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Abstract: Soil bacterial and fungal communities play different roles in maintaining the ecosystem
structure and functions. However, these differences, which are related to soil depths, remain unclear
and are the subject of this study. We selected six sample plots (20 m × 50 m) in a natural Picea
crassifolia forest in an alpine meadow to determine the vertical patterns (0~10 cm, 10~20 cm, 20~30 cm,
and 30~50 cm) of soil bacterial and fungal communities, and to predict their potential functions. The
phyla Verrucomicrobia, Acidobacteria, and Proteobacteria dominated the soil bacteria, with more
than 50% of the relative abundance, while the fungi Basidiomycota and Ascomycota dominated the
soil fungi. The potential functions of bacteria, including metabolism and transcription, increased
with soil depth, and corresponded to specific bacterial taxa. The functional guilds of fungi, including
endophytes, arbuscular mycorrhiza, and ectomycorrhiza, did not change with soil depth. The
structural equation modeling analysis revealed that soil organic carbon (SOC) and pH were the key
drivers shaping the soil bacterial communities and potential functions in the 0–50 cm soil layer. SOC
was also a key driver of soil fungal α diversity. The sample plot, namely, its geographic locations,
was another key driver shaping soil fungal β diversity and potential functions, but soil depth was
not. Our results differentiate the importance of SOC and geographic location in shaping soil bacterial
and fungal communities, respectively, and indicate that examining soil microbial composition and
corresponding functions concomitantly is important for the maintenance and management of forest
ecosystem functions.

Keywords: soil profile; fungal diversity; bacterial composition; potential functions; alpine forest

1. Introduction

Soil bacteria and fungi are crucial decomposers that regulate the ecosystem structure
and function [1], as they are important for organic matter decomposition and soil structure.
Soil microorganisms are sensitive to changes in external environments, and it has been
reported that they are influenced by vegetation types and diversity [2], elevation [3], and
soil physical and chemical properties [4]. Notably, soil microbial community composition
and functions, such as carbohydrate metabolism and transcription, are stable characteristics
in a natural, undisturbed ecosystem. The main influence on the structure of soil microbial
communities are the microenvironmental properties of their habitats, including organic
matter, bulk density, soil nutrients, and pH. These variables change with soil depth [5–7];
consequently, soil microbial communities and soil properties usually display covariational
vertical patterns along soil depths.
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Recent studies have focused on the vertical patterns of soil microbial communities
along soil depths [8–10]. Generally, soil microbial biomass and diversity, including bacteria
and fungi, decrease with an increase in soil depth [9,10]. For example, the soil bacteria
Cyanobacteria, Planctomycetes, and Proteobacteria are more abundant [10–12], and soil
fungal biomass and diversity are greater [13,14] in surface soil than in subsoils. In addition,
the vertical patterns of soil bacteria and fungi at the kingdom, family, or phylum levels are
related to soil depth. The abundance of copiotrophic bacteria is substantially greater than
oligotrophic bacteria in the organic soil layer [15]. Furthermore, soil microbial communities
are affected mainly by soil matter content in the topsoil (0~10 cm), but are affected mainly
by processes of soil development in deeper layers [16]. Therefore, specific bacterial taxa
have exhibited different responses to soil depth; however, the soil microbial taxa and their
drivers along soil depths remain unclear.

A global analysis of terrestrial ecosystems reported that up to 60% of the soil microbial
biomass is stored in deep soils [17]. Soil microbial communities in deep soil layers generally
play key roles in nutrient cycling [8], as the priming effect and enzymatic activities of the
microbial community increase with soil depths [18]. Therefore, soil microbial communities
at different soil depths also show distinct potential roles in regulating the ecosystem
structure and functions.

The main soil microbial taxa are bacteria and fungi, and they display different re-
sponses and potential functions because of their capacity to adapt to the microenvironment
along soil depths. In general, soil bacteria have a relatively narrow tolerance to changes
in soil pH [19,20], whereas soil fungi tolerate a much wider soil pH range [21]. Also, soil
fungi have lower nitrogen (N) requirements than bacteria [22]; thus, the fungi to bacteria
ratio increases in subsoil with low C and N availability [6]. Moreover, soil bacteria require
abundant nutrients, while fungi survive in soils with low available nutrients [23]. These
key variables (soil pH and nutrient contents) change substantially with soil depth and
are drivers of soil bacterial and fungal communities. In addition, some soil bacteria and
fungi are involved in distinct ecological functions. For example, the soil bacteria Verru-
comicrobia and Euryarchaeota are responsible for anaerobic processes (anaerobic methane
oxidization and methanogenesis) related to soil microbial metabolism [24,25]. Soil fungi
are decomposers of dead and living organic material, and some functional guilds (e.g.,
mycorrhizal fungi) form beneficial associations with plant species. Additionally, some
fungi are important plant or animal pathogens [26]. Therefore, the functional guilds of
fungi are vital in maintaining soil health and ecosystem stability. However, the dynamics
of specific groups of microorganisms along soil depths and their ecological functions are
uncertain. For example, analyses of soil microbial communities are generally based on
phospholipid fatty acid, without information on the specific taxa [17,27,28].

Alpine forests in the Qinghai–Tibetan Plateau have important ecological functions,
including erosion prevention, sand-fixing, and carbon storage. A detailed understanding
of soil microbial communities and ecological functions along soil depths would promote
the protection and maintenance of forest soils and forest ecosystem functions. In this study,
we used high-throughput sequencing techniques to examine the shifts in soil bacterial
and fungal communities along a soil depth gradient in a Picea crassifolia forest. We aimed
to determine: (1) the vertical patterns of soil bacterial and fungal communities and their
potential functions from 0 to 50 cm soil depth; and (2) the key factors shaping soil bacterial
and fungal communities.

2. Material and Methods
2.1. Study Area

The study site was located in the Beishan National Forest Park (36◦42′–37◦06′ N,
102◦00′–102◦43′ E), Huzhu County, at the junction of the Qinghai–Tibetan Plateau and
Loess Plateau. This region has a typical plateau continental climate with distinct cold
and warm and wet and dry seasons. The mean annual air temperature is 3.4 ◦C, and the
mean daily air temperature of the coldest month, January, is −8 ◦C and of the warmest



Forests 2023, 14, 1016 3 of 17

month, July, is 16 ◦C. The average annual precipitation is 400~500 mm, with more than 70%
occurring between June and September. Cold temperate coniferous forests, dominated by
Picea crassifolia, are the main forest type. The study area consisted of natural P. crassifolia
forests at the middle of succession with a mean canopy density of 0.68 and a mean tree
layer height of 14.2 m. The plants Potentilla fruticose and Polygonumb viviparum were the
dominant shrub and grass species of the forests. The soil type was classified as haplic
Luvisol according to the FAO taxonomy [29]. More details are presented in Table 1.

Table 1. Geographical and plant community characteristics in the Picea crassifolia forest of six
sampling plots.

Sample
Site

Geographical
Location

Altitude
(m)

Canopy
Density

(%)
Number
of Trees

Mean
Forest
Height

(m)

Mean
Forest
DBH
(cm)

Tree
Biomass
(t·ha−1)

Shrub
Biomass
(t·ha−1)

Herb
Biomass
(t·ha−1)

Litter
Biomass
(t·ha−1)

Plot A 36◦52′13.80′′ N
102◦26′36.60′′ E 2835 70 112 6.44 11.6 115.95 0.82 0.51 8.53

Plot B 36◦52′16.20′′ N
102◦26′36.60′′ E 2817 60 89 6.98 11.6 40.63 1.22 0.72 0.99

Plot C 36◦52′16.20′′ N
102◦26′40.80′′ E 2816 80 88 6.48 10.9 32.62 0.72 0.64 1.37

Plot D 36◦52′22.80′′ N
102◦26′34.20′′ E 2815 65 102 7.88 12.6 73.53 0.36 0.26 1.09

Plot E 36◦52′24.00′′ N
102◦26′36.00′′ E 2847 70 89 6.46 13.5 41.28 0.17 0.62 1.80

Plot F 36◦52′24.00′′ N
102◦26′31.80′′ E 2795 64 90 8.14 10.6 88.43 0.50 0.34 0.78

DBH: Diameter at breast height.

2.2. Experimental Design, Plant and Soil Sampling

To minimize the influence of plant species on the soil microbial community, we
selected six plots (each 20 m × 50 m, and labelled Plot A, Plot B, Plot C, Plot D, Plot E, and
Plot F; Table 1) in the P. crassifolia forest, with a distance of 500 m to 2000 m between any two
plots. This distance ensured that each plot was independent to avoid pseudo-replication.
We surveyed all woody stems with a diameter greater than 1 cm at breast height (DBH)
and calculated the above-ground biomass of the tree layer. Five quadrats (1 m × 1 m) were
selected randomly in each plot to measure the understory (shrub, herb, and litter) biomass.
In July, five soil samples (5 cm diameter) to a depth of 50 cm were collected randomly from
each quadrat along a soil depth gradient (0~10 cm, 10~20 cm, 20~30 cm, and 30~50 cm).
The surface forest soils were easily affected by the external disturbance, and we sampled
the soil each 10 cm up to 30 cm soil layer. The deeper soils were affected very little by
external disturbance, and therefore we sampled the 20 cm layer. Additionally, the soil
biotic and nutrient contents were also relatively stable in the deep soil layer. The samples
were sieved through a 2 mm mesh to remove rocks, roots, and debris. Part of each soil
sample was stored at −80 ◦C for DNA extraction, and the rest of the sample was air-dried
for analysis of physical and chemical properties.

2.3. Soil Bacteria and Fungi Analysis

Total DNA was extracted from each soil sample (0.25 g) using the MoBio PowerSoil
DNA Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) according to the manufacturer’s
instructions. The concentration and quality of DNA were determined using a NanoDrop
2000c spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The PCR
amplification, Illumina MiSeq sequencing and processing of sequenced data are detailed in
the supplements [30–32]. In summary, the number of reads of each sample at the whole
soil depths was in a band of 29,417–124,146, which is sufficient for our analysis (Figure S1).
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2.4. Data Analyses

Potential microbial biomarkers along soil depths were obtained using the linear dis-
criminant analysis (LDA) effect size (LEfSe) method (http://huttenhower.sph.harvard.
edu/lefse/, accessed on 20 March 2023) [30], as described by Zhou et al. [33].

The Kyoto Encyclopaedia of Genes and Genomes (KEGG), using 16S rRNA gene
sequences by the Tax4fun package in R 3.5.1 [34], determined the potential functions of the
bacteria. The functional guilds of fungi were determined using ‘FUNGuildR’ package [35].

To control the random effects of the six plots, we initially analyzed the effects of plots
on soil physical and chemical properties and microbial α diversity (operational taxonomic
units—OTUs and Chao1, PD, and Shannon–Wiener indices) using linear mixed-effects
models (Table S1). Then, the fixed effects of soil depth on soil physicochemical properties
and microbial α diversity were analyzed by one-way ANOVA with LSD tests, accepting
p < 0.05 as the level of significance. The data were transformed to meet the assumptions
of normal distribution and homogeneity for ANOVA. The β diversities of the bacterial
and fungal communities along the soil’s depth were determined by constrained principal
co-ordinates analysis (CPCoA) based on Bray–Curtis distances.

Redundancy analysis (RDA) tested the relationships among soil properties and soil
microbial communities according to the first axis lengths of detrended correspondence
analysis (DCA). Soil properties that affected the soil microbial communities were selected to
build the RDA model using the ‘step’ function in the stats R package. The canonical analysis
of principal coordinates (CAP) constrained soil depths and sample plots, and selected soil
properties using the ‘capscale’ function in the vegan R package [10] to determine key factors
driving soil bacterial and fungal communities.

According to the CAP results, a structural equation model (SEM) was generated to
determine the pathways of the effects of soil depth on soil bacteria and fungi diversities
and functions using Amos version 23.0 (Amos Development, Spring House, Armonk,
NY, USA). In the SEM analysis, the soil microbial diversity and functions were presented
by the first principal components (PC1) for bacterial diversity, fungal diversity, bacterial
function, and fungal function, which explained 77.3%, 69.9%, 71.8%, and 43.4% of the total
variance, respectively. Because only 43.4% of the variance of fungal function PC1 was
explained, a second principal component (fungal function PC2) was added in the SEM
analysis, which increased the explanation to 74.4%. The maximum likelihood estimation
method was applied to the SEM, and the goodness of fit of the models was determined by
chi-square (χ2), the Akaike information criterion (AIC), and the root mean square error of
approximation (RMSEA).

3. Results
3.1. Soil Microbial Composition

Bacterial phyla Verrucomicrobia, Acidobacteria, and Proteobacteria dominated all
soil depths with relative abundances of 63.3%, 64.7%, 59.0%, and 55.3% at the 0~10 cm,
10~20 cm, 20~30 cm, and 30~50 cm soil layers, respectively (Figure 1a, Table S1). The
phyla Proteobacteria, Planctomycetes, and Bacteroidetes decreased, while Crenarchaeota
increased with an increase in soil depth (Figure 1a, Table S1).

Fungi were dominated by the phyla Basidiomycota and Ascomycota (Figure 1b).
Basidiomycota was the most abundant fungi across all soil depths, with average relative
abundances of 32.3%, 37.8%, 31.5%, and 36.3% at the 0~10 cm, 10~20 cm, 20~30 cm, and
30~50 cm soil depths, respectively (Figure 1b, Table S1). Ascomycota displayed a decreasing
trend with soil depths, but overall, there was no difference in the relative abundances of
Basidiomycota and Ascomycota among soil depths (Figure 1b, Table S1). The relative
abundance of Zygomycota was less than 0.1%, and decreased from 0.092% in 0~10 cm to
0.016% in 30~50 cm (Figure 1b, Table S1).

http://huttenhower.sph.harvard.edu/lefse/
http://huttenhower.sph.harvard.edu/lefse/
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were in the 0~10 cm soil layer, and included the families Hyphomonadaceae, Acetobac-
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Figure 1. Phyla composition of the (a) bacteria and (b) fungi for different soil depths of the natural
Picea crassifolia forest in the Qinghai–Tibet Plateau. P1, P2, P3, and P4 represent the soil depths of
0–10 cm, 10–20 cm, 20–30 cm, and 30–50 cm, respectively.

Linear discriminant analysis (LDA) effect size (LEfSe) analyses revealed that 16 bac-
terial clades were biomarkers of the four soil layers (Figure 2a). Ten of these biomarkers
were in the 0~10 cm soil layer, and included the families Hyphomonadaceae, Acetobacter-
aceae, Erythrobacteraceae, and Nannocystaceae; genera Caulobacter and Dokdonella; family
Actinosynnemataceae; genus Adhaeribacter; genus Rhodocytophaga; and order Gemmati-
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monadales. In addition, only two, one, and three clades were enriched in the 10~20 cm,
20~30 cm, and 30~50 cm soil layers, respectively. The genera Chondromyces and 125ds10
(family Proteobacteria) were the biomarkers of the 10~20 cm soil layer, the order SB-34
was the biomarker of the 20~30 cm soil layer, and the order E2, the genus Sedimentibacter
and the family Tissierellaceae (phylum Firmicutes) were the biomarkers of the 30~50 cm
soil layer.
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Figure 2. LEfSe analysis of the abundance of (a) bacteria and (b) fungi at different soil depths in the
natural Picea crassifolia forest.

As for the fungal community (Figure 2b), seven clades were biomarkers of the four soil
layers. The genus Capronia, orders Agaricostilbales, and Zygomycota, family Endogonaceae,
genus Endogone, family Mucoraceae, and genus Mucor were the biomarkers of the 0~10 cm
soil layer; order Helotiales was the biomarker of the 20~30 cm soil layer; and the genus
Stagonosporopsis was the biomarker of the 30~50 cm soil layer.

3.2. Soil Microbial Community Diversity

Soil bacterial α diversity, including the number of OTUs and Chao1, PD, and Shannon–
Wiener indices, decreased significantly with soil depths. Soil fungal α diversity also
decreased with soil depths, but the indices of PD and Shannon–Wiener were not significant
(Tables S1 and 2).
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Table 2. Soil microbial α diversity indices at different soil depths.

Microbial Taxa Soil Depth OTUs 1 Chao1 PD Shannon–Wiener

Bacteria

0–10 cm 2703 ± 86 a 4806 ± 158 a 160.2 ± 5.18 a 9.04 ± 0.24 a

10–20 cm 2543 ± 69 b 4602 ± 137 ab 151.6 ± 4.89 b 8.73 ± 0.15 b

20–30 cm 2451 ± 92 b 4502 ± 170 b 149.3 ± 4.62 b 8.61 ± 0.19 bc

30–50 cm 2247 ± 139 c 4223 ± 208 c 139.8 ± 5.89 c 8.35 ± 0.28 c

Fungi

0–10 cm 965 ± 68 a 1577 ± 108 a 215.9 ± 19.22 a 6.17 ± 0.27 a

10–20 cm 907 ± 107 ab 1494 ± 120 ab 212.6 ± 29.13 a 5.90 ± 0.86 a

20–30 cm 851 ± 99 ab 1392 ± 145 bc 224.5 ± 43.64 a 5.65 ± 0.84 a

30–50 cm 797 ± 74 b 1330 ± 76 c 197.6 ± 35.19 a 5.31 ± 0.94 a

1 OTUs means the number of operational taxonomic units. Means with different lowercase letters among soil
depths amd among microbial taxa differ from each other (p < 0.05).

Based on Bray–Curtis distances and the CPCoA analysis, β diversity of the soil bac-
terial communities differed (p = 0.001) among depths (Figure 3). This analysis explained
19.6% of the variance (Figure 3a), while the effect of soil depth attributable to the sampling
site was not significant (Figure 3b, p = 0.13). Moreover, the soil bacterial communities in
the 0~10 cm and 10~20 cm layers were divergent in a similar manner from the community
in the 30~50 cm layer (separation by the second component, Figure 3a).
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The CPCoA analysis on soil fungal communities along soil depths explained only
13.2% of the variance, and was not significant (Figure 3c, p = 0.41); however, when plots
were included, this analysis explained 32.3% of the variance (Figure 3d, p < 0.001).

3.3. Functional Potentials of Soil Microbial Communities

The functions of the bacterial communities were predicted using the Tax4Fun approach
(Figure 4a). The predicted functions at all soil depths were dominated by metabolism-
related pathways, especially of carbohydrates (average 13.2%), nitrogen such as amino
acids (average 12.0%), and nucleotides (average 4.83%). Other dominant KEGG categories
included membrane transport (average 13.0%) and signal transduction (average 8.34%).
Among these categories, pathways involved in the metabolism of co-factors and vitamins
(average 6.66%) and transcription increased with soil depth (Figure 4a,b). In contrast,
pathways of cellular community-eukaryotes and signaling molecules decreased with soil
depth (Figure 4d,e).
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Figure 4. Relative abundance of the predicted KEGG categories along a soil depth gradient in the
natural Picea crassifolia forest in the Qinghai–Tibetan Plateau; all functions (a), metabolism of cofactors
and vitamins (b), transcription (c), cellular community—eukaryotes (d) and signaling molecules and
interaction (e). P1, P2, P3, and P4 represent the soil depths at 0–10 cm, 10–20 cm, 20–30 cm, and
30–50 cm, respectively.

There was no significant difference in the endophytes, arbuscular mycorrhiza,
ectomycorrhiza, and undefined saprotrophs along the soil depth gradient (Figure 5a;
Table S1). The fungal guilds differed markedly among the six plots in the 0–50 cm soil layer
(Figure 5b). In the identified fungal guilds, endophytes accounted for more than 40% of the
guilds in plots A, B, and D, while the arbuscular mycorrhizal guilds dominated in the other
three plots. There was no ectomycorrhizal guild in plots B, C, and D (Figure 5b).
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Figure 5. The proportion of operational taxonomic units (OTUs) assigned to guilds along a soil
depth gradient (a) and among six sampling sites (b) in the natural Picea crassifolia forest in the
Qinghai–Tibetan Plateau.

3.4. Factors Related to Soil Microbial Communities

Based on the canonical analysis of principal coordinates (CAP), soil depth was the
most dominant factor driving soil bacterial communities (p = 0.001), explaining 23.7% of
the variation, followed by plot (p = 0.016) (Table 3). Soil organic carbon (SOC) was also
significant (p = 0.019) and explained 7.28% of the variation. For soil fungal communities,
plot was significant (p = 0.001) and explained 40.2% of the variation, followed by soil depth
(p = 0.015), which explained 13.9% of the variation (Table 3).

Table 3. The β diversity in soil bacterial and fungal community composition among soil depths and
among plots based on the CAP analysis.

Factor

Bacterial Communities Fungal Communities

df SS 1 F p Explained
Variation df SS 2 F p Explained

Variation

Soil depth 3 0.298 2.574 0.001 23.7% 3 0.896 1.544 0.015 13.9%
Sample plot 5 0.308 1.595 0.016 24.4% 5 2.599 2.685 0.001 40.2%
Soil organic

carbon 1 0.092 2.374 0.019 7.28% 1 0.250 1.291 0.148

Soil pH 1 0.060 1.560 0.132 1 0.180 0.925 0.578
Residual 13 0.502 15 2.516

1 Sum of squares, 2 Sum of squares.

3.5. The Pathways Determining Soil Microbial Diversity and Functions

Based on the CAP results, soil pH and soil organic carbon (SOC) were the important
soil properties driving soil microbial communities and dominant functions. Therefore,
the two soil properties were included in the SEM analysis, which revealed the different
pathways of soil depths on soil bacterial and fungal diversity and functions through soil
pH and SOC (Figure 6).
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Figure 6. The pathways of the effects of soil depth on soil bacterial community diversity and function
(a), and fungal community diversity and function (b) through the selected soil properties based
on structure equation modelling (SEM). Single-headed arrows indicate the direction of causation,
and double-headed arrows represent covariance between related variables. The red and blue lines
indicate significantly positive and negative pathways, respectively (p < 0.05). The black dashed lines
represent non-significant pathways (p > 0.05). The standardized path coefficients and the proportion
of variance explained (R2) are presented adjacent to the arrows and alongside each response variable
in the model, respectively.

Soil depth increased soil pH directly but decreased SOC, and, thus, had the most
negative effect on soil bacterial diversity (r = −0.767), followed by soil pH (r = −0.518). The
SOC had the greatest positive effect on soil bacterial diversity (r = 0.429). Soil function was
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affected directly by soil depth (r = 0.806), followed by SOC (r = 0.601) and soil pH (r = 0.278).
The total effects of plot on soil bacterial diversity and function were less than soil depths,
soil pH, and SOC (Figure 6a; Table 4). Overall, the four variables explained 74% and 54% of
the total variance in soil bacterial diversity and function, respectively (Figure 6a).

Table 4. The pathways of soil depth on soil microbial diversity and function based on the structural
equation model (SEM) analysis.

Variables
Bacterial
Diversity

PC1

Bacterial
Function

PC1

Fungal
Diversity

PC1

Fungal
Function

PC1

Fungal
Function

PC2

Soil depth Direct effects 0.806 0.473
Total effects −0.767 0.579 −0.469 0.301 −0.292

Sampling
plot

Direct effects −0.195 −0.333 0.404
Total effects −0.219 0.277 0.194 −0.222 0.123

Soil pH Direct effects −0.518 0.278 0.357 −0.906
Total effects −0.518 0.278 0.357 −0.906

Soil organic
carbon

Direct effects 0.429 0.601 0.609
Total effects 0.429 0.601 0.609

Soil depth affected soil fungal diversity and the four functions, including fungal
function PC1 and PC2. The SOC was the most dominant factor (r = 0.609) affecting soil
fungal diversity, followed by soil depth (r = −0.469), while soil pH was the most dominant
factor affecting soil fungal function PC1 (r = 0.357) and fungal PC2 (r =−0.906), followed by
soil depth (r = 0.301 and −0.292, respectively). The effect of plot on soil fungal function was
direct but not significant (p > 0.05), and its total effects were mainly via soil pH. Although
the effect of sample plot was non-significant, it is worth noting that the total effects of plot
and soil depth on soil fungal diversity and functions were opposite (Figure 6b; Table 4).

4. Discussion
4.1. Soil Bacterial Community with Soil Depths

This study demonstrated that three dominant soil bacteria phyla—Proteobacteria,
Acidobacteria, and Verrucomicrobia—accounted for greater than 50% of the relative abun-
dance in the four soil depths, owing to their wide range of adaptability. The dominance
of Proteobacteria and Acidobacteria is common in forest soils [4,15]. Acidobacteria has
a wide phylogenetic diversity, spanning 26 subdivisions [36]. Its genomic, physiologi-
cal, and metabolic versatilities allow for flexibility in a fluctuating soil environment, and,
therefore, it is ubiquitous [37]. Verrucomicrobia is facultative anaerobic, saccharolytic,
and free-living [38], and generally exhibits a unimodal pattern, peaking in soil depths of
10~20 cm [39] or 20~40 cm [8]. In the current study, Verrucomicrobia peaked at 20~30 cm,
consistent with the previous studies.

Of the three dominant bacterial phyla, the relative abundances of Proteobacteria
and Verrucomicrobia indicated significant depth-related patterns. Proteobacteria is a
copiotrophic bacteria and, thus, is more abundant in the upper soil layer with greater SOC
and N contents (Table S2), which is consistent with previous reports [8,40,41]. The relative
abundances of Bacteroidetes and Planctomycetes are also depth-related [11], increasing
with depth, which is characterized by greater availability of C and N [27,42].

Verrucomicrobia is an oligotrophic bacterium, tolerant of low-nutrient soils and able
to use recalcitrant C sources [8]. The relative abundance of Verrucomicrobia displayed a
unimodal pattern with soil depth, which might be due to their preference for microaerobic
rather than fully aerobic or anaerobic environments [39]. SB-34, an anaerobic class [43]
belonging to Chloroflexi, peaked in subsoils, which is consistent with other reports [44,45].

Sedimentibacter and Tissierellaceae, belonging to Firmicutes which are the predomi-
nant C cyclers in the deep soil rhizosphere [46], were abundant in the 30~50 cm soil depth.
They are classified as Clostridia, which use fermentative metabolism [43]. Crenarchaeota
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were the most abundant (14%) bacteria in the deepest soil depth, which is consistent with
previous studies [8,47,48]. These bacteria drive autotrophic nitrification in deep soil [49].

In the present study, specific soil bacterial taxa were enriched in different soil depths,
and their relative abundances were not synchronous along soil depths. In addition, the
asynchronous responses of specific bacterial taxa between two adjacent layers affected soil
bacterial β diversity, which was a consequence of soil depth rather than sampling plot
according to the CPCoA analysis.

Changes in specific soil bacterial taxa are usually related to their specific ecological
functions. In the current study, the functions of metabolism-related pathways, especially C
and N metabolism, dominated the surface soils and decreased with soil depths, which is
consistent with other reports [50–52]. This demonstrates that bacteria in surface soils have
higher rates of C usage than bacteria in deeper soils, up to an order of magnitude higher [53].
This presumably results from greater amounts of soil organic C in the surface than deeper
soils due to plant litter [54] (Table 1), which supports the soil copiotrophic bacteria in
the surface soils. Several studies indicated that N-cycling functional gene abundances
and biomass decreased with soil depth [55,56]. By contrast, metabolism of co-factors and
vitamins, and transcription increased in deeper soils, as predicted by metagenomic analysis,
which may help specific soil bacteria improve the efficiency of nutrient utilization in a
harsh environment [57].

In summary, the soil bacterial community and functions were affected mainly by soil
depth but were not affected by plots. Soil pH affected the soil bacterial community, as has
been reported in previous studies [19,58,59]. In general, soil bacteria cannot tolerate a wide
pH range [20], and deviations of 1.5 pH units from the in situ pH of bacterial communities
can reduce their activity by 50% [60]. In addition, SOC, N, and P were reported to be
key drivers in determining the soil community composition and diversity [61], and soil
available nutrients, especially C substrates [8], were reported to be important in structuring
the soil bacterial community along a soil depth gradient [48]. Thus, the SOC shaped the soil
bacterial community rather than the total N and total P in the CAP analysis. In the current
study, the main drivers of soil bacterial community composition—soil pH (which increased),
soil organic content (which decreased with soil depth), and soil bacterial functions (mainly
metabolism)—were affected directly by SOC.

4.2. Soil Fungal Characteristics with Soil Depths

It was reported that soil fungal biomass and the number of OTUs [15] were affected
negatively along soil depths, but that soil fungal composition [10] was not related to soil
depths, which was also observed in the present study. The hyphae formed by some soil
fungi expand across soil depths [62]; thus, the number of fungi correlated with soil depth
would decrease. Furthermore, some soil fungi, such as Zygomycota (Mortierella) and
Saccharomycetes (Kazachstania), are arbuscular mycorrhizal fungi (AMF) and could be
correlated with plants rather than soil depths.

A decreasing trend in Ascomycota with soil depth was also observed. Most Ascomy-
cota were saprotrophic and, thus, located in the surface soils [63], which could explain
this observation. Moreover, the relative abundance of soil fungi, such as Zygomycota,
displayed depth-related patterns, which could be explained, at least in part, to the decrease
in relative abundances in the families Entomophthoraceae and Mucoraceae in deeper soils.

The number of OTUs and the Chao 1 index in soil fungi decreased with soil depth,
which is consistent with previous studies on forest soils [64,65]; however, α diversity
indices, such as PD and Shannon–Wiener, were not affected by soil depth [66] (Table 2). Soil
fungi tend to live in larger pores than bacteria, and this could explain this observation [67].
In the present study, soil bulk density increased, albeit not significantly, with soil depth,
which might also explain the insignificant soil fungal diversity patterns with soil depth. In
addition, soil fungi can decompose larger substrates than bacteria, contributing to a greater
diversity in the subsoils [7,68]. Based on the CPCoA analysis, soil fungal β diversity was
not affected by soil depth, but was affected by sampling plot. This finding was supported
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by other studies in which site was the dominant driver of changes in the soil fungal
community [56,69].

Soil fungal community composition and its relative abundance dominate soil eco-
logical functions. Furthermore, plot history and management strategy should also be
considered [29,59]. In the present study, soil fungi had four dominant ecological functional
guilds which were not affected by soil depths but were distinct among the six plots. Accord-
ing to the fungal ecological function analysis, AMF dominated the forest soils, followed
by the endophyte, ectomycorrhizal (ECM), and undefined saprotroph fungi. AMF usually
appear in plant roots and promote N and P absorption [70], and the hyphae resist environ-
mental stress, such as warming [71]. In the current study, AMF increased with soil depth,
which could be linked to the decreased soil nutrient content. Endophytic fungi in the forest
ecosystem usually promote nutrient cycling of wood and litter, which is generally plentiful
in the surface soil layer (Figure 5b). Furthermore, the host specificity of ectomycorrhizal
fungi [72] demonstrated that the effect of Picea crassifolia is important, but that soil depth is
not. The strong correlation between undefined saprotroph soil fungi and hosts is common
in Picea crassifolia forests [73], indicating that plot affects undefined saprotrophs more so
than soil depth. Overall, soil fungal functions are generally affected by plant type and plot.

Along with soil depth, soil edaphic factors (e.g., soil pH, SOC, contents of soil total N
and soil total P, and their stoichiometric characteristics) created a strong ecological filter for
the soil microbial community. In addition, sampling plots, that is, the dispersal limitation
of geographic distance, were also important in structuring the soil microbial community. In
the current study, the filter and dispersal limitations were the drivers of the soil bacterial
and fungal communities, but their relative contributions varied.

Soil depth and plot affected soil fungal patterns, but their effects differed. Soil depth
affected the number of soil fungal OTUs and the Chao 1 index through soil organic con-
tent [16]. Soil fungi require less N but more C than soil bacteria to maintain an optimal C to
N ratio [74]. Therefore, soil fungal OTUs and Chao 1 were correlated positively with soil
organic content but not with soil pH in the SEM analysis. Plot, to a certain extent, affected
mainly soil fungal β diversity and ecological functions, which was consistent with the
results of Li et al. [66] and Yuan et al. [41], who reported that soil fungi were more closely
associated with geographic distance than soil properties [75]. Soil-forming processes also
affected soil fungi [12,29], especially in the deeper soil layers [16].

5. Conclusions

We demonstrated that: (1) the vertical patterns of soil bacterial and fungal communities
differed along soil depths. The relative abundances of soil bacteria, such as Proteobacteria,
Planctomycetes, and Bacteroidetes, decreased, and those of archaeal and anaerobic bacteria
increased along soil depths. The number of OTUs and the Chao 1 index of soil fungi
decreased with soil depth, whereas soil fungal β diversity and ecological functions did
not; and (2) SOC and pH structured the soil bacterial community patterns and functions
along soil depths. Soil fungal β diversity and functions were related mainly to sample
plots, namely, the dispersal limitation of geographic distance, rather than soil depth. The
current study differentiated the vertical patterns between soil bacterial and fungal commu-
nities and demonstrated the importance of SOC and geographic distance in shaping soil
microbial communities.

Specific soil bacterial and fungal taxa corresponded to different potential functions
with soil depths. For example, some soil bacterial taxa that preferred deep soil lay-
ers exhibited greater metabolism of co-factors and vitamins, and transcription, which
helped to improve the efficiency of nutrient utilization. Consequently, in further stud-
ies, the soil microbial composition and potential functions of specific soil microbial taxa
should be examined concomitantly to improve the maintenance and management of the
ecosystem functions.
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