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The ongoing twin transition of the wood-based panel industry towards a green, digital,
and more resilient bioeconomy is essential for a successful transformation, with the aim of
decarbonising the sector and implementing a circular development model, transforming
linear industrial value chains to minimize pollution and waste generation, and providing
more sustainable growth and jobs. This green transition represents an opportunity to place
the wood-based panel industry on a new path of more sustainable and inclusive growth,
tackling climate change and reducing our dependence on fossil-derived raw materials, thus
improving the industry’s resource efficiency and security.

A crucial circular economy principle is exploiting natural resources more effectively to
produce various value-added wood-based products, as the demand for wood and wood-
based components is anticipated to triple between 2010 and 2050. In efforts to promote
effective recycling and reuse, the upcycling of wood and wood-based materials and the
search for substitute raw materials, recent legislative regulations and increased awareness
of social environments have posed new challenges to both industry and academia. These
regulations and laws are related to enhancing the “cascading use” of wood or prioritising
the value-added, non-fuel applications of wood and other lignocellulosic resources.

Wood composites are manufactured from different wood and non-wood lignocellu-
losic raw materials, bonded together with synthetic or bio-based adhesives and used for
particular value-added applications and service requirements [1–9]. Conventional wood-
based composites are manufactured with synthetic, formaldehyde-based resins, commonly
produced from petroleum-based components, such as urea, phenol and melamine [10–13].
The use of these thermoset adhesives has several drawbacks related to the release of harmful
volatile organic compounds, such as formaldehyde emissions from the created wood-based
composites. Free formaldehyde emissions from the created wood-based composites has
been linked to seriously detrimental human health effects, including irritation of the eyes,
nose, throat and skin; nausea (short-term exposure); as well as respiratory problems and
cancer (long-term exposure) [14–18]. The transition towards a circular, low-carbon wood-
based panel industry, increased environmental concerns related to the use of unsustainable
petroleum-based resources and the strict legislative requirements of free formaldehyde
release from engineered wood composites have tremendously increased the research and
development of ‘green’, eco-friendly wood-based composites [19–25], optimal valorisation
of available lignocellulosic resources [26–30], and use of alternative raw materials [31–39].
The adverse free formaldehyde emission from wood-based composites can be mitigated
by coating the surfaces of finished composites, by adding various organic or inorganic
formaldehyde scavengers to synthetic wood adhesives, or by using bio-based, environ-
mentally friendly wood adhesives [40–49]. The manufacture of binderless wood-based
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composites is another viable option since wood as a natural raw material is composed of
biopolymeric constituents, i.e., cellulose, lignin, and hemicelluloses [50–54].

In this Special Issue, 11 well-written, authentic pieces of research and critical anal-
ysis are collated to show instances of recent technological advances in the design, man-
ufacture, characteristics, and future uses of environmentally friendly wood and wood-
based composites.

Barbu et al. [55] investigated and evaluated the physical and mechanical characteristics
of Paulownia tomentosa × elongata plantation wood. These characteristics were determined
taking into consideration the effects of cross section position and stem height. This study
was conducted due to the increased interest in Paulownia as a fast-growing tree species.
The authors came to the conclusion that, in terms of wood density and dimensional
stability, Paulownia plantation wood becomes stable after the fifth year of growth, and they
recommended harvesting trees older than seven years in order to maximise the yield of
sawn wood. This recommendation was made in light of the fact that the authors harvested
trees younger than five years in order to obtain optimal results.

Bamboo is another sustainable and eco-friendly material that has attracted significant
study interest in recent years due to its multiple advantages and abundance, as well as
ability to be recycled and reused. Although bamboo is seen as a promising substitute of
wood, its poor stiffness and culm diameter are the key reasons restricting its widespread
use. To address these issues, bamboo culms can be disassembled into flat thin lamellae
and bonded together with an adhesive to create a certifiable structural material known as
laminated bamboo [56–58].

The components of bamboo-based composites were investigated by Hao et al. [59] for
their bending performance, fracture toughness, and enhancement mechanism. According
to the authors’ reports, the bamboo composites exhibited greater fracture toughness, com-
pared to bamboo itself. Additionally, the composites exhibited longer deformation and
less damage to fibre and parenchymal cell walls. The mechanical strength of cell walls,
particularly parenchymal cell walls, was found to be enhanced by phenol–formaldehyde
resin, as evidenced by an increase in indented modulus and hardness. According to the
authors, the main factor affecting the fracture toughness of bamboo-based composites was
the crosslinking effects of phenol–formaldehyde resin with the cell wall and fibres.

The shear performance of laminated boards fabricated from two Malaysian bamboo
species was studied by Mohd Yusof et al. [60]. The two species studied were seman-
tan (Gigantochloa scortechinii) and beting (Gigantochloa levis). Using phenol–resorcinol–
formaldehyde (PRF) and polyurethane (PUR) adhesive systems, three-layer laminated
bamboo panels with two lay-up patterns, perpendicular and parallel, and three strip ar-
rangements (vertical, horizontal, and mixed) were fabricated. Board delamination, bamboo
failure, and shear strength were all measured. It was determined that the lay-up pattern
and adhesive type were the primary determinants of shear performance. The authors
reported higher values for shear strength and bamboo failure for laminated bamboo boards
bonded with PRF compared to those bonded with PUR resin. PUR-bonded bamboo, on the
other hand, had a significantly lower rate of delamination, indicating a more durable bond.
Overall, PRF was found to be the superior adhesive for bonding laminated bamboo boards
due to its superior shear performance.

Particleboard made of sengon (Paraserianthes falcataria) wood was fabricated by
Iswanto et al. [61]. In their study, single-layer particleboard with a density of 750 kg.m3 was
produced. Urea–formaldehyde (UF) resin added with methylene diphenyl diisocyanate
(MDI) was used as a binder for the particleboard. The physico-mechanical properties of the
resultant particleboards were explored. Four different hot-pressing temperatures (130, 140,
150, and 160 ◦C) were used to produce the particleboard. Based on a total adhesive content
of 12%, the used UF/MDI mixtures were composed of 100% UF and 0% MDI, 85% UF
and 15% MDI, 70% UF and 30% MDI, and 55 UF and 45% MDI, respectively. Hot pressing
at 140 ◦C with an adhesive system consisting of 85UF/15MDI produced particleboard
with physical and mechanical properties meeting the requirements for type 8 boards, as
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specified in JIS A5908-2003. Additionally, the particleboard fulfilled the requirements for
type 2 boards according to EN 312 standards.

Another interesting study was carried out by Yusof et al. [62] on the influence of boric
acid pretreatment on bamboo strips. The physical and mechanical performance of the
pre-treated bamboo strips was assessed after boric acid treatment. Adhesion properties
were also studied, as well as the morphological characteristics of the bamboo strips. These
bamboo strips were derived from four widely distributed bamboo species in Malaysia:
Gigantochloa scortechinii, Gigantochloa levis, Bambusa vulgaris and Dendrocalamus asper. Ac-
cording to the authors’ findings, treating bamboo strips with boric acid improved their
wettability, dimensional stability, and mechanical properties, resulting in a greater poten-
tial for use in composite applications. Most importantly, treatment with boric acid may
improve the biological durability of the bamboo strips and broaden the range of potential
applications for these laminated panels in the exterior environment.

The ongoing digitalization of the wood-based panel industry via the adoption of
Industry 4.0 principles and technological advances, referring to enhanced automation and
use of smart, data-driven manufacturing systems, is a prerequisite for the green and digital
transformation of sector, enhancing its competitiveness and sustainability.

Kminiak et al. [63] used a computer numerical control machine for the adaptive control
of cutting processes to examine the impact of various input parameters on processing
wood-based composites (particleboards). The authors conducted experiments to determine
the relationship between feed speed, revolutions, and radial depth of cut, as well as the
equivalence of sound pressure level and milling tool temperature. The obtained results
show that the noise level and temperature of the milling tool were affected by all of the
investigated parameters, with the rate of radial depth of cut having the greatest influence
on the rise in temperature, and the number of revolutions having the greatest influence on
the sound pressure level.

Buildings are designed and constructed with careful consideration given to the se-
lection and application of structural materials that are renewable and friendly to the
environment. When compared to a reinforced concrete road bridge of the same span and
load, the performance of a cross-prestressed timber-reinforced concrete bridge is superior.
Mitterpach et al. [64] used the LCA principle to investigate and evaluate the environmen-
tal performance of each structure. The results show that the timber-reinforced concrete
bridge was more eco-friendly than the steel-concrete road bridges. The findings have
important implications for evaluating the ecological effectiveness of building components
and structures.

Adhering to circular economy practices, which include the upcycling of raw materials
and the increased utilization of by-products to manufacture new products with added value,
Pędzik et al. [65] studied the possibilities of using forest residues generated from Scots
pine harvesting as a substitutional material for manufacturing particleboards. Markedly,
the composites, fabricated from forest biomass residues, exhibited satisfactory mechanical
properties, fulfilling the requirements for type P5 particleboards, suitable for load-bearing
applications for use in humid conditions in accordance with EN 312 standard. However,
the lower dimensional stability of the produced composites allowed their classification as
type P2 particleboards, suitable for internal use (including furniture) in dry conditions.

Particleboard and oriented strand boards (OSB) are two types of wood-based compos-
ite that, if burned, could create a dangerous environment in homes and public buildings.
Marková et al. subjected unfinished particleboards and OSB panels were to radiant heat
testing and evaluation [66]. Mass loss and time-to-ignition of the composites were reported
to be significantly affected by heat flux. The experiment findings reveal that the ignition
time and the temperature at which thermal decomposition occurred were both significantly
higher for OSB panels than for particleboards.

Paulownia (Paulownia tomentosa (Tunb.) × elongata (S.Y. Hu)) sawn wood from three
European plantation sites was studied for its physical and mechanical properties by
Barbu et al. [67]. The results conclusively show that Paulownia wood’s physical and
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mechanical qualities were significantly affected by the growing conditions. Paulownia
wood was found to have a significant promise as an alternative natural feedstock to be
used in specialised applications, such as non-load-bearing structural components and
thermal insulation, despite having inferior physical and mechanical properties compared
to traditional tree species.

Finally, Maulana et al. [68] conducted a comprehensive overview on the latest ad-
vancements in the field of “green,” eco-friendly, starch-based wood adhesives. These can be
used to produce wood-based composites that are non-toxic, have low emissions, superior
properties and a reduced negative impact on the environment. The authors described and
analyzed the vast potential of starch as a cheap and abundant natural feedstock for use in
wood adhesives. New methods of starch modification were also discussed, with the goal of
enhancing the effectiveness of starch-based wood adhesives.

A significant precondition for the ongoing movement toward the production of envi-
ronmentally friendly, high-performance wood-based composites is the industry’s ongoing
transformation from a linear to a circular bioeconomy. This transition is a strong prerequi-
site for this production trend. This Special Issue provides a detailed summary of potential
developments in the design, production and applications of sustainable, environmentally
friendly wood-based composites with enhanced properties and a reduced carbon footprint,
which form the focus of this discussion.
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Content and Hot-Pressing Temperatures on the Physical–Mechanical Properties of Particleboard Bonded with a Hybrid Urea–
Formaldehyde/Isocyanate Adhesive. Forests 2023, 14, 320. [CrossRef]

62. Yusof, N.M.; Hua, L.S.; Tahir, P.M.; James, R.M.S.; Al-Edrus, S.S.O.; Dahali, R.; Roseley, A.S.M.; Fatriasari, W.; Kristak, L.; Lubis,
M.A.R.; et al. Effects of Boric Acid Pretreatment on the Properties of Four Selected Malaysian Bamboo Strips. Forests 2023, 14, 196.
[CrossRef]
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