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Abstract: The soil profile is a strong and complex physicochemical gradient that greatly affects
bacterial community structure and function between soil layers. However, little is known about
molecular ecological network structure and bacterial community function under differing soil profiles
in planted forests. Four typical native tree species (Pinus massoniana Lamb., Castanopsis hystrix Miq.,
Mytilaria laosensis Lec., and Michelia macclurei Dandy) plantations were selected from subtropical
China as the research object. We evaluated molecular ecological network structure as well as potential
function of the soil bacterial community at different soil depths (0–20, 20–40, and 40–60 cm) within
native tree plantations. Our results showed that (1) compared to the topsoil (0–20 cm), the bacterial
molecular ecological network scale increased within the middle layer (20–40 cm) and the subsoil
(40–60 cm), and the interaction between species was stronger; (2) module hubs and connectors
were the key bacterial groups in each soil layer and increased with increasing soil depth; (3) the
dominant functional groups of the bacterial communities in each soil layer were chemoheterotrophy,
aerobic chemoheterotrophy, cellulolysis, ureolysis, nitrogen fixation, and nitrate reduction, and they
were related to soil carbon and nitrogen cycling; and (4) the different molecular ecological network
structures along with relative bacterial functional group abundances among diverse soil layers were
mainly affected by soil organic carbon (SOC), NO3

−-N, NH4
+-N, available phosphorus (AP), and

total phosphorus (TP). Our study provides a theoretical foundation for bacterial community structure
together with function within soil profiles of native tree plantations in subtropical regions.

Keywords: soil bacteria; soil profile depth; molecular ecological network; FAPROTAX function
prediction; subtropical plantation

1. Introduction

Soil microorganisms are the driving force of biogeochemical cycles in terrestrial ecosys-
tems. Their functions are not limited to the surface soil and have a critical effect on deep
soil [1,2]. Bacteria, the main soil microbiome components, are rich in diversity. They de-
compose and transform organic substances quickly and efficiently, thereby affecting plants’
ability to obtain nutrients from the soil [3,4]. Previous changes in bacterial communities in
soil may hamper the functioning of these communities, leading to shifts in biogeochemical
cycles [5,6]. To take an example, as discovered by Xu et al. [7], some bacterial functional
groups associated with carbon (C) and nitrogen (N) cycling (e.g., aerobic ammoxidation,
nitrate reduction, chitin decomposition, etc.) changed significantly with soil depth because
of altered compositions of bacterial communities between two alpine ecosystems (meadow
and shrub). However, there have been many studies regarding bacterial community diver-
sity, structure, and function in soil profiles [8,9], but the soil depth gradient response of the
interaction between bacteria remains largely unclear [10,11]. Within a complex ecosystem,
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interactions between species may be more crucial for ecosystem functions than species
richness and diversity [12,13]. Consequently, it is significant to explore the interaction
between soil bacteria in understanding the function of the terrestrial ecosystem.

In recent years, molecular ecology networks (MENs) have become the most effective
analysis tool to reveal the relationship between bacteria and the relationship between bacte-
ria and environment [14,15]. At present, there are many studies analyzing the molecular
ecological networks of interspecific relations of bacterial communities in agricultural soil
profiles [16]. However, few studies have been conducted to analyze molecular ecological
networks for bacterial communities in forest soil, especially their structure in the forest
soil profile.

Planted forests are an indispensable part of global forest resources, which have a
critical effect on wood supply, ecological environment improvement, and climate change
responses [17]. As demand for wood and awareness of ecological and environmental
protection increase in China, large-scale afforestation and reforestation have made China’s
artificial forest area rank first in the world, at 79.5428 million hm2 [18]. The change in forest
management strategies from pursuing the single goal of wood production to improving the
service quality and benefit of ecosystems and cultivating high-value native broadleaved
forests has become the development trend in plantation management in subtropical China,
which will gradually increase the area of native tree plantations [19,20]. Nonetheless,
molecular ecological network structure and function for bacterial communities under the
soil profiles in indigenous tree plantations in subtropical areas remain unclear.

In this study, we selected four typical native tree species (Pinus massoniana Lamb.,
Castanopsis hystrix Miq., Mytilaria laosensis Lec., and Michelia macclurei Dandy) as research
objects of subtropical native tree plantations. Pinus massoniana Lamb. is one of the most im-
portant endemic coniferous timber species [21], whereas Castanopsis hystrix Miq., Mytilaria
laosensis Lec., and Michelia macclurei Dandy are economically important native broadleaf
timber species in subtropical China [22]. Based on bacterial 16S rRNA high-throughput
sequencing data at diverse soil depths (0–20, 20–40, 40–60 cm) of each stand, molecular
ecological network analysis and the functional annotation of prokaryotic taxa (FAPROTAX)
function prediction approach were used for exploring the following scientific questions:
(i) Does soil profile depth significantly affect the molecular ecological network structure as
well as possible soil bacterial community function within native tree plantations? (ii) What
are the dominant factors regulating the structural differences in the bacterial community
molecular ecological network at soil profile depth? (iii) Are the dominant factors leading
to functional differences in soil bacterial communities at various depths of the soil profile
consistent with bacterial molecular ecological network structure? Insights into these ques-
tions will contribute to a theoretical basis for further understanding bacterial community
structure and function in soil profiles of native tree plantations in subtropical regions.

2. Materials and Methods
2.1. Overview of the Study Site and Collection of Soil Samples

This study was carried out at the Experimental Center of Tropical Forestry of the
Chinese Academy of Forestry (22◦10′ N, 106◦50′ E) in Pingxiang City, Guangxi Zhuang
Autonomous Region, China. This area has a humid and semi-humid south subtropical
monsoon climate with clearly separated rainy and dry seasons. The yearly rainfall can
be about 1400 mm, which mostly occurs during the rainy season that extends from April
to September; the yearly average temperature reaches 21 ◦C, and the average monthly
maximal and minimal temperatures are 26.3 and 12.1 ◦C, respectively. Its topography
primarily includes low hills and mountains (altitude, 430–680 m). The soil mainly contains
red soil in line with Chinese soil classification, which is the same as oxisol in the USDA Soil
Taxonomy. The soil thickness is generally greater than 80 cm [21,23].

In August 2016, four pure plantations (Pinus massoniana Lamb., Castanopsis hystrix
Miq., Mytilaria laosensis Lec., and Michelia macclurei Dandy) with similar site conditions
(soil type, altitude, slope, and aspect) and the same management measures were selected.
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Four artificial pure forests were planted (density: 2500 plants/hm2) on the cutting site of
a Cunninghamia lanceolata (Lamb.) Hook. plantation. The Pinus massoniana Lamb. and
Castanopsis hystrix Miq. plantations were created in 1983, whereas Mytilaria laosensis Lec.
and Michelia macclurei Dandy plantations were created in 1981. This experiment set up three
plots of 20 m × 20 m on every stand; intervals between plots were at least 20 m. For every
plot, we chose three sampling sites at random along the left diagonal, and soil samples
from the topsoil (0–20 cm), middle layer (20–40 cm), and subsoil (40–60 cm) were collected
with a soil drill (5.0 cm in inner diameter). After removing impurities such as animal and
plant residues and stones, the soil samples from the same layer were blended for forming
the mixed sample and placed in a sterile sampling bag, which was stored in a biological
ice bag before being brought to the laboratory. Fresh mixed samples were divided into
three batches in the laboratory. The first batch of fresh soil samples was immediately stored
in a −80 ◦C refrigerator after passing through a 2 mm steel sieve, for high-throughput
sequencing of soil bacteria. The second batch was immediately stored in a 4 ◦C refrigerator
after passing through a 2 mm steel sieve, for ammonium and nitrate nitrogen content
detection. The third part was dried with indoor natural air and passed through a 0.25 mm
sieve for determining soil physicochemical characteristics.

2.2. Soil Physicochemical Characteristic Measurement

We analyzed soil water content (SWC) according to Lu [24] and measured soil pH
value with potentiometry (water-to-soil ratio of 2.5:1, v/w) ( PHS-3C laboratory pH meter,
Shanghai Jinhuan Instrument Co., LTD, Shanghai, China). Additionally, the potassium
dichromate oxidation method was adopted to analyze soil organic carbon (SOC) concen-
tration, whereas an automatic chemical analyzer (Smartchem200, Alliance, Paris, France)
was used for analyzing total nitrogen (TN) concentration following digestion with con-
centrated sulfuric acid and perchloric acid. Additionally, an automatic chemical analyzer
(Smartchem 200, Alliance, France) was utilized to determine nitrate nitrogen (NO3

−-N)
and ammonium nitrogen (NH4

+-N) levels following alkali solution diffusion and calcium
sulfate leaching. Sodium hydroxide alkali melting-molybdenum–antimony resistance
colorimetry [24] was utilized for determining total phosphorus (TP) content, and the
available phosphorus (AP) content was determined with an automatic chemical analyzer
(Smartchem 200, Alliance, Paris, France) following double acid leaching.

2.3. Isolation of Soil Bacterial DNA, PCR Amplification, and High-Throughput Sequencing (HTS)

By adopting the PowerSoil®DNA Isolation Kit (Mo Bio Laboratories Inc., Carlsbad,
CA, USA), we isolated soil bacterial DNA. UV–Vis spectrophotometry (Thermo Nano-
Drop 2000, Thermo Fisher Scientific, Waltham, MA, USA) as well as 1.2% agarose gel
electrophoresis (AGE) was conducted to verify total DNA quality. Universal primers
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 926R (5′-CCGTCAATTCMTTTGAGTTT-
3′) were utilized for amplifying the bacterial 16S rRNA gene V4-V5 region.

The gene library was constructed using PCR amplification in two steps. The first PCR
amplification reaction volume consisted of 5 × buffer (10 µL), dNTP (1 µL, 10 mmol/L),
F/R inner primers (1 µL, 10 µmol/L), 1U Phusion high-fidelity DNA polymerase, and
5–50 ng DNA template, topped up to 50 µL with ddH2O. The reaction was carried out
under the following conditions: 2 min under 94 ◦C, 25× (30 s under 94 ◦C, 30 s under 56 ◦C,
and 30 s under 72 ◦C), and 5 min under 72 ◦C. Then, 2% AGE was conducted to confirm
PCR products, followed by recovery with the AxyPrep DNA gel extraction kit (AXYGEN
Axygen Scientific Inc., San Francisco, CA, USA) for second PCR amplification comprising
5 × buffer (8 µL), dNTP (1 µL, 10 mmol/L), Phusion high-fidelity DNA polymerase (0.8 U),
F/R inner primers (1 µL, 10 µmoL/L) each, and 5 µL DNA template, topped up to 40 µL
with ddH2O. The reaction conditions for the second amplification were 94 ◦C for 2 min,
8 × (30 s under 94 ◦C, 30 s under 56 ◦C, and 30 s under 72 ◦C), as well as 5 min under
72 ◦C. Later, 2% AGE was conducted to verify PCR products, followed by recovery using
the AxyPrep DNA gel extraction kit (Axygen Scientific Inc., San Francisco, CA, USA)
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as well as quantification through FTC-3000TM RT-PCR. Gene library construction was
completed by mixing the PCR products. Illumina MiSeq (TinyGene Bio-Tech (Shanghai)
Co., Ltd., Shanghai, China) was adopted for HTS of the 16S rRNA at a 2 × 300 bp read
length. The 16S rRNA gene sequencing data were deposited in NCBI SRA with BioProject
ID PRJNA 886117.

2.4. Bioinformatic Analysis

According to the barcode obtained with the Illumina platform sequencing, PE was
read to distinguish each sample; the sequence quality was controlled and filtered. Quality
control of effective sequences was performed using Trimmomatic software. The alignment
of effective sequences was completed using FLASH software (Version 1.2.11, Johns Hopkins
University, Baltimore, MD, USA). Later, we aligned paired reads to one sequence based on
overlapping regions among the PE reads, with the minimal overlapping length of 10 bp
and a 0.2 maximal mismatch ratio within aligned sequence overlapping areas. Optimized
sequences were obtained by filtering out singletons from the aligned long reads using the
software package Mothur (Version 1.33.3. Ann Arbor, MI, USA)

Next, we clustered optimal sequences into operational taxonomic units (OTUs) with
the USEARCH software package. Briefly, the optimized sequences were clustered at 97%
similarity for obtaining typical OTU sequences using UPARSE. Subsequently, UCHIME
was utilized to eliminate PCR amplification-derived chimeras from the representative
OTU sequences. Finally, the Greengene (Release 13.5, http://greengenes.secondgenome.
com/, accessed on 17 October 2018) database was used to compare typical OTU sequences
acquired for species annotation (confidence threshold = 0.8) using Mothur (classify.seqs).

The establishment of bacterial molecular ecological networks was based on OTU
information [14]. Logarithmically transformed (log10) OTU data were used for calculating
Pearson correlations of any two OTUs by using the MENA platform (http://ieg4.rccc.ou.
edu/MENA, accessed on 23 April 2021). By adopting random matrix theory (RMT), this
step built a bacterial molecular ecological network, followed by calculation of network
topology parameters, including network nodes, edges, average clustering coefficient, av-
erage degree, modularity and average path distance [25,26]. According to the node intra-
and inter-module connectivity (Zi and Pi, respectively), all nodes within the network were
classified into four types [27]: (i) module hub (Zi ≥ 2.5, Pi < 0.62); (ii) connector (Zi < 2.5,
Pi ≥ 0.62); (iii) network hub (Zi ≥ 2.5, Pi ≥ 0.62); and (iv) peripheral nodes (Zi < 2.5,
Pi < 0.62). For molecular ecological networks, network hubs, module hubs, and connectors
have usually been considered key species [27]. This study visualized molecular ecologi-
cal network structure using Cytoscape v3.7.1 (http://manual.cytoscape.org/en/stable/,
accessed on 25 April 2021).

Functional annotation of prokaryotic taxa (FAPROTAX) can be used for predicting
bacterial community functions based on OTU data of 16S rRNA, which mainly include over
7600 functional annotations in over 80 functional groups (such as methanogenesis, nitrate
respiration, plant pathogens, and fermentation) obtained in at least 4600 prokaryotes [28].
FAPROTAX has become an analytical tool for studying the biogeochemical cycle and key
bacterial functions of bacteria–bacteria and plant–bacteria interactions [29]. The functional
groups of the bacterial communities within native plantation soil profiles were analyzed
with the FAPROTAX platform (http://www.loucalab.com/archive/FAPROTAX/, accessed
on 20 June 2021).

2.5. Statistical Analysis

This study utilized one-way analysis of variance (ANOVA) for detecting significance
of differences in physicochemical characters of soils and functional groups of dominant
bacteria among different soil layers, followed by Tukey’s HSD multiple comparisons, which
were carried out with SPSS (Version 24.0, IBM, Chicago, IL, USA). Hierarchical cluster-
ing was employed to cluster the representative bacterial molecular ecological network
modules, and Pearson correlation coefficients were utilized for analyzing association of

http://greengenes.secondgenome.com/
http://greengenes.secondgenome.com/
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soil physicochemical characters with representative modules (module characteristic OTU)
within the same soil layer. These calculations were completed with the MENA platform
(http://ieg4.rccc.ou.edu/MENA, accessed on 23 April 2021). We used the Pearson correla-
tion coefficient to determine which physicochemical factors were associated with the soil
bacterial community functional groups.

3. Results
3.1. Alterations of Soil Physicochemical Character in Native Tree Plantations

The SWC, SOC, TN, NO3
−-N, NH4

+-N, AP, and TP of native tree plantations declined
as soil depth increased (Table 1). Topsoil SWC remarkably increased compared with the
other two soil layers (p < 0.05), but the middle layer was not significantly different compared
with the subsoil (p > 0.05). SOC, TN, and NO3

−-N significantly differed among the three
soil layers. Topsoil NH4

+-N was remarkably elevated within the subsoil; however, the
middle layer was not significantly different compared with the topsoil and subsoil. TP
in the topsoil and middle layer did not exhibit any significant difference, but both were
remarkably elevated compared with the subsoil. The different amounts of AP among the
three soil layers were not significant.

Table 1. Changes in physicochemical properties of soil profiles in native tree plantations (mean ± SD,
n = 12).

Soil
Layer

SWC
(%) pH SOC

(g/kg)
TN

(g/kg)
NH4

+-N
(mg/kg)

NO3−-N
(mg/kg)

TP
(g/kg)

AP
(mg/kg)

0–20 cm 31.32 ± 2.56 a 4.17 ± 0.24 a 21.17 ± 2.11 a 1.43 ± 0.34 a 19.38 ± 5.49 a 4.42 ± 0.63 a 1.26 ± 0.49 a 13.85 ± 3.64 a
20–40 cm 28.02 ± 2.92 b 4.23 ± 0.31 a 12.05 ± 1.87 b 1.10 ± 0.20 b 15.07 ± 7.09 ab 3.20 ± 1.06 b 0.96 ± 0.44 a 11.76 ± 4.98 a
40–60 cm 25.86 ± 3.69 b 4.27 ± 0.25 a 9.58 ± 1.62 c 0.74 ± 0.17 c 10.07 ± 6.37 b 1.93 ± 0.87 c 0.43 ± 0.22 b 9.99 ± 5.27 a

SWC: soil water content; SOC: soil organic carbon; TN: total nitrogen; NH4
+-N: ammoniacal nitrogen; NO3

−-N:
nitrate nitrogen; TP: total phosphorus; AP: available phosphorus. Different lowercase letters represent significant
differences among the different soil layers at a level of 0.05.

3.2. Characteristics of Bacterial Molecular Ecological Network Structure within Soil Profiles of
Native Tree Plantations

The network topology parameters showed that the threshold value for the soil bacterial
molecular ecological network in three soil layers was 0.760, and R2 of the power law was
around 0.8 (Table 2), in line with the power law [13]. Additionally, average path distance
and average clustering coefficient, together with the modularity index for the bacterial
molecular ecological network in each soil layer increased compared with those in a random
network, which indicated that these three bacterial molecular ecological networks built
in this study conform to basic network features, including small world, scale-free, and
modular [13].

Topological parameters for the soil bacterial molecular ecological network among the
three soil layers showed that the total links, total nodes, and average clustering coefficients
were as follows: topsoil < middle layer < subsoil. The average degree was as follows:
topsoil < subsoil < middle layer, and the average path distance and modularity index were
topsoil > subsoil > middle layer (Table 2 and Figure 1). Meanwhile, the positive connections
for the soil bacterial molecular ecological network within the topsoil, middle layer, and
subsoil accounted for 78.98%, 70.70%, and 66.28% of the total edges, respectively.

http://ieg4.rccc.ou.edu/MENA
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Table 2. Topological parameters of molecular ecological networks and random network of the bacterial community in the soil profiles of native tree plantations.

Soil
Layer

Molecular Ecological Networks Random Networks

Cutoff Total
Nodes

Total
Links

R2 of
Power Law

The Number
of Positive

Connections

The Number
of Negative
Connections

Average
Degree

Average
Clustering
Coefficient

Average
Path

Dis-tance

Modularity Index
(Module
Number)

Average
Clustering
Coefficient

Average Path
Distance

Modularity
Index

0–20 cm 0.76 166 333 0.752 263 70 4.012 0.203 4.451 0.669 (16) 0.029 ± 0.009 3.665 ± 0.051 0.475 ± 0.009
20–40 cm 0.76 191 488 0.813 345 143 5.11 0.225 4.148 0.586 (15) 0.049 ± 0.009 3.308 ± 0.043 0.400 ± 0.007
40–60 cm 0.76 204 519 0.796 344 175 5.088 0.235 4.204 0.623 (12) 0.042 ± 0.008 3.359 ± 0.035 0.406 ± 0.007
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Figure 1. The molecular ecological network of soil bacteria in the topsoil (0–20 cm) (A), middle layer
(20–40 cm) (B), and subsoil (40–60 cm) (C) of native tree plantations. Each node represents an OTU
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the positive interaction between nodes, and the gray line indicates the negative interaction between
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3.3. Topological Functions of Bacterial Molecular Ecological Network Nodes within Soil Profiles of
Native Tree Plantations

The soil bacterial molecular ecological network (OTU level) showed 268 non-repeating
nodes in the three soil layers (Figure 2). Among them, there were 109 shared nodes in
the three soil layers and 15, 24 and 45 unique nodes in the surface, middle, and bottom
layers, respectively. Further statistics revealed that peripheral nodes were dominant in
all soil layers (topsoil: 98.80%; middle level: 96.34%; subsoil: 92.65%) without network
hubs (Figure 3). There were two key nodes on the soil surface, one module hub, and one
connector, that belonged to Actinobacteria and Firmicutes, respectively (each accounting
for 50.00%) (Figures 3 and 4A). There were seven key nodes in the middle layer, includ-
ing two module hubs and five connectors, belonging to four bacterial phyla, of which
Proteobacteria accounts for the largest proportion (42.86%), followed by Planctomycetes
(28.57%); Chloroflexi was the key endemic bacteria (Figures 3 and 4B). There were fif-
teen key nodes in the subsoil, including three module hubs and twelve connectors that
belonged to six bacterial phyla: Proteobacteria (26.67%), Acidobacteria (26.67%), Actinobac-
teria (20.00%), Planctomycetes (13.33%), Firmicutes (6.67%), and Verrucomicrobia (6.67%)
(Figures 3 and 4C).
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Figure 4. Distribution patterns of key phylum in topsoil (A), middle layer (B), and subsoil (C) of
native tree plantation.

3.4. Functions of Soil Physicochemical Characteristics in Bacterial Molecular Ecological
Network Structure

From the view of the module hierarchy among the bacterial molecular ecological
networks in each soil layer, modules 1 and 3 were closely related; modules 5 and 6 were
closely related; modules 4, 7, and 8 were closely related; and module 2 was different from
the other modules in the topsoil (Figure 5(A1)). Modules 2, 4, and 7 were closely linked;
modules 1 and 5 were closely linked; and modules 3 and 6 were closely linked in the middle
layer (Figure 5(B1)). Modules 2 and 5 were closely connected; modules 3, 4, and 6 were
closely connected; and module 1 was distinctly different from the other modules in the
subsoil (Figure 5(C1)).

The effects of physicochemical characteristics of soil on bacterial molecular ecological
network structure were different among different soil layers. In the topsoil, NH4+-N
showed a significantly positive relation to module 8 (r = 0.62, p < 0.05), whereas TP showed
a significantly positive relation to module 6 (r = 0.68, p < 0.05) and module 7 (r = 0.65,
p < 0.05) (Figure 5(A2)). In the middle layer, AP showed a significantly positive relation to
module 7 (r = 0.63, p < 0.05), whereas SOC showed a significantly positive relation to module
4 (r = 0.62, p < 0.05), together with module 6 (r = 0.58, p < 0.05) (Figure 5(B2)). In the subsoil,
NO3

−-N showed a significantly negative relation to module 2 (r = −0.7, p < 0.05), while
SOC showed a significantly positive relation to module 1 (r = 0.58, p < 0.05) (Figure 5(C2)).
Overall, SOC, NO3

−-N, NH4
+-N, AP, and TP accounted for dominant parameters that

affected bacterial molecular ecological network structure within the soil profile.
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Figure 5. Hierarchical structure of three soil bacterial molecular ecological network modules and its
correlation with soil physical and chemical properties. (A1,B1,C1) represent the hierarchical structure
diagram and heat diagram of representative modules of soil bacterial molecular ecological network in
the topsoil, middle layer, and subsoil, respectively. Among them, the upper part was the hierarchical
clustering structure diagram based on the Pearson correlation between representative modules, and
the lower part was the heat map based on the Pearson correlation between representative modules.
Red indicates a high correlation, and blue indicates a low correlation. (A2,B2,C2) represent the
correlation heat map between the representative modules of soil bacterial molecular ecological
network and soil physicochemical properties in the topsoil, middle layer, and subsoil, respectively. In
those figures, red indicates a high positive correlation, and green indicates a high negative correlation.
In each figure, the numbers without brackets and those with brackets represent correlation coefficient
(r) and significance (P), respectively. #k, Module k, k= 1, 2, 3, . . . . . . . SWC: soil water content; SOC:
soil organic carbon; TN: total nitrogen; NH4

+-N: ammoniacal nitrogen; NO3
−-N: nitrate nitrogen; TP:

total phosphorus; AP: available phosphorus.
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3.5. FAPROTAX Bacterial Functional Estimation within the Soil Profile in Native Tree Plantations

Results of soil bacterial community functional group annotation showed that the
number of functional groups of the topsoil, middle layer, and subsoil were 43, 46,
and 46, respectively, and the relative abundances of identified OTUs were 65.1426%,
55.6798%, and 58.5035%, respectively (Table 3). Based on a relative abundance greater
than 0.5% in each soil layer, the six dominant functional groups of the soil bacterial com-
munity were determined as follows: chemoheterotrophic, aerobic chemoheterotrophic,
cellulolysis, urea hydrolysis, nitrogen fixation, and nitrate reduction. ANOVA revealed
that different soil layers were not significantly different in chemoheterotrophic, aerobic
chemoheterotrophic, cellulolysis, nitrogen fixation, and nitrate reduction (p > 0.05).
Urea hydrolysis within topsoil was remarkably elevated compared with the middle
layer and subsoil (p < 0.05), but the latter two were not significantly different (p > 0.05)
(Figure 6).

Table 3. Relative abundance of bacterial functional groups in the soil profile of native tree plantations.

Bacterial Functional Group
Relative Abundance (%)

0–20 cm 20–40 cm 40–60 cm

chemoheterotrophy 26.3037 21.6669 21.7211
aerobic chemoheterotrophy 25.8136 21.1417 21.2079
cellulolysis 4.3823 4.9789 4.3766
ureolysis 5.1485 2.7107 2.8567
nitrogen fixation 0.5692 0.6592 0.8078
nitrate reduction 0.6468 0.5049 0.7700
methanotrophy 0.0115 0.0199 0.0178
methanol_oxidation 0.0191 0.0444 0.0738
methylotrophy 0.0306 0.0643 0.0916
aerobic_ammonia_oxidation 0.0011 0.0010 0.0022
aerobic_nitrite_oxidation 0.0146 0.0979 0.2692
nitrification 0.0157 0.0989 0.2714
sulfur_respiration 0.0000 0.0006 0.0015
respiration_of_sulfur_compounds 0.0000 0.0006 0.0015
chitinolysis 0.0004 0.0002 0.0002
nitrite_ammonification 0.0938 0.2136 0.3710
nitrite_respiration 0.0938 0.2136 0.3710
dark_thiosulfate_oxidation 0.0731 0.0210 0.0135
dark_oxidation_of_sulfur_compounds 0.0736 0.0212 0.0135
manganese_oxidation 0.0086 0.0119 0.0175
fermentation 0.2850 0.3708 0.5907
invertebrate_parasites 0.0017 0.0021 0.0038
human_pathogens_pneumonia 0.0000 0.0012 0.0013
human_pathogens_gastroenteritis 0.0938 0.2136 0.3710
human_pathogens_diarrhea 0.0938 0.2136 0.3710
human_pathogens_all 0.1186 0.2504 0.4334
human_gut 0.0946 0.2136 0.3724
human_associated 0.1195 0.2504 0.4349
mammal_gut 0.0946 0.2136 0.3724
animal_parasites_or_symbionts 0.2356 0.3761 0.5379
plant_pathogen 0.0570 0.0292 0.0433
aromatic_hydrocarbon_degradation 0.0006 0.0014 0.0021
aromatic_compound_degradation 0.0336 0.0665 0.1346
liphatic_non_methane_hydrocarbon_degradation 0.0006 0.0014 0.0021
hydrocarbon_degradation 0.0121 0.0214 0.0199
iron_respiration 0.0304 0.0455 0.0482
nitrate_respiration 0.1117 0.2414 0.4375
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Table 3. Cont.

Bacterial Functional Group
Relative Abundance (%)

0–20 cm 20–40 cm 40–60 cm

nitrogen_respiration 0.1117 0.2414 0.4375
fumarate_respiration 0.0938 0.2136 0.3710
intracellular_parasites 0.1295 0.1084 0.0770
predatory_or_exoparasitic 0.0368 0.0438 0.0694
chloroplasts 0.0045 0.0103 0.0084
nonphotosynthetic_cyanobacteria 0.0382 0.0210 0.0239
aerobic_anoxygenic_phototrophy 0.0010 0.0006 0.0051
photoheterotrophy 0.0219 0.0287 0.0393
phototrophy 0.0219 0.0287 0.0393

Total 65.1426 55.6798 58.5035
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Figure 6. Comparison of relative abundance of the six dominant bacterial functional groups in soil
profiles of native tree plantations. Different lowercase letters represent significant differences among
different soil layers at 0.05 level.

Pearson correlation analysis further showed that soil physicochemical properties had
different effects on the dominant bacterial functional groups in each soil layer (Figure 7). In
the topsoil, chemoheterotrophic and aerobic chemoheterotrophs were significantly posi-
tively correlated with soil TP (p < 0.05), and cellulolysis was significantly positively corre-
lated with soil pH and SOC (p < 0.05) (Figure 7A). In the middle layer, chemoheterotrophic,
aerobic chemoheterotrophic, and nitrate reduction were significantly positively correlated
with SOC (p < 0.05); nitrate reduction, nitrogen fixation, and urea hydrolysis were sig-
nificantly positively correlated with soil NH4

+-N (p < 0.05); and nitrogen fixation was
significantly negatively correlated with NO3

−-N (p < 0.05) (Figure 7B). Subsoil nitrogen
fixation was significantly and positively correlated with AP (p < 0.05) (Figure 7C). Overall,
soil pH, SOC, NH4

+-N, NO3
−-N, TP, and AP were the dominant factors affecting the

dominant functional groups of the bacterial communities in the soil profile.
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4. Discussion
4.1. Function of Soil Profile Depth in Bacterial Molecular Ecological Network Structure

We found that edge and numbers, along with negative connections of soil bacterial
molecular ecological networks within native tree plantations increased with increasing
soil depth (Table 2 and Figure 1), which indicated a larger soil bacterial molecular eco-
logical network scale [25] and stronger competition among subsoil bacteria [30]. Mundra
et al. showed that numbers of negative connections of soil bacterial molecular ecological
networks in Betula pubescens forests in Norway increased with increasing soil depth [31],
conforming to our findings. The reason may be that nutrients (SWC, SOC, TN, NO3

−-N,
NH4

+-N, AP and TP) decreased with increasing soil depth (Table 1), resulting in relatively
limited nutrients in the subsoil, promoting the succession of bacterial communities with
more efficient nutrient utilization efficiency [32,33]. Competition between bacteria is re-
duced in soils with relatively abundant nutrients [34], whereas bacteria need to meet their
own needs through stronger competition in relatively scarce resources [35].

Average connectivity and clustering coefficient represent the molecular ecological
network complexity and community organization order, respectively. The above indexes in
the middle layer and subsoil in native tree plantations significantly increased compared
with topsoil, which suggested a more complex and organized bacterial molecular ecological
network and community organization in the middle and subsoil layers than those in the
topsoil (Table 2 and Figure 1). Xu et al. revealed that the average clustering coefficient of
topsoil (0–20 cm) in a Tibetan Plateau meadow was lower than that of subsoil (30–70 cm) [7].
Further, these two indices of farmland elevated with an increase in soil depth in Tianjin,
China [16]. These results were consistent with those of this study.
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Network average path distance represents the matter/energy/information transfer
efficiency between the species. A smaller average path distance indicates greater mat-
ter/energy/information transfer efficiency between species; however, the response to
disturbance is also more sensitive. The modularity index is a measure of the degree of mod-
ularity of a network structure and is commonly used to represent the system’s resistance
to external interference. The higher the modularity index, the stronger the resistance to
external interference [25]. According to our results, for the bacterial molecular ecological
network, average path distance and modularity index in the topsoil of native tree plan-
tations were significantly greater than those in the middle layer and subsoil (Table 2 and
Figure 1), conforming to the study by Bai et al. [36] on the modularity index of bacterial
network structure in paddy soil, indicating that topsoil bacterial community structure
remained relatively stable when the external environment changed; however, the bacterial
community structure in the other two soil layers was easily disturbed.

Module connectors and hubs represent the key species during community composition
and have a critical effect on keeping community structural stability [27]. Their removal
can cause significant changes in structures and functions of bacterial communities [37]. In
this study, we found that the modular hubs and connectors of soil bacteria networks on
plantations increased with increasing soil depth (Figure 3), indicating the relative stability
of topsoil bacterial communities. However, more modular hubs and connectors were
needed in the middle and bottom layers for maintaining bacterial community structural
stability. Meanwhile, Firmicutes and Actinobacteria represented key phyla within the
topsoil; Proteobacteria, Planctomycetes, Acidobacteria, and Chloroflexi within middle
layer; and Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, Firmicutes, and
Verrucomicrobia within the subsoil (Figure 4). This is because Firmicutes, Actinobacteria,
Proteobacteria, and Acidobacteria were relatively abundant in each soil layer (Figure 4)
and were more likely to survive under environmental interference and participate in
constructing the molecular ecological network structure [38]. Additionally, different types
of bacteria have varied life forms and functions. For example, Acidobacteria have a slow
metabolism and easily become key species when their living environment is affected. They
are all important participants in biochemical cycling processes such as carbon and nitrogen
cycling in the soil. Firmicutes can improve the phosphorus content in the soil as phosphate-
solubilizing bacteria and participate in nitrogen fixation [39] and have an important effect
on lignocellulose degradation [40]. Actinobacteria are often involved in the degradation
of some stable polymer compounds, such as lignin and cellulose, and also have a crucial
effect on soil carbon source decomposition [41,42]. Chloroflexi promote starch degradation
and accelerate the anti-interference ability of functions related to the carbon cycle [43].

Soil physicochemical characteristics such as soil carbon, nitrogen, and phosphorus
content are the main energy sources and nutrients of soil bacteria [44] and are also key
factors that regulate different structures of soil bacterial communities among different soil
layers [45]. This study found that soil NH4

+-N and TP were critical factors that affect
topsoil bacterial molecular ecological network structure, while SOC and AP were the key
factors affecting the bacterial molecular ecological network structure within the middle
layer; additionally, SOC and NO3

−-N accounted for critical factors that affected subsoil
bacterial molecular ecological network structure (Figure 5). Based on the results, bacterial
molecular ecological network structures among different soil layers were significantly
affected by soil physicochemical characteristics such as SOC, NO3

−-N, NH4
+-N, TP, and

AP, partially conforming to earlier observations from subtropical broadleaved forests [46]
and dryland-to-paddy conversion [47] in China.

4.2. Function of Soil Profile Depth in Soil Bacterial Community Function

Soil bacteria represent soil microbial groups with the highest complexity and diversity,
whose potential functions are crucial for forest productivity [48]. They can directly partici-
pate in a variety of ecosystem service processes related to biogeochemical cycles, including
carbon and nitrogen cycles [49]. In this study, chemoheterotrophy and aerobic heterotrophy
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had the highest abundance in each soil layer, indicating that numerous bacteria obtain
energy and carbon by means of soil organic matter decomposition [50,51]. Pearson correla-
tion analysis further found that chemoheterotrophy and aerobic heterotrophy showed a
markedly positive relation to SOC (p < 0.05), indicating that alterations of the soil carbon
pool is the possible major factor driving soil bacterial functional group function [52]. In
addition, cellulolysis was markedly positively related to soil pH (p < 0.05), indicating that
an increase in soil pH could improve the abundance of cellulolysis and hence, promote
carbon cycling. Liang et al. found that the soil pH of different land use modes (natural
secondary forest, shrub, coniferous forest, pine, and farmland) had a significant impact
on the cellulose hydrolysis type among eastern mountain regions in Liaoning province,
China [53], conforming to our findings.

More than 80% of global nitrogen emissions can be attributed to soil microbial activ-
ity [54], mainly soil bacteria-mediated soil nitrogen cycles, including aerobic nitrification
and anaerobic denitrification [55]. In this study, the three dominant functional groups (ure-
olysis, nitrogen fixation, nitrate reduction) were involved in soil nitrogen cycling (nitrogen
fixation, nitrification, denitrification, etc.). Ureolysis was significantly different among the
topsoil, middle layer, and subsoil (p < 0.05), but the middle layer was not significantly dif-
ferent from subsoil (p > 0.05). Nitrogen fixation and nitrate reduction were not significantly
different in each soil layer (p > 0.05). Xu et al. found that ureolysis of shrubs in the Tibetan
Plateau changed significantly depending on soil profile (p < 0.05), while nitrate reduction
did not exhibit any significant difference in all soil layers (p > 0.05) [7], conforming to our
findings. Pearson correlation analysis further found that nitrogen fixation, ureolysis, and
nitrate reduction were significantly correlated with SOC, NH4

+-N, NO3
−-N, and AP. Previ-

ous studies have also shown various soil physicochemical characteristics (e.g., SOC, pH,
NH4

+-N, and NO3
−-N) significantly affected the soil bacteria-driven N cycle process [53].

Overall, this study only discussed the molecular ecological network structure and
potential function of a bacterial community in the soil profile of forest plantations in
summer and could not reflect the effect of seasonal changes on the structure and function
of the soil bacterial community.

5. Conclusions

The soil bacterial molecular ecological network structure experienced remarkable
changes owing to variation in soil chemical properties in subtropical native plantations. The
molecular ecological network structure in middle and bottom soil layer bacteria displayed
increased complexity compared with topsoil, and the interactions between bacteria were
strong. The dominant functional groups of the bacteria involved in carbon and nitrogen
cycling in each soil layer were chemoheterotrophy, aerobic chemoheterotrophy, cellulolysis,
nitrogen fixation, ureolysis, and nitrate reduction. SOC, NO3

−-N, NH4
+-N, AP, and TP

accounted for major factors that regulated differences in molecular ecological network
structure and dominant bacterial functional group abundances among the diverse soil
layers. Future studies may focus on the effects of seasonal variation on the molecular
ecological network structure and potential function of the soil bacterial community under
the planted forests in this region, which will contribute to a comprehensive understanding
of the structure and function of the soil bacterial community in forest plantations.
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