’s machine learning toolbox (2019a) to create a BP network.
Input data included heat treatment temperature, time and relative humidity, and output
data comprised Longitudinal Compressive Strength (LCS), Transverse Rupture Strength
(TRS), Transverse Modulus of Elasticity (TME), Radial Hardness (RH) and Tangential
Hardness (TH). Five separate prediction models were developed using trainlm with a
learning rate of 0.01. Figure 1 shows the structure of the BP neural network with a single
hidden layer.
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2.2. The Traditional DBO Algorithm

The DBO is a novel swarm intelligence algorithm that simulates dung beetle habits,
such as ball rolling, dancing, foraging, stealing, breeding and other behaviors, and the
DBO algorithm comprises four optimization processes: rolling balls, breeding, foraging
and stealing [25].

2.2.1. Dung Beetle Ball Rolling

Dung beetle rolling behavior is divided into an obstructed mode and an unobstructed
mode.
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Obstacle-Free Mode

When the dung beetle is moving forward without obstacles, the dung beetle uses the
sun for navigation during dung ball rolling. In this model, the place of the dung beetle
alters as the light intensity changes, and the position is renewed, as follows:

xt+1
i = xt

i + a× k× xt−1
i + b×

∣∣xt
i − xt

wrost
∣∣ (1)

where t indicates the count of the current iterations, and xt
i is in terms of the position of the

ith dung beetle in the population at the tth permutation. kε(0, 0.2] shows a fixed parameter
representing the flexure coefficient, b is an invariant quantity in the range of (0, 1), and α
represents a natural coefficient with values of either −1 or 1, with 1 indicating no deviation
and −1 indicating deviation from the original direction. xt

wrost means the worst location in
the present specie, and the change in light intensity is simulated by

∣∣xt
i − xt

wrost
∣∣.

Barrier Mode

The dung beetle, when it encounters an obstacle that prevents it from moving forward,
needs to dance to regain a new forward direction. The authors use a tangent function
to mimic the dancing behavior as a way to obtain a new rolling direction, which is only
considered to be in the range of [0, π], and the beetle continues rolling the dung ball once it
has determined a new direction. The equation for updating the position at this point is as
follows:

xt+1
i = xt

i + tanθ
∣∣∣xt

i − xt−1
i

∣∣∣ (2)

When θ = 0, π
2 , π, no change occurs in the dung beetle’s position.

2.2.2. Dung Beetle Breeding

In nature, female dung beetles roll their dung balls to a safe place suitable for egg
laying and hide them as a way to provide a suitable habitat for their progeny. Inspired
by this, the authors propose a frontier option strategy to model the brood ball location of
female dung beetles:  L f ∗ = max

{
xt

gbest × (1− R), L f }

U f ∗ = min
{

xt
gbest × (1 + R), U f }

(3)

where R = 1−t
Tmax

, and Tmax is the upper limit of iterations. The lower and upper limits of
the optimization problem are L f and U f , respectively. The current population attains
the global optimum at xt

gbest. The authors define the spawning’s lower and upper edges
region with L f and U f , which means that the region where the dung beetles spawn is
dynamically adjusted with the number of iterations.

When a female dung beetle determines the spawning area, she lays her eggs in that
area. Each female dung beetle generates a single brood ball per cycle. The area where
oviposition occurs is dynamically adjusted with the count of iterations, so the position of
the nestling sphere is also dynamic during the iterations, as defined below:

Bt+1
i = xt

gbest + b1 ×
(

Bt
i − L f ∗

)
+ b2 ×

(
Bt

i −U f ∗
)

(4)

where Bt+1
i is the location of the ith brood ball at the tth iteration, b1, b2 represent two

random and independent vectors that have D components each, and D is the number of
parameters in the optimization problem. The position of the nestling ball must be restricted
to the spawning area.
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2.2.3. Dung Beetle Foraging

This behavior is mainly aimed at small dung beetles. Some mature dung beetles
emerge from the ground in search of food, and the optimal foraging area for small dung
beetles is dynamically updated, as indicated below:{

L f l = max
{

xt
lbest × (1− R), L f }

U f l = min
{

xt
lbest × (1 + R), U f } (5)

where R is the same as the previous definition, and xt
lbest represents the best local position

for the current population. The authors use L f l and U f l to define the bottom and top
boundaries of the foraging region of the small dung beetle, respectively. The equation for
updating the position at this point is as follows:

xt+1
i = xt

i + C1 ×
(

xt
i − L f l

)
+ C2 ×

(
xt

i −U f l
)

(6)

where C1 is a number that follows a normal distribution when chosen randomly, namely
C1~N(0, 1), and C2 is a random vector belonging to a range of (0, 1) of 1× D.

2.2.4. Dung Beetle Stealing

In the population, there are some dung beetles that steal dung balls from other dung
beetles, and the authors update the location of the thieving dung beetles as follows:

xt+1
i = x

t
lbest + S× g× (

∣∣∣xt
i − xt

gbest

∣∣∣+ ∣∣xt
i − xt

lbest
∣∣) (7)

where g is a vector of dimension D that is randomly chosen, obeying a normal distribution,
and S indicates a constant value.

The diagram of the DBO algorithm’s process is presented in Figure 2. The algorithm
first generates a random initial population of dung beetles in the search space and defines
its relevant parameters and then calculates the value of each agent’s fitness to adjust their
positions based on the objective function, and it finally repeats the above steps until the
termination criteria are met, showing the globally optimal solution and its corresponding
value of suitability.
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3. Proposed Method
3.1. Improved Dung Beetle Optimizer

Despite its simplicity and successful application to several engineering design prob-
lems, the DBO algorithm exhibits limitations, such as poor global searchability and pre-
mature convergence to local optima. To address these deficiencies, this paper proposes an
improved dung beetle optimizer with specific enhancement strategies.

3.1.1. Piece-Wise Linear Chaotic Mapping

When tackling sophisticated optimization projects, the simple random generation
of initial populations by the DBO can result in rapid declines in population diversity
and excessive convergence during later iterations. Chaotic sequences have recently been
adopted for improving population diversity in meta-heuristic algorithms due to their
randomness and ergodicity [27]. The basic approach involves mapping chaotic sequences
into individual search spaces using chaos models such as Tent [21], Logistic [28] or Kent [29]
chaos mapping.

When selecting a chaotic mapping, two important characteristics—simplicity and
ergodicity—must be considered. Segmented linear chaotic mapping satisfies these criteria
with its relatively uniform phase distribution and simple equations compared to those of
other one-dimensional chaotic systems. This paper uses PWLCM mapping to generate a
random sequence with dynamical equations [30] defined as follows:

xi+1 = Fp(xi) =


xi
p , 0 ≤ xi < p

xi −
p

0.5 − p, p ≤ xi < 0.5
Fp(1− xi), 0.5 ≤ xi < 1

(8)

With the control parameter pε(0, 0.5), the xiε(0, 1) system is in a chaotic state. As-
signing initial values to the control function p and x0, after circular iterations, a random
sequence in the interval (0, 1) can be obtained, which has excellent statistical properties
and is commonly applied to generate the initial solution of the algorithm to increase the
diversity of the species. When p = 0.4, the initial overall (one-dimensional) distribution is
as shown in Figure 3.
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3.1.2. Self-Adaptive Parameter Adjustment Tactics

The DBO algorithm comprises four main components: the global development of
producers, egg-laying by female dung beetles, foraging by small dung beetles and stealing
behavior by stealing dung beetles. The number of producers determines the explored scope
and convergence rate of the algorithm. However, in the original algorithm, the authors
do not specify the distribution ratio of these four agents, which may result in incomplete
coverage of the search space or slow convergence. To address this issue, this article suggests
an adaptively derived non-linear decreasing producer ratio model (Equation (9)) with an
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initial producer ratio set to 0.4. With a sufficient number of producers, the algorithm can
conduct a more extensive global search during early iterations and fully exploit potential
solutions. As iterations progress and the demand for producers decreases, their proportion
decreases from 0.4 to 0.2, and exploitation is minimized during the middle and late stages
to facilitate rapid convergence.

Ppercent = 0.4− t(0.4− 0.2)
M

(9)

This model enhances algorithm diversity and robustness by dynamically adjusting the
number of producers and controlling competition and cooperation among them according
to certain strategies. This maintains algorithm versatility while gradually reducing pro-
ducer numbers during the search process to effectively balance convergence speed and
exploration ability. As a result, global exploration capability and convergence speed are
improved.

3.1.3. Dimension Learning-Enhanced Foraging Search Strategy

During the search process, the DBO algorithm may select a locally optimal solution
while ignoring a more optimal global solution due to its random strategy and lack of
effective evasion methods. To address this issue, we introduce the Dimension Learning-
enhanced Foraging (DLF) search strategy.

In the original DBO algorithm, position updates are obtained according to objective
functions corresponding to different agents. This can contribute to slow convergence,
trapping in local optima, and the premature loss of population diversity due to random
agent selection. In contrast, our proposed DLF search strategy enables agents to update
their locations by learning from their neighbors and completing their behaviors accordingly.

In the DLF search strategy, the new location of the dung beetles Xi(t) is obtained
from Equation (12), in which the beetle gains information from various neighbors and
a randomly chosen agent from the population. Then, in addition to Xi−DBO(t + 1), the
DLF search strategy generates another agent for the new location of beetle Xi(t), named
Xi−DLF(t + 1). To this purpose, first, using Formula (10), the radius Ri(t) is obtained with
the magnitude of the displacement vector between the Xi current position Xi(t) and the
agent position Xi−DBO(t + 1).

Ri(t) = ‖Xi(t)− Xi−DBO(t + 1)‖ (10)

Next, the neighborhood of Xi(t) expressed by Ni(t) is derived using Equation (11),
which is related to the radius Ri(t), where Di is the length of the line segment joining Xi(t)
and Xj(t).

Ni(t) =
{

Xj(t)
∣∣Di
(
Xi(t), Xj(t)

)
≤ Ri(t), Xj(t)εPop

}
(11)

Then, multi-domain learning is performed using Equation (12), where d denotes
dimensionality.

Xi−DLF,d(t + 1) = Xi,d(t) + rand× (Xn,d(t)− Xr,d(t)) (12)

Finally, the locations are updated with Formula (13), and the above steps are repeated
until a predefined maximum number of iterations is reached and returns the global optimal
solution and its corresponding fitness value.

Xi(t + 1) =
{

Xi−DBO(t + 1), i f f (Xi−DBO) < f (Xi−DLH)
Xi−DLF(t + 1) otherwise

(13)

3.2. The IDBO-BP Algorithm

The BP neural network models are assigned random weights and thresholds with
numerous variable parameters that can cause instability in model computation [31]. The
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predictive performance of these models can be enhanced by optimizing BP neural networks
using DBO. However, the DBO algorithm has issues such as an uneven initial population
distribution, susceptibility to local optima and a slow convergence speed. To address these
problems, this paper proposes the IDBO algorithm.

First, PWLCM is introduced to initialize the population to produce a more uniform
initial solution distribution and high-quality initial solutions while augmenting population
richness. Second, using an adaptive parameter adjustment strategy to dynamically tune
producer numbers according to the search process accelerates the convergence rate and
enhances global exploration capability. Finally, employing the DLF search strategy balances
the exploration and exploitation abilities of the algorithm.

The main idea of the IDBO-BP algorithm is to update the weights and thresholds of
the BP neural network by continuously updating the positions of the dung beetle swarm
until the global best position is found, i.e., the optimal solution.

The diagram of the IDBO-BP algorithm’s process is presented in Figure 4. Data are
first normalized using Equation (15) before the proportion of dung beetles pushing the ball
is dynamically adjusted according to Formula (9). Dung beetle population locations are
then initialized using PWLCM mapping, as shown in Equation (8). Fitness values for all
dung beetles are calculated, and their locations are updated according to Formulas (1)–(7).
The current optimal solution is updated in combination with the DLF strategy before the
positions of all dung beetles are updated again in combination with Equation (13). When
the iteration limit is reached, the best solution is output along with the optimal parameters
of the BP neural network.
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4. Evaluate the Effectiveness of the Suggested IDBO Model

The efficacy of the suggested IDBO method is assessed through a series of experiments
utilizing various benchmark functions in this section.

4.1. Benchmark Functions

To objectively appraise the effectiveness of various meta-heuristic algorithms and to
validate the usefulness of the IDBO amelioration strategy, 14 standard test functions were
selected from the literature [32], and the CEC2017 test function was utilized to evaluate
the capability of the IDBO algorithm. Functions F1–F8 are unimodal with a single global
optimal solution and were employed to gauge the velocity and exactness of convergence
of the algorithm. Functions F9–F14 are multimodal with a single global optimum and
several local optima and were used to estimate the global search and excavation capabilities
of the algorithm. The details of these benchmark functions, including their expressions,
dimensions, search ranges and theoretical optimal solutions, are given in Tables 1 and 2. To
provide a more intuitive understanding of these benchmark functions and their optimal
values, Figures 5 and 6 depict 3D views (30 dimensions) of some of these functions.

Table 1. Unimodal benchmark functions.

Function Dim Range Fmin

f1(x) = ∑n
i=1 x2

i 30/50/100 [−100, 100] 0
f2(x) = ∑n

i=1|xi|+ ∏n
i=1|xi| 30/50/100 [−10, 10] 0

f3(x)=∑n
i=1

(
∑i

j=1 xj

)2 30/50/100 [−100, 100] 0

f4(x) = max{|xi|, 1 ≤ i ≤ n} 30/50/100 [−100, 100] 0
f5(x) = ∑n−1

i=1

[
100(xi+1 − xi2 )2 + (xi − 1)2

]
30/50/100 [−30, 30] 0

f6(x)=∑n
i=1 ([xi + 0.5])2 30/50/100 [−100, 100] 0

f7(x)=x1
2+106∑n

i=2 xi
2 30/50/100 [−100, 100] 0

f8(x)=∑n
i=1 xi

2 + (∑n
i=1 0.5ixi)

2 + (∑n
i=1 0.5ixi)

4 30/50/100 [−5, 10] 0

Table 2. Multimodal benchmark functions.

Function Dim Range Fmin

f9(x)=∑n
i=1
[
xi

2 − 10cos(2πxi) + 10
]

30/50/100 [−5.12, 5.12] 0
f10(x)=∑n

i=1|xisin(xi) + 0.1xi| 30/50/100 [−10, 10] 0
f11(x)= π

n

{
10sin(πy1) + ∑n−1

i=1 (yi − 1)2
[
1 + 10sin2(πyi+1)

]
+ (yn − 1)2

}
+

∑n
i=1 u(xi, 10, 100, 4),

where yi = 1+ xi+1
4 , for all i = 1, . . . , n

u(xi, a, k, m)=


k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

30/50/100 [−50, 50] 0

f12(x) = 0.1
{

sin2(3πx1) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1+

sin2(2πxn)]
}
+ ∑n

i=1 u(xi, 5, 100, 4)
30/50/100 [−50, 50] 0

f13(x)=
[

1
n−1 ∑n−1

i=1
(√

si × (sin
(
50s0.2

i
)
+ 1
)]2

si =
√

x2
i + x2

i+1

30/50/100 [−100, 100] 0

f14(x) = sin2(πy1) + ∑n−1
i=1 (yi − 1)2

[
1 + 10sin2(πyi + 1)

]
+(yn − 1)2

[
1 + sin2(2πyn)

]
,

where yi = 1 + xi−1
4 , for all i = 1, . . . , n

30/50/100 [−10, 10] 0
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4.2. Contrast Algorithm and Experimental Parameter Settings

To fully validate the reliability of the presented IDBO model, its results were com-
pared with those of four widely used basic metaheuristics: PSO (Eberhart et al., 1995) [33],
GWO (Mirjalli et al., 2014), WOA (Mirjalili et al., 2016) [34] and DBO (Xue et al., 2022) [25].
As indicated in Table 3, the parameter settings that were recommended in their respective
original works were adopted for the experiments involving these comparison algorithms.
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Table 3. Algorithms’ parameters setting.

Algorithm Parameter Setting

WOA a Gradually reduced from 2 to 0
GWO a Uniformly lowered from 2 to 0
PSO C1 and C2 2

Inertia weight Linearly decreased from 0.9 to 0.1
DBO α and β 0.1

a and b 0.3 and 0.5
IDBO α and β 0.1

a and b 0.3 and 0.5
The proportions of the ball-rolling dung beetle, the brood ball, the
small dung beetle and the thief were [0.4 0.2], 0.2, 0.2 and [0.2 0.4]

To more accurately evaluate the efficacy of the IDBO algorithm and its comparative
algorithms, a population size of N = 30 was uniformly set, and the upper limit of iterations
was fixed at 500. Each model was executed separately 30 times. The dimension D was
set to 30, 50 and 100 to examine the effectiveness of the suggested approach in searching
for merits across different dimensions. To minimize the influence of randomness in the
simulation results, the optimal values, means and standard deviations of the optimization
results (fitness) were recorded separately to appraise the exploration performance, accuracy
and reliability of the models.

The experiment was implemented on a Windows 11 operating system with an 11th
Gen Intel® Core™ i7-11700 processor with 2.5 GHz and 16 GB RAM using MATLAB 2019a
for simulation. The optimal fitness, mean fitness and standard error of fitness for the IDBO
algorithm and its comparative algorithms are presented in Table 4, where bold values
indicate the best consequences. Additionally, the bottom three lines of each table show the
’w/t/l’ for the wins (w), ties (t) and losses (l) of each algorithm.

Table 4. Unimodal benchmark function optimization results.

F D Index WOA GWO PSO DBO IDBO

F1 30 Best 3.94× 10−83 7.29× 10−30 6.50× 102 1.03× 10−176 5.01× 10−201

Mean 7.03× 10−74 9.20× 10−28 1.77× 103 1.77× 10−89 8.31× 10−151

STD 3.41× 10−73 9.69× 10−28 6.99× 102 9.68× 10−89 4.46× 10−150

50 Best 4.13× 10−89 1.29× 10−29 6.20× 102 1.71× 10−163 1.64× 10−199

Mean 6.15× 10−72 9.52× 10−28 1.93× 103 1.71× 10−110 8.00× 10−151

STD 4.33× 10−71 1.13× 10−27 8.76× 102 1.21× 10−109 5.66× 10−150

100 Best 3.31× 10−88 2.43× 10−29 7.52× 102 2.11× 10−182 1.89× 10−208

Mean 2.61× 10−72 1.20× 10−27 2.09× 103 4.94× 10−105 6.48× 10−152

STD 2.36× 10−71 2.64× 10−27 7.95× 102 4.90× 10−104 6.48× 10−151

F2 30 Best 1.71× 10−57 1.67× 10−17 1.41× 101 7.24× 10−81 3.30× 10−111

Mean 8.35× 10−50 9.15× 10−17 2.03× 101 6.05× 10−55 1.98× 10−83

STD 4.56× 10−49 5.34× 10−17 3.98× 100 3.31× 10−54 9.03× 10−83

50 Best 2.53× 10−58 2.48× 10−17 9.95× 100 1.67× 10−83 1.64× 10−103

Mean 9.04× 10−51 9.55× 10−17 1.95× 101 2.02× 10−48 1.46× 10−80

STD 4.88× 10−50 6.54× 10−17 4.77× 100 1.43× 10−47 1.04× 10−79

100 Best 5.90× 10−59 1.06× 10−17 1.05× 101 5.00× 10−84 8.80× 10−107

Mean 3.65× 10−50 9.57× 10−17 1.94× 101 2.17× 10−56 1.80× 10−80

STD 3.22× 10−49 7.80× 10−17 4.20× 100 1.71× 10−55 1.45× 10−79
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Table 4. Cont.

F D Index WOA GWO PSO DBO IDBO

F3 30 Best 8.29× 103 5.82× 10−9 2.23× 103 1.61× 10−148 2.25× 10−187

Mean 4.90× 104 1.64× 10−5 4.87× 103 5.61× 10−79 3.79× 10−95

STD 1.40× 104 3.50× 10−5 1.71× 103 3.07× 10−78 2.08× 10−94

50 Best 1.48× 104 2.04× 10−9 1.34× 103 9.33× 10−144 6.40× 10−178

Mean 4.36× 104 3.33× 10−5 5.71× 103 5.63× 10−81 4.74× 10−99

STD 1.31× 104 1.23× 10−4 2.02× 103 2.82× 10−80 3.35× 10−98

100 Best 1.47× 104 3.82× 10−9 2.16× 103 2.31× 10−157 9.16× 10−183

Mean 4.27× 104 3.43× 10−5 5.39× 103 9.29× 10−56 1.63× 10−85

STD 1.26× 104 1.57× 10−4 1.60× 103 9.29× 10−55 1.63× 10−84

F4 30 Best 2.60× 10−1 4.49× 10−8 1.79× 101 2.07× 10−77 1.13× 10−93

Mean 5.48× 101 6.54× 10−7 2.85× 101 3.47× 10−50 3.07× 10−63

STD 2.85× 101 5.12× 10−7 6.42× 100 1.90× 10−49 1.68× 10−62

50 Best 8.90× 10−1 2.11× 10−8 1.60× 101 2.22× 10−85 5.72× 10−100

Mean 4.97× 101 7.76× 10−7 2.74× 101 1.01× 10−51 1.35× 10−68

STD 2.53× 101 1.22× 10−6 5.21× 100 7.18× 10−51 9.52× 10−68

100 Best 2.73× 10−1 5.70× 10−8 1.57× 101 3.24× 10−81 1.78× 10−100

Mean 5.02× 101 6.89× 10−7 2.84× 101 4.82× 10−48 4.69× 10−66

STD 2.65× 101 8.72× 10−7 4.94× 100 4.38× 10−47 4.42× 10−65

F5 30 Best 2.71× 101 2.59× 101 3.58× 104 2.54× 101 2.48× 101

Mean 2.79× 101 2.69× 101 4.52× 105 2.58× 101 2.52× 101

STD 4.45× 10−1 7.15× 10−1 4.03× 105 1.83× 10−1 3.06× 10−1

50 Best 2.72× 101 2.59× 101 4.35× 104 2.52× 101 2.47× 101

Mean 2.82× 101 2.72× 101 4.51× 105 2.58× 101 2.52× 101

STD 4.52× 10−1 7.16× 10−1 3.86× 105 2.68× 10−1 3.10× 10−1

100 Best 2.69× 101 2.53× 101 3.65× 104 2.53× 101 2.47× 101

Mean 2.80× 101 2.70× 101 4.21× 105 2.58× 101 2.52× 101

STD 4.45× 10−1 7.56× 10−1 3.26× 105 2.17× 10−1 2.55× 10−1

30 Best 0.00× 100 0.00× 100 8.05× 102 0.00× 100 0.00× 100

Mean 0.00× 100 0.00× 100 2.56× 103 0.00× 100 0.00× 100

STD 0.00× 100 0.00× 100 8.87× 102 0.00× 100 0.00× 100

50 Best 0.00× 100 0.00× 100 9.63× 102 0.00× 100 0.00× 100

Mean 0.00× 100 0.00× 100 2.60× 103 0.00× 100 0.00× 100

STD 0.00× 100 0.00× 100 8.53× 102 0.00× 100 0.00× 100

100 Best 0.00× 100 0.00× 100 8.35× 102 0.00× 100 0.00× 100

Mean 0.00× 100 0.00× 100 2.37× 103 0.00× 100 0.00× 100

STD 0.00× 100 0.00× 100 1.09× 103 0.00× 100 0.00× 100

F7 30 Best 3.68× 10−77 4.83× 10−23 8.52× 108 1.93× 10−159 9.32× 10−196

Mean 1.85× 10−66 1.04× 10−21 1.75× 109 6.52× 10−108 9.14× 10−140

STD 9.98× 10−66 1.42× 10−21 5.93× 108 2.48× 10−107 5.01× 10−139

50 Best 1.87× 10−81 8.86× 10−24 6.67× 108 1.04× 10−158 8.72× 10−212

Mean 3.32× 10−66 7.31× 10−22 1.78× 109 1.48× 10−105 3.17× 10−148

STD 2.35× 10−65 1.05× 10−21 8.39× 108 9.64× 10−105 2.23× 10−147

100 Best 1.50× 10−82 2.06× 10−23 3.42× 108 2.07× 10−173 1.84× 10−200

Mean 4.67× 10−68 9.61× 10−22 1.83× 109 4.86× 10−93 2.34× 10−141

STD 3.28× 10−67 1.86× 10−21 8.66× 108 4.86× 10−92 1.68× 10−140
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Table 4. Cont.

F D Index WOA GWO PSO DBO IDBO

F8 30 Best 7.79× 10−86 3.58× 10−31 6.83× 100 2.68× 10−173 2.53× 10−198

Mean 8.40× 10−77 2.89× 10−29 3.41× 101 3.19× 10−109 6.83× 10−161

STD 4.17× 10−76 5.64× 10−29 1.84× 101 1.68× 10−108 2.95× 10−160

50 Best 1.90× 10−95 3.62× 10−31 7.56× 100 1.65× 10−180 1.59× 10−215

Mean 1.34× 10−75 1.93× 10−29 2.92× 101 1.24× 10−116 3.43× 10−153

STD 5.27× 10−75 2.53× 10−29 2.23× 101 6.24× 10−116 2.42× 10−152

100 Best 7.99× 10−93 2.83× 10−31 8.12× 100 2.98× 10−177 3.62× 10−212

Mean 1.79× 10−74 2.53× 10−29 2.90× 101 1.13× 10−103 8.64× 10−153

STD 1.29× 10−73 4.61× 10−29 1.60× 101 1.06× 10−102 8.64× 10−152

Rank 30 w/t/l 0/1/7 0/1/7 0/0/8 0/1/7 7/1/0
50 w/t/l 0/1/7 0/1/7 0/0/8 0/1/7 7/1/0

100 w/t/l 0/1/7 0/1/7 0/0/8 0/1/7 7/1/0

4.3. Evaluation of Exploration and Exploitation

The single-peak functions are well-suited to verify the development capability of
algorithms in finding optimal solutions. Multimodal functions with numerous locally
optimal solutions can assess the ability of IDBO to evade local optima during exploration.

As indicated in Table 4, the IDBO algorithm demonstrates significant improvement
for all seven test functions except F6 across all dimensions. Table 5 reveals that the IDBO
algorithm outperforms other algorithms in three different dimensions for all five test
functions except F13 and that its optimal value, average and standard error are optimal.
Thus, it can be inferred that the IDBO algorithm is more effective than DBO in evaluating
optimal solutions, which proves that the modification tactic presented in this article can
feasibly enhance the original algorithm’s ability to explore.

Table 5. Multimodal benchmark function optimization results.

F D Index WOA GWO PSO DBO IDBO

F9 30 Best 0.00× 100 0.00× 100 7.52× 101 0.00× 100 0.00× 100

Mean 0.00× 100 2.79× 100 1.09× 102 9.62× 10−1 0.00× 100

STD 0.00× 100 3.25× 100 1.72× 101 3.66× 100 0.00× 100

50 Best 0.00× 100 0.00× 100 7.23× 101 0.00× 100 0.00× 100

Mean 3.41× 10−15 7.50× 100 1.13× 102 2.79× 10−1 0.00× 100

STD 1.78× 10−14 2.92× 101 1.82× 101 1.27× 100 0.00× 100

100 Best 0.00× 100 0.00× 100 6.65× 101 0.00× 100 0.00× 100

Mean 1.14× 10−15 2.47× 100 1.07× 102 3.38× 100 0.00× 100

STD 8.00× 10−15 4.00× 100 1.83× 101 1.68× 101 0.00× 100

F10 30 Best 4.32× 10−58 1.97× 10−17 6.43× 100 4.37× 10−89 9.47× 10−108

Mean 3.25× 10−32 5.71× 10−4 1.08× 101 1.26× 10−4 2.44× 10−81

STD 1.78× 10−31 7.99× 10−4 2.60× 100 3.44× 10−4 1.34× 10−80

50 Best 4.00× 10−58 1.75× 10−16 3.44× 100 1.99× 10−88 2.32× 10−101

Mean 3.83× 10−1 4.95× 10−4 1.01× 101 1.32× 10−1 8.49× 10−81

STD 2.71× 100 5.42× 10−4 2.85× 100 9.17× 10−1 6.01× 10−80

100 Best 2.83× 10−60 3.32× 10−17 4.88× 100 3.72× 10−87 1.69× 10−109

Mean 2.28× 10−1 4.47× 10−4 1.08× 101 1.99× 10−3 3.31× 10−80

STD 2.28× 100 5.21× 10−4 2.61× 100 1.57× 10−2 2.91× 10−79
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Table 5. Cont.

F D Index WOA GWO PSO DBO IDBO

F11 30 Best 6.35× 10−3 1.31× 10−2 1.15× 101 1.11× 10−7 4.56× 10−6

Mean 2.76× 10−2 5.00× 10−2 1.07× 103 3.57× 10−3 5.73× 10−5

STD 2.02× 10−2 2.95× 10−2 4.83× 103 1.89× 10−2 1.03× 10−4

50 Best 2.47× 10−3 1.22× 10−2 1.26× 101 7.74× 10−8 3.29× 10−6

Mean 2.34× 10−2 4.54× 10−2 1.10× 103 2.26× 10−3 3.79× 10−5

STD 1.81× 10−2 2.56× 10−2 3.36× 103 1.47× 10−2 4.79× 10−5

100 Best 3.42× 10−3 1.32× 10−2 7.66× 100 5.39× 10−8 2.17× 10−6

Mean 2.26× 10−2 4.46× 10−2 1.61× 103 9.76× 10−5 7.55× 10−5

STD 1.92× 10−2 2.36× 10−2 6.56× 103 7.08× 10−4 1.96× 10−4

F12 30 Best 9.44× 10−2 3.15× 10−1 7.93× 102 1.79× 10−4 1.50× 10−4

Mean 5.49× 10−1 6.39× 10−1 2.14× 105 5.44× 10−1 3.32× 10−2

STD 3.20× 10−1 1.90× 10−1 2.87× 105 4.09× 10−1 4.58× 10−2

50 Best 1.81× 10−1 1.00× 10−1 6.48× 101 7.70× 10−4 5.05× 10−5

Mean 6.09× 10−1 6.13× 10−1 1.89× 105 6.14× 10−1 2.66× 10−2

STD 2.75× 10−1 2.44× 10−1 3.94× 105 4.19× 10−1 4.10× 10−2

100 Best 1.17× 10−1 1.02× 10−1 7.83× 101 1.35× 10−3 6.25× 10−5

Mean 4.87× 10−1 6.46× 10−1 3.87× 105 7.15× 10−1 3.72× 10−2

STD 2.78× 10−1 2.30× 10−1 4.63× 105 4.89× 10−1 6.20× 10−2

F13 30 Best 0.00× 100 0.00× 100 0.00× 100 0.00× 100 0.00× 100

Mean 8.23× 10−5 0.00× 100 0.00× 100 0.00× 100 0.00× 100

STD 3.25× 10−4 0.00× 100 0.00× 100 0.00× 100 0.00× 100

50 Best 0.00× 100 0.00× 100 0.00× 100 0.00× 100 0.00× 100

Mean 5.65× 10−5 0.00× 100 0.00× 100 0.00× 100 0.00× 100

STD 3.11× 10−4 0.00× 100 0.00× 100 0.00× 100 0.00× 100

100 Best 0.00× 100 0.00× 100 0.00× 100 0.00× 100 0.00× 100

Mean 7.81× 10−5 0.00× 100 0.00× 100 0.00× 100 0.00× 100

STD 3.89× 10−4 0.00× 100 0.00× 100 0.00× 100 0.00× 100

F14 30 Best 3.69× 10−1 8.22× 10−1 4.86× 102 8.97× 10−2 2.88× 10−4

Mean 9.42× 10−1 1.33× 100 1.03× 103 5.50× 10−1 8.37× 10−2

STD 4.24× 10−1 2.92× 10−1 3.21× 102 4.22× 10−1 9.28× 10−2

50 Best 2.55× 10−1 6.37× 10−1 3.73× 102 2.69× 10−4 4.52× 10−4

Mean 9.42× 10−1 1.23× 100 9.25× 102 4.83× 10−1 1.05× 10−1

STD 3.68× 10−1 2.13× 10−1 3.46× 102 2.10× 10−1 1.11× 10−1

100 Best 1.93× 10−1 8.13× 10−1 4.09× 102 1.40× 10−3 2.75× 10−4

Mean 8.70× 10−1 1.25× 100 9.66× 102 5.16× 10−1 7.45× 10−2

STD 3.82× 10−1 2.29× 10−1 3.04× 102 2.94× 10−1 7.85× 10−2

Rank 30 w/t/l 0/1/5 0/1/5 0/1/5 0/1/5 4/2/0
50 w/t/l 0/0/6 0/1/5 0/1/5 0/1/5 4/2/0
100 w/t/l 0/0/6 0/1/5 0/1/5 0/1/5 4/2/0

4.4. Evaluation of Convergence Curves

To more intuitively observe and compare the convergence rate, accuracy and ability
of each algorithm to evade local optima, the convergence curves for IDBO and four basic
meta-heuristic algorithms f1~ f14 (30 dimensions) are presented in Figure 7. The transverse
axis represents the number of iterations, whereas the longitudinal axis denotes the order of
magnitude of fitness values. Fitness values are expressed as logarithms to base 10 to better
illustrate convergence trends.



Forests 2023, 14, 935 15 of 29

Forests 2023, 14, x FOR PEER REVIEW 16 of 32 
 

 

 100 Best 1.17 × 10−1 1.02 × 10−1 7.83 × 101 1.35 × 10−3 6.25 × 10−5 
  Mean 4.87 × 10−1 6.46 × 10−1 3.87 × 105 7.15 × 10−1 3.72 × 10−2 
  STD 2.78 × 10−1 2.30 × 10−1 4.63 × 105 4.89 × 10−1 6.20 × 10−2 

F13 30 Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
  Mean 8.23 × 10−5 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
  STD 3.25 × 10−4 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
 50 Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
  Mean 5.65 × 10−5 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
  STD 3.11 × 10−4 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
 100 Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
  Mean 7.81 × 10−5 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 
  STD 3.89 × 10−4 0.00 × 100 0.00 × 100  0.00 × 100 0.00 × 100 

F14 30 Best 3.69 × 10−1 8.22 × 10−1 4.86 × 102 8.97 × 10−2  2.88 × 10−4 
  Mean 9.42 × 10−1 1.33 × 100 1.03 × 103 5.50 × 10−1  8.37 × 10−2 
  STD 4.24 × 10−1 2.92 × 10−1 3.21 × 102 4.22 × 10−1  9.28 × 10−2 
 50 Best 2.55 × 10−1 6.37 × 10−1 3.73 × 102 2.69 × 10−4  4.52 × 10−4 
  Mean 9.42 × 10−1 1.23 × 100 9.25 × 102 4.83 × 10−1  1.05 × 10−1 
  STD 3.68 × 10−1 2.13 × 10−1 3.46 × 102 2.10 × 10−1  1.11 × 10−1 
 100 Best 1.93 × 10−1 8.13 × 10−1 4.09 × 102 1.40 × 10−3  2.75 × 10−4 
  Mean 8.70 × 10−1 1.25 × 100 9.66 × 102 5.16 × 10−1  7.45 × 10−2 
  STD 3.82 × 10−1 2.29 × 10−1 3.04 × 102 2.94 × 10−1  7.85 × 10−2 

Rank 30 w/t/l 0/1/5 0/1/5 0/1/5 0/1/5 4/2/0 
 50 w/t/l 0/0/6 0/1/5 0/1/5 0/1/5 4/2/0 
 100 w/t/l 0/0/6 0/1/5 0/1/5 0/1/5 4/2/0 

4.4. Evaluation of Convergence Curves 
To more intuitively observe and compare the convergence rate, accuracy and ability 

of each algorithm to evade local optima, the convergence curves for IDBO and four basic 
meta-heuristic algorithms 𝑓𝑓1~𝑓𝑓14 (30 dimensions) are presented in Figure 7. The trans-
verse axis represents the number of iterations, whereas the longitudinal axis denotes the 
order of magnitude of fitness values. Fitness values are expressed as logarithms to base 10 
to better illustrate convergence trends. 

As shown in Figure 7, IDBO exhibits the fastest convergence and highest accuracy in 
convergence curves for functions F1–F5, F7–F10 and F14 with a near-linear decrease to 
theoretical optimal values without stagnation. DBO performs second only to IDBO for 
these functions and outperforms other algorithms. DBO, GWO and WOA converge to op-
timal values with minimal stagnation for function F6 but at a slower rate than that of 
IDBO, and PSO exhibits stagnation at local optima. In the convergence curves for func-
tions F11–F13, IDBO converges rapidly with a quick inflection point to achieve optimal 
accuracy. This demonstrates that the amelioration method recommended in this paper 
effectively enhances the original algorithm in terms of convergence rate and accuracy. 

    
(a) 𝒇𝒇𝟏𝟏 (b) 𝒇𝒇𝟐𝟐 (c) 𝒇𝒇𝟑𝟑 (d) 𝒇𝒇𝟒𝟒 

Forests 2023, 14, x FOR PEER REVIEW 17 of 32 
 

 

    
(e) 𝒇𝒇𝟓𝟓  (f) 𝒇𝒇𝟔𝟔  (g) 𝒇𝒇𝟕𝟕  (h) 𝒇𝒇𝟖𝟖 

    
(i) 𝒇𝒇𝟗𝟗  (j) 𝒇𝒇𝟏𝟏𝟏𝟏  (k) 𝒇𝒇𝟏𝟏𝟏𝟏  (l) 𝒇𝒇𝟏𝟏𝟏𝟏 

 

  

 

 (m) 𝒇𝒇𝟏𝟏𝟏𝟏 (n) 𝒇𝒇𝟏𝟏𝟏𝟏  

Figure 7. Convergence curves of unimodal and multimodal functions. 

4.5. Local Optimal Circumvention Evaluation 
As previously mentioned, multimodal functions can be used to examine the search 

behavior of algorithms. As indicated in Table 5, IDBO achieves the best (fitness) optimal 
values across three different dimensions of 30, 50 and 100 and outperforms other algo-
rithms. This demonstrates that IDBO effectively equilibrates local and global searches to 
evade local optima. The improvement approach suggested in this article dramatically aug-
ments the exploratory potential of the original model. 

4.6. High-Dimensional Robustness Evaluation 
General algorithms may not exhibit robustness and stability when solving complex 

problem functions in high dimensions, and their ability to find optimal solutions may de-
crease abruptly. To assess the performance of IDBO in high dimensions, results for IDBO 
and other algorithms were compared in 50 and 100 dimensions. As presented in Table 4, 
for unimodal functions other than F3 and F6, PSO, WOA and GWO all exhibit decreased 
convergence accuracy in higher dimensions, and DBO and IDBO show decreased accu-
racy in 50 dimensions but little change in 100 dimensions, indicating stability for both 
DBO and IDBO at higher dimensions. For function F3, the convergence accuracy of IDBO 
is 18 orders of scale above that of DBO in 50 dimensions but increases to 29 orders of 
magnitude higher than that of DBO in 100 dimensions, indicating slightly inferior perfor-
mance for DBO at higher dimensions. 

According to Table 5, for high-dimensional multimodal function F9, the convergence 
accuracy for WOA and DBO decreases from theoretical optimal values as dimensionality 
increases, and only IDBO consistently converges to theoretical optimal values with a mean 
and standard deviation of zero, indicating stable performance for IDBO when seeking 
high-dimensional multimodal functions. For four test functions, excluding F9 and F13, 
IDBO’s performance at high dimensions is comparable to that at 30 dimensions, achieving 
optimal mean and standard deviation values. Overall, IDBO exhibits a strong perfor-
mance when finding optimal solutions for high-dimensional optimization problems, 
demonstrating its stability and robustness at high dimensions. 

Table 6 presents a summary of the performance outcomes for IDBO and other algo-
rithms, as shown in Tables 4 and 5. The total performance metric is employed to calculate 

Figure 7. Convergence curves of unimodal and multimodal functions.

As shown in Figure 7, IDBO exhibits the fastest convergence and highest accuracy
in convergence curves for functions F1–F5, F7–F10 and F14 with a near-linear decrease to
theoretical optimal values without stagnation. DBO performs second only to IDBO for
these functions and outperforms other algorithms. DBO, GWO and WOA converge to
optimal values with minimal stagnation for function F6 but at a slower rate than that of
IDBO, and PSO exhibits stagnation at local optima. In the convergence curves for functions
F11–F13, IDBO converges rapidly with a quick inflection point to achieve optimal accuracy.
This demonstrates that the amelioration method recommended in this paper effectively
enhances the original algorithm in terms of convergence rate and accuracy.

4.5. Local Optimal Circumvention Evaluation

As previously mentioned, multimodal functions can be used to examine the search
behavior of algorithms. As indicated in Table 5, IDBO achieves the best (fitness) optimal
values across three different dimensions of 30, 50 and 100 and outperforms other algorithms.
This demonstrates that IDBO effectively equilibrates local and global searches to evade
local optima. The improvement approach suggested in this article dramatically augments
the exploratory potential of the original model.

4.6. High-Dimensional Robustness Evaluation

General algorithms may not exhibit robustness and stability when solving complex
problem functions in high dimensions, and their ability to find optimal solutions may
decrease abruptly. To assess the performance of IDBO in high dimensions, results for IDBO
and other algorithms were compared in 50 and 100 dimensions. As presented in Table 4,
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for unimodal functions other than F3 and F6, PSO, WOA and GWO all exhibit decreased
convergence accuracy in higher dimensions, and DBO and IDBO show decreased accuracy
in 50 dimensions but little change in 100 dimensions, indicating stability for both DBO and
IDBO at higher dimensions. For function F3, the convergence accuracy of IDBO is 18 orders
of scale above that of DBO in 50 dimensions but increases to 29 orders of magnitude higher
than that of DBO in 100 dimensions, indicating slightly inferior performance for DBO at
higher dimensions.

According to Table 5, for high-dimensional multimodal function F9, the convergence
accuracy for WOA and DBO decreases from theoretical optimal values as dimensionality
increases, and only IDBO consistently converges to theoretical optimal values with a mean
and standard deviation of zero, indicating stable performance for IDBO when seeking high-
dimensional multimodal functions. For four test functions, excluding F9 and F13, IDBO’s
performance at high dimensions is comparable to that at 30 dimensions, achieving optimal
mean and standard deviation values. Overall, IDBO exhibits a strong performance when
finding optimal solutions for high-dimensional optimization problems, demonstrating its
stability and robustness at high dimensions.

Table 6 presents a summary of the performance outcomes for IDBO and other algo-
rithms, as shown in Tables 4 and 5. The total performance metric is employed to calculate
TP for each algorithm using Equation (14), in which each algorithm has Q trials and M
failed tests.

TP =

(
Q−M

Q

)
× 100% (14)

Table 6. Total performance of IDBO and other basic prevalent meta-heuristics algorithms.

WOA GWO PSO DBO IDBO

w/t/l w/t/l w/t/l w/t/l w/t/l
D = 30 0/2/12 0/2/12 0/1/13 0/2/12 11/3/0
D = 50 0/1/13 0/2/12 0/1/13 0/2/12 11/3/0
D = 100 0/1/13 0/2/12 0/1/13 0/2/12 11/3/0

Total 0/4/38 0/6/36 0/3/39 0/6/36 33/9/0
TP 9.52% 14.29% 7.14% 14.29% 100.00%

4.7. Statistical Analysis

To further evaluate the validity of the suggested enhancement tactics, this paper
used a Wilcoxon signed-rank test to compare IDBO with four meta-heuristic algorithms
and applied the Friedman test (Equation (15)) to calculate each algorithm’s ranking. The
number of populations N = 30 was set, each test function was subjected to 30 independent
runs of each algorithm, dimension D = 30, and the Wilcoxon signed-rank test with α = 0.05
was implemented for IDBO and other algorithms on 14 test functions. The α-values are
presented in along with statistics for “}}+”, “}}−” and “}} =”. “}}+” shows that IDBO clearly
outperforms other comparison algorithms, “}}−” indicates inferiority, and “}} =” denotes
no significant difference. N/A represents not applicable when both searches for superiority
result in 0, indicating a comparable performance. Bold text indicates insignificant or
comparable differences.

Table 7 shows that WOA, GWO and DBO have comparable search performances with
IDBO for F6, and PSO differs significantly from IDBO. WOA and IDBO have a comparable
search performances for F9, and DBO differs insignificantly from IDBO. GWO, PSO and
DBO have equivalent search behavior with IDBO for F13, and WOA differs insignificantly
from IDBO. GWO, PSO and DBO differ significantly from IDBO for all functions except F6,
F9 and F13.
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Table 7. α-values of Wilcoxon signed-rank test.

Function WOA GWO PSO DBO

F1 3.02× 10−11 3.02× 10−11 3.02× 10−11 6.07× 10−11

F2 3.02× 10−11 3.02× 10−11 3.02× 10−11 4.20× 10−10

F3 3.02× 10−11 3.02× 10−11 3.02× 10−11 2.57× 10−7

F4 3.02× 10−11 3.02× 10−11 3.02× 10−11 1.61× 10−10

F5 3.02× 10−11 3.02× 10−11 3.02× 10−11 4.18× 10−9

F6 N/A N/A 1.21× 10−12 N/A
F7 3.02× 10−11 3.02× 10−11 3.02× 10−11 1.61× 10−10

F8 3.02× 10−11 3.02× 10−11 3.02× 10−11 2.61× 10−10

F9 N/A 1.16× 10−12 1.21× 10−12 3.34× 10−1

F10 3.02× 10−11 3.02× 10−11 3.02× 10−11 3.69× 10−11

F11 3.02× 10−11 3.02× 10−11 3.02× 10−11 1.99× 10−2

F12 3.69× 10−11 3.02× 10−11 3.02× 10−11 1.33× 10−10

F13 8.15× 10−2 N/A N/A N/A
F14 3.02× 10−11 3.02× 10−11 3.02× 10−11 1.09× 10−10

+/=/− 11/3/0 12/2/0 13/1/0 12/2/0

Table A2 in Appendix A shows the results of Friedman’s test. The IDBO algorithm
has a lower average ranking value than that of the other algorithms in all three dimensions,
indicating its superior performance. Moreover, Table A2 reveals that the IDBO algorithm’s
mean value decreases relative to DBO as dimensionality increases. This shows that IDBO is
more robust in higher dimensions than DBO and further verifies the effectiveness of our
optimization strategy.

F f =
12n

k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(15)

where n is the count of case tests, k is the quantity of algorithms, and Rj is the mean ranking
of the jth algorithm.

The IDBO algorithm shows significant improvements in both local and global ex-
ploration abilities based on a comprehensive analysis of benchmark function test results,
convergence curves, Wilcoxon signed-rank test results, and Friedman test results for each
algorithm. It exceeds the original DBO and WOA algorithms and other optimization al-
gorithms that we compare it with in terms of convergence velocity, accuracy and stability.
This verifies the performance of the optimization scheme this paper recommends.

5. Experimental Research
5.1. Data Preprocessing

To ensure an accurate comparison of algorithm results, this paper uses the same data as
those used in [35]. The authors used larch-sawn timber of 22 mm thickness from Northeast
China. Samples were heat treated at atmospheric pressure with temperature, time and
relative humidity as the process parameters. The temperature was divided into five levels
(120 ◦C to 210 ◦C), time was divided into four levels (0.5 to 3 h), and relative humidity
was divided into four levels (0 to 100%). After treatment, specimens were placed at an
ambient temperature of (20 ± 2) ◦C and relative humidity of (65 ± 3)% until reaching a
balanced moisture level. Mechanical properties were then measured by GB/T1935-2009
to GB/T1941-2009 standards. For each test, the mean of five replicates was computed,
yielding 88 sets of data in total.

To guarantee equity in model comparisons, this article uses the same training and
testing samples as those used in [23]. The first 58 samples in Table A1 in Appendix A
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formed the training set, and the last 30 samples constituted the testing set. Input data were
normalized using Equation (16) to avoid effects on training speed and prediction accuracy.

Ynorm =
(y− ymin)

(ymax − ymin)
(16)

Ynorm denotes the value of y after scaling it to a unit interval, and y is the original value.
The range of y is bounded by ymin and ymax as the lower and upper limits, respectively.

5.2. Model Parameter Setting

The IDBO-BP model was used to forecast the mechanical features and compare the
results with those of BP, TSSA-BP, GWO-BP, IGWO-BP and DBO-BP neural networks to
demonstrate its prediction capability. The upper limit of the iterations of the BP neural
network was set to 1000 with a target error of 0.0001 and a population size of 50.

5.2.1. Selection of Activation Functions

The activation function is a vital component of a neural network that determines
how the neurons produce the output from the input. The activation function gives neural
networks nonlinear modeling capabilities, allowing them to approximate complex data
and functions. The performance and convergence of neural networks depend on the choice
of activation function, so selecting a suitable activation function is a critical step in neural
network design. Four common activation functions for BP neural network models in
MATLAB are LOGSIG, TANSIG, POSLIN and PURELIN.

Table A3 in Appendix A shows the activation function combinations that minimize
the error of different models. Table A3 indicates that the optimal activation function
combination for the IDBO-BP model is LOGSIG-PURELIN for LCS, obtained via the
exhaustive method. Similarly, the optimal activation functions for other models can be
derived.

5.2.2. Determination of the Topology

The number of neurons in each layer and the connection between two adjacent layers
constitute the topology of a BP neural network model. The topology affects the neural
network’s complexity and expressiveness, which in turn influence the neural network’s
performance and convergence. Hence, selecting an appropriate topology is a crucial step in
neural network design.

Determination of the Number of Neurons in the Hidden Layer

The BP neural network model’s structure and performance depend on the number
of hidden layer neurons, a key parameter that affects the model’s fit to the data. The
optimal number of hidden layer neurons should avoid both underfitting and overfitting.
Underfitting occurs when the network has too few hidden layer neurons to capture the
data’s complex features; overfitting or gradient vanishing occurs when the network has too
many hidden layer neurons that fit the training data too closely. The number of hidden
layer neurons is not fixed but varies according to the problem’s complexity and the data’s
size. Selecting the appropriate number of hidden layer neurons is essential to enhance the
model’s generalization ability and prediction accuracy.

This paper proposes an empirical formula (Formula (17)) for estimating the number
of neurons in the hidden layer as a reference. The number of neurons in the hidden layer
varies from 2 to 7. Table A3 in Appendix A shows the neuron configurations that minimize
the error of different models. For example, Table A3 indicates that the optimal neuron
configuration for the IDBO-BP model for LCS is 2 (single hidden layer), obtained by the
trial-and-error method. Similarly, the optimal neuron configuration for other models can
be derived.

Nh =
Ns

(α× (Ni + No))
, αε[2, 7] (17)
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where Nh, Ni and No are the number of neurons in the hidden, input and output layers,
respectively, and Ns is the number of samples in the training set.

Determination of the Number of Hidden Layers

The hidden layer of a neural network enables it to process non-linearly separable data.
Without hidden layers, neural networks can only represent linearly separable functions or
decisions. The number of hidden layers and the activation function influence the neural
network’s representational power and fit. Generally, more hidden layers reduce the error
but also increase the network’s complexity and training difficulty, and they may cause
overfitting. This paper uses neural network models with single and double hidden layers
and employs different activation functions to determine the optimal network structure.

Table A3 in Appendix A shows the topologies of the different models at the error
minimum. For example, Table A3 indicates that the optimal topology for the IDBO-BP
model for TRS is 3-4-6-1, obtained via iterative attempts. Figure 8 shows the corresponding
topology schematic diagram. Similarly, the optimal topology for other models can be
derived.
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rupture strength.

5.3. Model Assessment Standards

Statistical error is commonly used to evaluate model prediction properties. Common
regression evaluation metrics include the mean absolute error (MAE), mean squared error
(MSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). MAE
reflects the discrepancy between the algorithm’s optimal value and the theoretical optimal
value. It indicates the algorithm’s exploration capability and convergence accuracy. MSE
measures the standard error between the predicted and true values, and as the standard
error lowers, the model accuracy increases. MAPE measures the relative error between the
predicted and true values as a percentage. It is useful for comparing models with different
scales of data. R2 measures the model fit to the data, and as it comes closer to 1, the model
fit becomes better, and vice versa. As it comes closer to 0, the fit becomes worse. The
equations are as follows:

MAE =
1
N

N

∑
i=1
|Yi − Zi| (18)

MSE =
1
N

N

∑
i=1

(Yi − Zi)
2 (19)
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MAPE =
1
N

N

∑
i=1

∣∣∣∣Yi − Zi
Yi

∣∣∣∣× 100% (20)

R2 = 1− ∑n
i=1(Yi − Zi)

2

∑n
i=1

(
Yi −Yi

)2 (21)

where Yi and Zi represent the true and predicted values, respectively.

5.4. Model Performance Comparison Analysis

To validate the IDBO-BP model, this paper compares it with the BP, TSSA-BP, GWO-BP,
IGWO-BP and DBO-BP models. The BP model is the original back-propagation neural
network, and TSSA-BP, GWO-BP, IGWO-BP and DBO-BP are optimized versions of BP
neural networks that incorporate the TSSA, GWO, IGWO and DBO models, respectively.
Table A4 in Appendix A shows the results. For example, using the test set for illustration,
IDBO-BP reduces MAE values of LCS, TRS, TME, RH, and TH models by 56%, 31%,
11%, 35% and 31%, respectively, and it reduces the MAPE by 57%, 45%, 38%, 38% and
38%, respectively, compared with the non-optimized BP neural network. For LCS, the
significance values of MAE and MAPE of the test set of IDBO-PB corrected with Bonferroni
are 0.002 and 0 (less than 0.05), respectively, indicating significant differences between
the IDBO-BP and BP models in predicting the mechanical properties of wood. Moreover,
compared with the BP, TSSA-PB, GWO-PB, IGWO-PB and DBO-PB models, the IDBO-PB
model’s predictions are closer to real values, indicating its superior prediction capability.
Furthermore, compared with the DBO-PB model, IDBO-PB reduces the MAE values of
the testing data of LCS, TRS, TME, RH, and TH models by 43%, 12%, 6%, 7% and 18%,
respectively; it reduces the MSE by 78%, 21%, 10%, 8% and 26%, respectively; and it reduces
the MAPE by 46%, 10%, 8%, 6% and 21%, respectively. This further verifies the effectiveness
of the improved strategy in this paper.

Table A5 in Appendix A shows the rank means and overall rankings of the Friedman
tests for the six models based on different evaluation metrics on different parameters. In
Friedman’s test, the rank mean reflects the solution quality. The rank mean is the average
of the solution rank obtained by each algorithm among all the algorithms. As the rank
increases, the solution quality increases, and the algorithm performance improves, i.e., it
comes closer to the objective function’s optimal value. Table A5 shows that IDBO-BP has the
highest ranking for all five parameters, outperforming the other models. Figure 9 illustrates
the distribution of the six models on their MAE for the LCS test set. The significance value
of the null hypothesis for the six models with the same distribution of solutions for the
MAE is 0.006, so the null hypothesis is rejected, i.e., there is a significant difference in the
solution quality of the six models for MAE, and IDBO-BP has the best performance based
on the rank mean.

Figure 10a–e compares the prediction results for five mechanical properties of wood us-
ing the IDBO-BP, DBO-BP and BP neural networks with the actual values. The results show
that the optimized BP neural networks with the DBO or IDBO models have predictions
closer to the true values, indicating that DBO or IDBO improves the BP neural network pre-
diction accuracy. Moreover, the benchmark functions show that the IDBO model performs
better than the DBO model in convergence accuracy, stability and exploration capability.
This is mainly due to several factors: (1) The IDBO algorithm initializes its dung beetle
population using PWLCM chaotic mapping, which enhances population diversity and
initial population solution quality. (2) The IDBO algorithm uses an adaptive parameter
adjustment strategy with a nonlinear decreasing producer ratio model, which improves
searchability in the early and middle stages of the algorithm and increases search range
and efficiency. (3) The IDBO algorithm optimizes location updates for small dung beetles
by applying a foraging search strategy based on dimensional learning, which balances
exploration and exploitation abilities in late iterations.
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In summary, this paper proposes an IDBO algorithm that demonstrates significant
improvements in search performance compared to other algorithms, thereby verifying the
effectiveness of the enhancement strategy. Additionally, the results demonstrate that the
presented IDBO-BP model exhibits outstanding performance in predicting wood mechani-
cal properties.

6. Conclusions

• This article proposes the IDBO algorithm to address the limitations of the DBO al-
gorithm. PWLCM mapping is employed to initialize the population and preserve
versatility. An adaptive parameter adjustment strategy is introduced to enhance search
range and efficiency. Additionally, a DLF strategy is implemented to equilibrium for
exploration and exploitation search capabilities, increasing the likelihood of escaping
local optima and improving later searchability. The performance of IDBO is evaluated
against four basic meta-heuristic algorithms, including DBO, for 14 benchmark func-
tions. The algorithms are ranked by applying the Wilcoxon signed-rank and Friedman
tests. The outcomes demonstrate that IDBO outperforms other algorithms in finding
solutions for both low- and high-dimensional functions with a single mode or multiple
modes, which verifies the effectiveness of the improvement strategy, and it is highly
competitive with other meta-heuristics.

• In this paper, five prediction models are separately developed using the IDBO-BP
model to predict the LCS, TRS, TME, RH and TH of larch wood after heat treatment
with temperature, duration and relative humidity as input variables. The outcomes
indicate that the MAE, MSE and MAPE values of the IDBO-BP model are considerably
diminished compared with the primitive BP neural network model. The results
show that optimizing neural networks model with IDBO significantly improves the
prediction accuracy of wood mechanical properties. In addition to comparing the
original BP neural network model, this paper also compares it with the TSSA-BP, GWO-
BP, IGWO-BP and DBO-BP models. The results denote that the forecast outcomes of
the IDBO-BP model are closer to the true values, indicating significant optimization
and improved prediction ability.

• This paper compares the optimal prediction models with different parameters and
their corresponding topologies and activation functions, and it shows in Table A3 that
the same model with different parameters does not necessarily have the same optimal
topology. For the LCS, TRS, TME, RH and TH of heat-treated larch wood predicted in
this paper, the five most accurate topologies of IDBO-BP that minimize the error are
3-2-1, 3-4-6-1, 3-4-1, 3-5-1 and 3-4-1, respectively.

• The Friedman test can only reflect the quality of the solution, not the diversity of the
solution. Therefore, some algorithms may have significant differences in the diversity
of solutions, but not in the quality of solutions. The Friedman test is also less robust
in some extreme cases; for example, if an algorithm obtains an exceptionally good
or bad solution, it may influence the rank and rank mean of other algorithms, thus
obscuring the differences between other algorithms. This is illustrated in Table A5.
The original BP model ranks first in MSE for both the training and test sets, which
may be more susceptible to outlier data because MSE magnifies the prediction error.
However, Table A5 also shows that, although the original BP model performs well
for MSE, its overall ranking for both the test and training sets is inferior to that of the
other five models.
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Appendix A

Table A1. Wood treatment conditions and corresponding mechanical properties.

Test
Temperature/◦C

Test
Time/h

Test
Humidity/%

Longitudinal
Compressive
Strength/MPa

Transverse
Rupture

Strength/MPa

Transverse
Modulus of

Elastic-
ity/GPa

Radial Hard-
ness/MPa

Tangential
Hard-

ness/MPa

120 0.5 0 41.9 67.4 9.093 14.12 15.56
120 0.5 40 39.8 65.3 9.038 13.02 14.69
120 0.5 60 39.7 69.7 9.1 14.67 15.08
120 0.5 100 39.5 67.2 8.845 14.65 15.45
120 1 0 39.5 67.8 8.649 13.98 14.36
120 1 40 39.5 66.4 8.752 12.98 15.59
120 1 60 39.4 67.8 9.245 13.78 15.32
120 1 100 39.2 63.1 7.895 14.55 14.23
120 2 0 39.2 66.9 9.074 13.33 14.23
120 2 40 39.1 68.2 8.945 12.55 14.58
120 2 60 39.1 65.2 8.854 13.25 14.89
120 2 100 39.1 63.2 8.933 13.36 14.56
120 3 0 39.1 66.5 8.9 13.56 14.78
120 3 40 39.1 67.6 8.963 13.45 14.45
120 3 60 38.9 66.6 8.745 13.01 14.69
120 3 100 38.9 64.2 8.745 12.45 14.78
140 0.5 0 38.9 66.7 8.978 14.69 15.56
140 0.5 40 38.9 67.5 8.845 13.06 15.02
140 0.5 60 38.7 66.8 9.155 14.02 14.23
140 0.5 100 38.7 65.3 8.877 15.02 15.01
140 1 0 38.6 66.5 9.179 14.16 15.68
140 1 40 38.6 64.5 9.137 13.05 15.01
140 1 60 38.5 67.2 9.024 13.49 15.17
140 1 100 38.5 63.1 8.823 13.45 15.48
140 2 0 38.4 66.3 8.823 13.54 14.69
140 2 40 38.4 65.7 8.852 14.69 14.58
140 2 60 38.2 67.1 8.799 13.99 14.74
140 2 100 38.2 62.7 8.9 14.28 15.63
140 3 0 38.2 65.4 8.811 14.39 14.23
140 3 40 38.2 64.6 8.934 13.23 14.56
140 3 60 38.1 65.5 8.654 14.23 13.65
140 3 100 38.1 62.1 8.798 13.56 14.02
160 0.5 0 38.1 66.3 8.788 14.89 14.99
160 0.5 40 38 66.9 9.011 14.87 14.36
160 0.5 60 37.9 66.3 8.745 14.58 14.78
160 0.5 100 37.8 65.8 8.712 14.69 15.69
160 1 0 37.8 62.4 8.679 13.42 14.56
160 1 40 37.6 61.4 8.645 14.09 15.3
160 1 60 37.6 62.2 8.798 14.69 15.9
160 1 100 37.6 62.8 8.679 13.58 15.63
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Table A1. Cont.

Test
Temperature/◦C

Test
Time/h

Test
Humidity/%

Longitudinal
Compressive
Strength/MPa

Transverse
Rupture

Strength/MPa

Transverse
Modulus of

Elastic-
ity/GPa

Radial Hard-
ness/MPa

Tangential
Hard-

ness/MPa

160 2 0 37.6 62.2 8.727 14.63 13.92
160 2 40 37.6 62.1 8.557 14.02 14.17
160 2 60 37.5 63.1 8.687 15.17 14.28
160 2 100 37.5 60.9 8.611 14.65 15.09
160 3 0 37.5 61.9 8.611 13.65 14.36
160 3 40 37.4 61.5 8.534 13.47 14.56
160 3 60 37.3 60.8 8.601 13.58 13.89
160 3 100 37.2 60.5 8.552 13.69 14.36
180 0.5 0 37.2 65.9 8.601 15.21 14.03
180 0.5 40 37.1 65.3 8.689 15.98 14.56
180 0.5 60 37.1 66.1 8.645 16.01 13.97
180 0.5 100 36.9 65.7 8.599 14.32 14.33
180 1 0 36.9 65.4 8.623 15.09 13.79
180 1 40 36.9 64.9 8.645 14.98 14.25
180 1 60 36.7 66.3 8.579 15.45 14.08
180 1 100 36.7 64.8 8.545 14.33 13.64
180 2 0 36.6 65.1 8.574 14.65 13.69
180 2 40 36.5 65.8 8.6 14.13 13.59
180 2 60 36.5 64.5 8.532 13.99 14.49
180 2 100 36.1 64.2 8.544 15.1 13.54
180 3 0 36 64.1 8.6 14.21 14.06
180 3 40 35.9 64.2 8.541 13.99 14.21
180 3 60 35.8 64.8 8.456 14.58 13.98
180 3 100 35.8 63.8 8.499 14.99 13.69
200 0.5 0 35.8 62.1 8.483 12 13.6
200 0.5 40 35.5 60.6 8.475 11.96 12.99
200 0.5 60 35.4 59.9 8.399 11.45 13.21
200 1 0 35.4 61.9 8.422 11.69 12.98
200 1 40 35.1 60.8 8.489 11.46 12.64
200 1 60 34.6 61.2 8.321 11.54 12.35
200 2 0 34.5 61.2 8.369 11.99 13.02
200 2 40 34.5 60.8 8.354 11.15 12.69
200 2 60 34.2 60.5 8.211 10.65 12.49
200 3 0 34.1 60.9 8.249 10.68 12.73
200 3 40 34.1 59.8 8.231 11.05 12.57
200 3 60 34.1 58.2 8.011 10.22 12.37
210 0.5 0 33.9 50.1 7.856 10.23 10.98
210 0.5 40 33.8 50.8 7.789 10.59 9.98
210 0.5 60 33.2 49.9 7.865 10.55 10.23
210 1 0 32.9 50.6 7.765 10.21 10.65
210 1 40 32.9 49.8 7.712 9.98 10.21
210 1 60 32.8 48.9 7.498 10.01 10.65
210 2 0 32.5 49.1 7.689 9.98 9.64
210 2 40 32.1 49.5 7.712 9.65 9.35
210 2 60 31.8 49.6 7.623 10.03 9.67
210 3 0 31.5 47.8 7.5 9.21 8.91
210 3 40 30.8 46.5 7.412 9.1 8.21
210 3 60 30.5 45.1 7.321 9.03 8.99
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Table A2. Order by Friedman test in dimensions D = 30, 50 and 100.

Alg. D F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Avg.
Rank

Overall
Rank

30 3 3 5 4.67 3.67 2.5 3 3 1.83 2.33 3 3 4.33 3.33 3.26 3
WOA 50 3 2.33 5 4.67 3.67 2.5 3 3 2.17 3.67 3 3 4.33 3.33 3.33 3

100 3 3 5 4.67 3.67 2.5 3 3 2.17 3.67 3 3 4.33 3.33 3.38 4
30 4 4 3 3 3.33 2.5 4 4 3.17 4 4 3.33 2.67 3.33 3.45 4

GWO 50 4 4 3 3 3.33 2.5 4 4 3.83 2.67 4 2.67 2.67 3.67 3.38 4
100 4 4 3 3 3.33 2.5 4 4 2.83 2.67 4 2.67 2.67 3.33 3.29 3
30 5 5 4 4.33 5 5 5 5 5 5 5 5 2.67 5 4.71 5

PSO 50 5 5 4 4.33 5 5 5 5 4.67 5 5 5 2.67 5 4.69 5
100 5 5 4 4.33 5 5 5 5 5 5 5 5 2.67 5 4.71 5
30 2 2 2 2 1.67 2.5 2 2 3.17 2.67 1.67 2.67 2.67 2.33 2.24 2

DBO 50 2 2.67 2 2 1.67 2.5 2 2 2.83 2.67 1.67 3.33 2.67 1.67 2.26 2
100 2 2 2 2 1.67 2.5 2 2 3.5 2.67 1.67 3.33 2.67 2.33 2.31 2
30 1 1 1 1 1.33 2.5 1 1 1.83 1 1.33 1 2.67 1 1.33 1

IDBO 50 1 1 1 1 1.33 2.5 1 1 1.5 1 1.33 1 2.67 1.33 1.33 1
100 1 1 1 1 1.33 2.5 1 1 1.5 1 1.33 1 2.67 1 1.31 1
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Table A3. Optimal prediction models with different parameters and the corresponding topologies and activation functions.

Parms Model Neuron
Configuration Topology Hidden and Output

Activations Train Test

MAE MSE MAPE R2 MAE MSE MAPE R2

LCS BP 2 3-2-1 LOGSIG-PURELIN 0.2206 0.0020 0.9335% 0.9770 0.1945 0.0011 0.5332% 0.9868
GWO-BP 3 3-3-1 LOGSIG-PURELIN 0.1956 0.1054 0.5263% 0.9785 0.1372 0.0724 0.4919% 0.9940
TSSA-BP 4 3-4-1 LOGSIG-TANSIG 0.1592 0.1282 0.4342% 0.9759 0.1481 0.0642 0.4270% 0.9887
DBO-BP (3, 7) 3-3-7-1 LOGSIG-PURELIN 0.1412 0.1052 0.3786% 0.9830 0.1503 0.0566 0.4260% 0.9879

IGWO-BP (2, 2) 3-2-2-1 PURELIN-LOGSIG 0.1652 0.1200 0.4449% 0.9805 0.1291 0.0345 0.3591% 0.9907
IDBO-BP 2 3-2-1 LOGSIG-PURELIN 0.1315 0.0996 0.3513% 0.9834 0.0856 0.0122 0.2286% 0.9978

TRS BP 2 3-2-1 LOGSIG-PURELIN 1.2157 0.0379 2.4030% 0.9363 1.1994 0.0753 2.4487% 0.9275
TSSA-BP 2 3-2-1 LOGSIG-PURELIN 1.2191 2.2895 1.9534% 0.9236 1.2609 2.2655 2.0291% 0.9430
GWO-BP (3, 7) 3-3-7-1 LOGSIG-PURELIN 1.1097 1.8158 1.7920% 0.9433 0.9837 1.9907 1.5331% 0.9272
IGWO-BP 3 3-3-1 LOGSIG-TANSIG 1.1020 2.2158 1.8002% 0.9310 0.9519 1.5641 1.5302% 0.9557
DBO-BP 7 3-7-1 POSLIN-PURELIN 1.0349 1.7647 1.6610% 0.9510 0.9345 1.4363 1.4881% 0.9484
IDBO-BP (4, 6) 3-4-6-1 TANSIG-PURELIN 0.9032 1.4304 1.4750% 0.9601 0.8218 1.1362 1.3392% 0.9683

TME BP 3 3-3-1 LOGSIG-PURELIN 0.1710 0.0006 2.2422% 0.8260 0.0928 0.0005 1.4955% 0.8929
GWO-BP (3, 7) 3-3-7-1 LOGSIG-PURELIN 0.0925 0.0306 1.0968% 0.8638 0.1010 0.0164 1.1576% 0.9002
TSSA-BP (2, 2) 3-2-2-1 LOGSIG-PURELIN 0.1207 0.0500 2.0647% 0.7992 0.0977 0.0158 1.1322% 0.7225
IGWO-BP 3 3-3-1 LOGSIG-PURELIN 0.1144 0.0324 1.3611% 0.8424 0.0923 0.0155 1.0797% 0.9018
DBO-BP (3, 7) 3-3-7-1 LOGSIG-PURELIN 0.1024 0.0273 1.2126% 0.8658 0.0879 0.0127 1.0182% 0.9053
IDBO-BP 4 3-4-1 POSLIN-PURELIN 0.0849 0.0266 1.0132% 0.8743 0.0824 0.0115 0.9340% 0.9156

RH BP (5, 6) 3-5-6-1 POSLIN-PURELIN 0.4763 0.0049 3.5198% 0.9249 0.4963 0.0078 3.8911% 0.8986
TSSA-BP (3, 7) 3-3-7-1 LOGSIG-PURELIN 0.4205 0.3300 4.1028% 0.8901 0.3919 0.3644 3.8402% 0.9023
GWO-BP 5 3-5-1 POSLIN-PURELIN 0.4009 0.2375 2.9805% 0.9233 0.5008 0.3834 3.8098% 0.8785
IGWO-BP (4, 6) 3-4-6-1 TANSIG-PURELIN 0.4256 0.2896 3.2035% 0.9107 0.4095 0.2953 3.0822% 0.8975
DBO-BP 2 3-2-1 TANSIG-PURELIN 0.3928 0.2466 2.9423% 0.8985 0.3478 0.2053 2.5616% 0.9285
IDBO-BP 5 3-5-1 POSLIN-PURELIN 0.3353 0.2122 2.5198% 0.9372 0.3236 0.1889 2.4020% 0.9458

TH BP (7, 5) 3-7-5-1 LOGSIG-LOGSIG 0.3850 0.0024 2.8660% 0.9412 0.4308 0.0073 3.4057% 0.8996
GWO-BP 2 3-2-1 LOGSIG-PURELIN 0.2857 0.2283 2.8154% 0.9615 0.3720 0.2421 3.0862% 0.8625
TSSA-BP (4, 6) 3-4-6-1 TANSIG-PURELIN 0.3743 0.2175 2.8032% 0.9354 0.3839 0.2201 2.9423% 0.8896
IGWO-BP 4 3-4-1 TANSIG-PURELIN 0.3156 0.1671 2.3664% 0.9566 0.3824 0.2373 2.9295% 0.8899
DBO-BP (7, 5) 3-7-5-1 LOGSIG-LOGSIG 0.3335 0.1700 2.4652% 0.9532 0.3604 0.2092 2.6622% 0.8996
IDBO-BP 4 3-4-1 TANSIG-PURELIN 0.2611 0.1249 1.9515% 0.9676 0.2962 0.1544 2.1062% 0.9399
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Table A4. Pairwise comparisons of the prediction performance of different models with IDBO-BP.

Parms Sample1-Sample 2 Train Test

MAE Adj. Sig.a MSE Adj. Sig.a MAPE Adj. Sig.a R2 Adj. Sig.a MAE Adj. Sig.a MSE Adj. Sig.a MAPE Adj. Sig.a R2 Adj. Sig.a

LCS IDBO-BP-DBO-BP 6.85% 0.743 5.32% 1 7.22% 0.003 −0.05% 0.051 43.07% 0.436 78.44% 0.743 46.35% 0.007 −1.00% 0.743
IDBO-BP-IGWO-BP 20.40% 1 17.05% 1 21.05% 0.011 −0.30% 0.269 33.71% 0.954 64.60% 0.954 36.35% 0.007 −0.71% 0.954
IDBO-BP-GWO-BP 32.76% 0.572 5.52% 1 33.25% 0.001 −0.50% 1 37.65% 0.068 83.14% 0.132 53.53% 0.001 −0.38% 0.011
IDBO-BP-TSSA-BP 17.38% 1 22.32% 1 19.10% 0.096 −0.77% 0.945 42.21% 1 80.98% 1 46.47% 0.016 −0.92% 0.572

IDBO-BP-BP 40.38% 0.005 −4858.66% 0.068 62.37% 0 −0.66% 0.103 56.00% 0.002 −1016.77% 0.329 57.13% 0 −1.11% 0.002
TRS IDBO-BP-DBO-BP 12.73% 0.44 18.94% 1 11.20% 1 −0.96% 0.556 12.06% 0.428 20.89% 1 10.01% 1 −2.10% 0.185

IDBO-BP-IGWO-BP 18.04% 0.269 35.45% 1 18.06% 1 −3.13% 0.269 13.67% 0.945 27.36% 1 12.48% 1 −1.32% 0.638
IDBO-BP-GWO-BP 18.61% 0.945 21.22% 1 17.69% 1 −1.79% 1 16.46% 0.061 42.92% 1 12.65% 1 −4.43% 0.02
IDBO-BP-TSSA-BP 25.92% 0.035 37.52% 1 24.49% 1 −3.96% 0.945 34.83% 0.035 49.85% 1 34.00% 0.572 −2.68% 1

IDBO-BP-BP 25.71% 0.001 −3676.83% 0.001 38.62% 0.096 −2.55% 0.103 31.48% 0.006 −1409.50% 0 45.31% 0.002 −4.41% 0.061
TME IDBO-BP-DBO-BP 17.08% 0.794 2.37% 1 16.44% 0.164 −0.98% 0.393 6.20% 0.132 9.71% 0.572 8.27% 0.005 −1.13% 1

IDBO-BP-IGWO-BP 25.75% 0.269 17.97% 1 25.56% 0.42 −3.79% 0.269 10.66% 0.572 25.86% 1 13.49% 0.954 −1.53% 1
IDBO-BP-GWO-BP 8.13% 0.945 13.07% 1 7.62% 0.42 −1.22% 1 18.36% 0.002 29.85% 0.034 19.31% 0.181 −1.71% 0.007
IDBO-BP-TSSA-BP 29.62% 0.035 46.76% 1 50.93% 0.035 −9.40% 0.945 15.60% 0.096 27.14% 0.246 17.50% 0.181 −26.72% 0.181

IDBO-BP-BP 50.33% 0.001 −4103.20% 0.023 54.81% 0.001 −5.86% 0.103 11.15% 0.181 −2041.22% 0.436 37.55% 0 −2.54% 0.068
RH IDBO-BP-DBO-BP 14.63% 0.361 13.98% 1 14.36% 1 −4.30% 0.185 6.97% 1.000 8.00% 1 6.23% 1 −1.86% 0.119

IDBO-BP-IGWO-BP 21.21% 0.269 26.72% 1 21.34% 1 −2.90% 0.269 20.99% 1 36.03% 1 22.07% 1 −5.38% 0.638
IDBO-BP-GWO-BP 16.36% 0.945 10.65% 1 15.46% 1 −1.50% 1 35.40% 1 50.74% 1 36.95% 1 −7.67% 0.02
IDBO-BP-TSSA-BP 20.25% 0.035 35.70% 0.572 38.58% 1 −5.29% 0.945 17.44% 0.096 48.18% 0.954 37.45% 0.572 −4.82% 1

IDBO-BP-BP 29.60% 0.001 −4200.16% 0.016 28.41% 0.048 −1.32% 0.103 34.80% 1.000 −2308.90% 0.005 38.27% 0.011 −5.26% 0.061
TH IDBO-BP-DBO-BP 21.71% 0.7 26.50% 1 20.84% 0.087 −1.50% 0.556 17.83% 0.366 26.17% 1 20.88% 0.151 −4.48% 0.113

IDBO-BP-IGWO-BP 17.27% 0.269 25.22% 1 17.53% 0.42 −1.14% 0.269 22.56% 0.945 34.92% 1 28.10% 1 −5.62% 0.638
IDBO-BP-GWO-BP 8.62% 0.945 45.27% 1 30.68% 0.42 −0.63% 1 20.39% 0.061 36.20% 1 31.75% 0.035 −8.97% 0.02
IDBO-BP-TSSA-BP 30.25% 0.035 42.55% 1 30.38% 0.035 −3.44% 0.945 22.87% 0.035 29.84% 1 28.42% 0.061 −5.64% 1

IDBO-BP-BP 32.18% 0.001 −5117.57% 1 31.91% 0.001 −2.80% 0.103 31.25% 0.006 −2013.85% 1 38.16% 0 −4.48% 0.061

Each row compares sample 1 with sample 2 and calculates the percentage by which sample 1 reduces the error based on sample 2 (a negative sign indicates the percentage by which R2

increases). Asymptotic significances (2-sided tests) are displayed. The significance level is 0.050. a Significance values have been adjusted with the Bonferroni correction for multiple tests.
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Table A5. Model ranking by parameters and evaluation metrics with Friedman test.

Parms Model Train Test Avg. Rank Overall Rank

MAE MSE MAPE R2 MAE MSE MAPE R2 Include
MSE

Exclude
MSE

Include
MSE

Exclude
MSE

LCS BP 5 1 5.42 2.17 4.83 1 5.08 2.25 2.24 2.65 5 6
TSSA-BP 2.67 4 3.08 3.92 3.25 4.08 3.5 3.58 1.64 0.83 2 2
GWO-BP 3.83 4.5 4.08 3.33 4.08 4.75 4.08 2.58 2.43 1.69 6 5
IGWO-BP 3.5 4.42 3.58 3.33 3.33 4.17 3.67 3.75 1.95 1.17 3 3
DBO-BP 3.75 3.92 3.83 3.67 3.58 4.25 3.67 3.67 1.96 1.25 4 4
IDBO-BP 2.25 3.17 1 4.58 1.92 2.75 1 5.17 0.29 −0.60 1 1

TRS BP 3.25 1 5.17 3.25 4 1 5.08 2.92 1.67 1.89 4 6
TSSA-BP 4.08 4.33 3.5 3 3.92 4.25 3.75 3.33 2.19 1.49 6 5
GWO-BP 4.17 4.25 3.83 3.17 3.58 4.08 3.42 3.58 2.07 1.38 5 4
IGWO-BP 2.83 3.75 2.67 4.33 3.5 4 3.25 3 1.58 0.82 2 2
DBO-BP 3.17 3.58 2.75 3.67 3.5 3.92 3.33 3.42 1.65 0.94 3 3
IDBO-BP 3.5 4.08 3.08 3.58 2.5 3.75 2.17 4.75 1.34 0.49 1 1

TME BP 4.08 1 4.75 3.83 4.67 1 5.08 2.83 1.74 1.99 3 6
TSSA-BP 3.58 3.75 3.17 3.67 3.83 4.5 3.5 3.08 1.95 1.22 4 3
GWO-BP 3.17 4.67 3.67 2.5 3.67 5 4.33 2.33 2.46 1.67 6 5
IGWO-BP 3.25 4 3 3.75 3.33 3.58 3 4 1.55 0.81 2 2
DBO-BP 3.75 4.17 3.5 3.25 3.75 4.25 3.5 3.75 1.99 1.25 5 4
IDBO-BP 3.17 3.42 2.92 4 1.75 2.67 1.58 5 0.81 0.07 1 1

RH BP 4.58 1 5.08 3.42 5.17 1 5.25 3.75 1.86 2.15 4 6
TSSA-BP 3.17 5.08 3.75 2.33 3 5.17 4.25 2.08 2.50 1.63 6 5
GWO-BP 3.5 3.83 3.08 3.42 2.92 3.5 3 3.58 1.60 0.92 3 3
IGWO-BP 3.5 4.08 3.25 3.58 3.92 4.25 3.42 3.67 1.90 1.14 5 4
DBO-BP 3.25 3.5 3 4 2.92 3.33 2.42 3.83 1.32 0.63 2 2
IDBO-BP 3 3.5 2.83 4.25 3.08 3.75 2.67 4.08 1.31 0.54 1 1

TH BP 4.08 1 4.75 2.08 4.17 1 4.33 2.25 1.88 2.17 4 6
TSSA-BP 4.17 4.5 3.92 3 3.83 4.08 3.08 3.33 2.16 1.45 5 4
GWO-BP 3.33 3.83 3 3.67 3.92 4.17 3.75 3.58 1.84 1.13 3 3
IGWO-BP 3.83 4.42 3.58 3.08 4.08 4.5 4 3.17 2.27 1.54 6 5
DBO-BP 3.42 3.67 3 4 2.58 3.42 2.42 3.83 1.34 0.60 2 2
IDBO-BP 3.17 3.58 2.75 3.47 2.42 3.43 2.45 3.99 1.29 0.56 1 1

For comparison purposes, R2 is taken as a negative value when calculating the average and overall rankings.
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