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Abstract: In this study, prior to the launch of compact advanced satellite 500 (CAS500-4), which is
an agriculture and forestry satellite, nine major tree species were classified using multi-temporally
integrated imageries based on a random forest model using RapidEye and Sentinel-2. Six scenarios
were devised considering the composition of the input dataset, and a random forest model was
used to evaluate the accuracy of the different input datasets for each scenario. The highest accuracy,
with accuracy values of 84.5% (kappa value: 0.825), was achieved by using RapidEye and Sentinel-2
spectral wavelengths along with gray-level co-occurrence matrix (GLCM) statistics (Scenario IV).
In the variable importance analysis, the short-wave infrared (SWIR) band of Sentinel-2 and the
GLCM statistics of RapidEye were found to be sequentially higher. This study proposes an optimal
input dataset for tree species classification using the variance error range of GLCM statistics to
establish an optimal range for window size calculation methodology. We also demonstrate the
effectiveness of multi-temporally integrated satellite imageries in improving the accuracy of the
random forest model, achieving an approximate improvement of 20.5%. The findings of this study
suggest that combining the advantages of different satellite platforms and statistical methods can
lead to significant improvements in tree species classification accuracy, which can contribute to better
forest resource assessments and management strategies in the face of climate change.

Keywords: tree species classification; multi-temporally integrated imageries; compact advanced
satellite 500 (CAS500-4); random forest (RF)

1. Introduction

Forest management is a critical field that is significantly impacted by climate change.
In the Republic of Korea, tree species serve as a fundamental component of forest resource
information, including basic forest statistics and annual forestry statistics. Reliable in-
formation on tree species is essential for various types of forest investigations, and the
accuracy of forest type maps is heavily dependent on the availability of such information.
However, the interpretation of forest type maps based on aerial photographs is subjective
and can vary based on the skill of the individual interpreter [1]. This underscores the
need to introduce remote sensing techniques in forest surveys, as they can significantly
reduce the actualization period and improve the sustainability, efficiency, and wide-area
detectability of forest surveys. By utilizing remote sensing in forest surveys, it is possible
to obtain reliable and consistent information on tree species that is critical for effective
forest management.

An effective methodology for tree species classification that matches the actual species
present in the Republic of Korea’s forests requires a combination of high-resolution satellite
imageries and ground data. The ground data should include information on forest type,
species, structure, and topography, which can be used to train and validate the classification
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model. Additionally, the integration of multi-temporal images can analyze the seasonal
and spatial variations of the forest and improve the overall accuracy of the classification.
Previous studies on tree species classification based on satellite imagery have primarily
used spectral characteristics [2,3]. However, the method is mainly used to distinguish forest
types, such as broad-leaved or needle-leaved forests, because it is challenging to classify
species with similar spectral characteristics using multi-spectral bands of satellite imageries.
In addition, the limited availability of domestic satellite imagery in the Republic of Korea’s
forest sector has led to the utilization of overseas satellite images such as Sentinel, Landsat,
and MODIS. To address this, the government plans to develop a next-generation, medium-
sized satellite to meet public demand. CAS500-4, with a spatial resolution of 5 m and five
spectral bands, was developed as a result of a feasibility study and is set to launch in 2025.
Its main objective is to monitor and evaluate forest resources on the Korean Peninsula.
Furthermore, the satellite has a short time resolution of 1–3 days, which allows for wide-
area monitoring in the Republic of Korea. Applying a classification model learned from a
single-period image classification for nationwide tree species classification has limitations
due to the risk of overfitting [4]. Thus, it is necessary to use multi-temporal imageries
because the spectral characteristic values vary even in the same tree species depending on
the time or region of satellite imagery acquisition [5–10]. The lack of red-edge and/or SWIR
bands makes the data insufficient, particularly for ecosystem monitoring and management.
Currently, there are no domestic satellites that include WVP or SWIR bands; therefore,
satellites such as Landsat and Sentinel need to be used for analyzing forest resources. Since
RapidEye and Sentinel satellite imageries differ in spatial and spectral resolutions from
those of CAS500-4, some errors may occur during integration of heterogeneous imageries.
Nevertheless, studies using integrated images for classification by combining specific
bands have been conducted, and it is clear that the classification accuracy of tree species
has improved [11,12].

The forest-type map is produced by digitizing aerial photographs and confirming
forest-type division and attribute information through field surveys. Although it is difficult
to visually interpret the morphological characteristics of these crowns using satellite im-
ageries, the difference in wavelength according to the characteristics of the crowns has been
estimated to be calculable in many studies [9,13–18]. These results confirm the importance
of texture information in tree species classification analysis. The growth patterns of trees
are highly dependent on environmental conditions such as precipitation and atmospheric
temperature. Multi-temporal vegetation indices provide intrinsic phenomenological char-
acteristics for each tree species [19,20]. Forest types can be characterized by seasonal (or
climatological) changes in vegetation indices [21,22]. The research on the classification
of the Republic of Korea mainly focuses on forest type classification, such as coniferous,
broadleaf, and mixed forests, rather than classification by tree species. In particular, there
is still a limitation that studies on the classification of non-native species in the Republic
of Korea have been conducted using low-resolution time series images [20]. Therefore,
it is necessary to develop an effective tree species classification methodology that uses
high-resolution images to match the species actually present in the forests of the Republic
of Korea.

This study investigates the effectiveness of multi-temporal satellite imagery integra-
tion for ecosystem monitoring and management through forest resource analysis. The
study emphasizes the necessity of using multi-temporal imageries to capture the variability
in spectral characteristic values of tree species. The study also highlights the insufficiency of
domestic satellites in terms of including red-edge and/or SWIR bands for ecosystem moni-
toring and management, and proposes the use of Sentinel-2 for analyzing forest resources.
Overall, the study aims to enhance ecosystem monitoring and management through tree
species classification using the integration of multi-temporal satellite imageries.
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2. Materials and Methods

The research flow for tree species classification is shown in Figure 1. It involved
pre-processing of multi-temporal images from RapidEye and Sentinel-2, preparation of
input datasets comprising wavelengths, gray-level co-occurrence matrix (GLCM) of NIR
band, and vegetation indices, and conducting Jeffries–Matusita Distance (JMD) analysis
to identify separation of variables. Random forest models were run using different input
data combinations in Scenarios I, II, III, IV, V, and VI. These scenarios consisted of different
combinations of input materials, with Scenarios I–III using RapidEye images and Scenar-
ios IV–VI integrating Sentinel-2 images with wavelengths not present in RapidEye. We
aimed to determine which combination of input data was most effective for tree species
classification by using various combinations of input data as shown below (* RE: RapidEye;
S2: Sentinel-2):

− Scenario I—wavelengths of RE;
− Scenario II—wavelengths of RE, GLCM statistics;
− Scenario III—wavelengths of RE, GLCM statistics, vegetation indices from RE;
− Scenario IV—wavelengths of RE and S2, GLCM statistics;
− Scenario V—wavelengths of RE and S2, GLCM statistics, vegetation indices from RE;
− Scenario VI—wavelengths of RE and S2, GLCM statistics, vegetation indices from RE

and S2.

Figure 1. Research flow for the study.

2.1. Study Sites

This study was conducted in the area of the Korea National Arboretum (KNA) located
in the Gwangneung Forest between Namyangju and Pocheon City in Gyeonggi Province,
Republic of Korea (37◦42′ N–37◦49′ N, 127◦5′ E–127◦13′ E) (Figure 2). The Gwangneung
Forest was a royal forest surrounding King Sejo’s tomb during the Joseon Dynasty and has
been strictly maintained to minimize human disturbance for over five hundred years [23].
Established in 1987, the KNA has 15 specialized botanical gardens, forest museums, herbar-
iums, and seed banks. It has been open to the public since 1999 and was designated as
a UNESCO Biosphere Reserve in June 2010. The KNA focuses on research, collection,
classification, and conservation of forest species, as well as forest environment education.
It is also committed to the restoration and conservation of rare and native plants. Analysis
of meteorological data from Dongducheon, which is geographically close to Gwangneung
Forest, shows that the average annual rainfall, temperature, and wind speed between 1981
and 2010 were 1503 mm, 11.2 ◦C, and 1.6 m/s, respectively [23]. According to data collected
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between 2011 and 2015, the average annual rainfall was 1378 mm, the average temperature
was 15.7 ◦C, and the average wind speed was 1.6 m/s. Gwangneung Forest is mainly
distributed on weathered and metamorphic rocks, including gneiss and schist [23].

Figure 2. Boundary of study area.

2.2. Pre-Processing of Satellite Imageries

Tree species classification was performed using satellite imageries from RapidEye
and Sentinel-2. Sentinel images can be downloaded for free through the Copernicus Open
Access Hub of the European Space Agency (ESA) “https://scihub.copernicus.eu/ (accessed
on 3 April 2023)”. However, RapidEye images must be purchased through contracted
vendors as they are commercial and not freely available. The usability of CAS500-4, which
has similar specifications to RapidEye, was confirmed through its use in the study, with
a total of five spectral bands and a spatial resolution of 5 m. Integrated bands were also
created using Sentinel-2 images with WVP and SWIR bands, which were not available
in CAS500-4, but were expected to have a significant impact on the accuracy of tree
species classification. Given that broad-leaved forests often exhibit large differences in the
presence or absence of leaves and shape depending on the season, multi-temporal images
were selected based on the growing season for each species in the broad-leaved forests
(Table 1). For Sentinel-2 and RapidEye images, geometric and orthometric corrections were
performed based on a refined forest-type map and digital elevation map. In addition, in
order to equalize the spatial resolution, the resampling and snap functions were used to
adjust the spatial resolution of Sentinel-2 to RapidEye.

https://scihub.copernicus.eu/
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Table 1. Comparison and information of satellites’ specification.

Satellite Spatial
Resolution (m)

Time
Resolution

(Days)

Swath Width
(km) Spectral Bands

Center
Wavelength

(nm)

Band Width
(nm)

CAS500-4 5 1~3 125

Blue 490 65

Green 560 35

Red 665 30

Red Edge 705 15

NIR 842 115

RapidEye 5 5.5 77

Blue 475 70

Green 555 70

Red 657.5 55

Red Edge 710 40

NIR 805 90

* Acquisition date of RapidEye imageries: 8 March 2019, 26 May 2019, 4 July 2019, 24 September 2019, 5
December 2019.

Sentinel-2

60

5 290

Coastal aerosol 443 20

10
Blue 490 65

Green 560 35

Red 665 30

20
Red Edge 705 15

Red Edge 740 15

Red Edge 783 20

10 NIR 842 115

20 Red Edge 865 20

60
Water vapor 945 20

SWIR-Cirrus 1375 30

20
SWIR 1610 90

SWIR 2190 180

* Acquisition date of Sentinel-2 imageries: 27 March 2019, 23 May 2019, 30 September 2019.

To ensure the accuracy of the imageries, orthometric corrections were performed
for both Sentinel-2 and RapidEye images based on a refined forest-type map and digital
elevation map. Moreover, to equalize the spatial resolution of the images, the resam-
pling and snap functions were employed to adjust the spatial resolution of Sentinel-2 to
that of RapidEye.

The RapidEye images used in this study were obtained at Level 1B and underwent
pre-processing stage consisting of radiation and geometric corrections. In order to perform
atmospheric correction, the quick atmospheric correction (QUAC) model was utilized,
which is a method for atmospheric correction of hyper-spectral and multi-spectral images
from visible light to near-infrared and short-wave infrared regions [24].

QUAC is a simple and effective method that uses the spectral reflectance and charac-
teristics of the image itself, without requiring any physical characteristics of the sensor or
prior information at the time of shooting. The method involves dividing the image into
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several end members, each representing an independent field of view. Equation (1) shows
the mathematical formula used for this process:

p =
(p1 + p2 + · · ·+ pn)

n
(1)

where n indicates the number of end members.
For atmospheric correction of RapidEye, the wavelength values of the already at-

mospherically corrected Sentinel-2 Level-2A images were used as a comparison target,
and the corrected RapidEye images were compared to these values. After atmospheric
correction, the difference in wavelength range of the simultaneous RapidEye image was
corrected to less than 5%. Figure 3a,b show the wavelength range before and after atmo-
spheric correction of RapidEye, while Figure 3c shows the wavelength range of the already
atmospherically corrected Sentinel-2 images.

Figure 3. Comparison of the Statistics of Wavelengths for Atmospheric Correction. (a) RapidEye: be-
fore atmospheric correction; (b) RapidEye: after atmospheric correction; (c) Sentinel-2: level 2a image.

2.3. Texture Analysis

The gray-level co-occurrence matrix (GLCM) is a remote sensing technique that quanti-
tatively reflects the texture characteristics of tree species [25,26]. GLCM, developed by [27],
is a well-known technique in remote sensing for producing texture information by consid-
ering the relationship between pixels. GLCM has been widely used in tree species and land
cover classification using texture [7,18,28,29].

GLCM represents the distance and angle relationship of a specific area of an image
of a specified size. Texture is quantitatively expressed by measuring the simultaneous
occurrence frequency of grayscale pixel brightness value pairs in a user-defined mov-
ing window. In this study, seven types of GLCM were extracted according to statistics:
mean, variance, homogeneity, contrast, dissimilarity, entropy, and angular second mo-
ment (Equations (2)–(8)). GLCM is a matrix indicating the frequency represented by the
corresponding pixel pair with gray-level (i, j) for the distance and direction in the image.
Contrast, dissimilarity, and homogeneity are related to the contrast and homogeneity of
brightness, and entropy and angular second moment are related to regularity. The window
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size used in the generation of texture information inevitably affects the accuracy of tree
species classification [30–32].

MEAN =
quantk

∑
i=0

quantk

∑
j=0

i× hc(i, j) (2)

VARIANCE =
quantk

∑
i=0

quantk

∑
j=0

(i− µ)2 × hc(i, j) (3)

HOM =
quantk

∑
i=0

quantk

∑
j=0

1

1 + (i− j)2 × hc(i, j) (4)

CON =
quantk

∑
i=0

quantk

∑
j=0

(i− j)2 × hc(i, j)2 (5)

DIS =
quantk

∑
i=0

quantk

∑
j=0

hc(i, j)2 × |i− j| (6)

ENT =
quantk

∑
i=0

quantk

∑
j=0

hc(i, j)× log[hc(i, j)] (7)

ASM =
quantk

∑
i=0

quantk

∑
j=0

hc(i, j)2 (8)

where quantk is the quantization level of band k (e.g., 28 = 0 to 255) and hc(i, j) is the (i, j)th
entry in one of the angular brightness value spatial-dependency matrices.

2.4. Vegetation Indices

The vegetation indices were utilized as inputs for deep learning to investigate their
influence on tree species classification. Ten vegetation indices were computed using multi-
spectral data acquired by RapidEye and Sentinel-2 sensors. The RapidEye-derived vegeta-
tion indices were difference vegetation index (DVI), green normalized difference vegetation
index (GNDVI), infrared percentage vegetation index (IPVI), normalized difference index
(NDI34), normalized difference vegetation index (NDVI), ratio vegetation index (RVI),
and transformed normalized difference vegetation index (TNDVI). The Sentinel-2-derived
vegetation indices include global vegetation moisture index (GVMI), normalized burn ratio
(NBR), and simple MIR/NIR ratio drought index (RDI). Table 2 provides details of the
vegetation indices used in this study.

Table 2. Vegetation Indices Derived from RapidEye and Sentinel-2.

Satellite Wavelength Indices Formula Reference

RapidEye Visible and Near Infrared
(VNIR)

Difference Vegetation
Index
(DVI)

BNIR − BRed
Pettorelli et al., 2005

[33]

Green Normalized
Difference Vegetation

Index
(GNDVI)

BNIR−BGreen
BNIR+BGreen

Buschmann and Nagel, 1993
[34]

Infrared Percentage
Vegetation Index

(IPVI)

BNIR
BNIR+BRed

Crippen, 1990
[35]
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Table 2. Cont.

Satellite Wavelength Indices Formula Reference

Normalized Difference
Index (NDI34)

BRed edge−BRed
BRed edge+BRed

Delegido et al., 2011
[36]

Normalized Difference
Vegetation Index (NDVI)

BNIR−BRed
BNIR+BRed

Rouse et al., 1974
[37]

Ratio Vegetation Index
(RVI)

BNIR
BRed

Major et al., 1990
[38]

Transformed Normalized
Difference Vegetation

Index
(TNDVI)

√
BNIR−BRed

(BNIR+BRed)+0.5

Senseman et al., 1996
[39]

Sentinel-2

Visible and Near Infrared
(VNIR),

Short-wave Infrared
(SWIR)

Global Vegetation
Moisture Index (GVMI)

(BWVP+0.1)−(BSWIR+0.02)
(BWVP+0.1)+(BSWIR+0.02)

Ceccato et al., 2002
[40]

Normalized Burn Ratio
(NBR)

BWVP−BSWIR
BWVP+BSWIR

Key et al., 2002
[41]

Simple Ratio MIR/NIR
Ratio Drought Index (RDI)

BSWIR
BWVP

Ill and McLeod, 1992
[42]

2.5. Spectral Separability and Similarity Analysis

The Jeffries–Matusita Distance (JMD) was utilized to assess the spectral separability
between different tree species in the input data. JMD is a distance metric that ranges from 0
(identical distributions) to 1.414 (complete dissimilarity) and is frequently used to quantify
the degree of separation [43–45]. Equation (9) was employed to compute the JMD between
the probability distributions of the classification categories.

Ji, j =
∫

x

√
p(x|wi) −

√
p (x

∣∣wj)
2dx (9)

where i and j represent two classification categories, and p(x|wi) represents the probability
density function of variable x in category i. p(x|wj) represents the probability density
function of variable x in category j.

The JMD is a measure of the average distance between the density functions of the
two categories. If the classification category follows a normal distribution, the expression
can be expressed in terms of the Bhattacharyya distance (Equations (10) and (11)).

Ji, j = 2
(

1− e−B
)

(10)

B =
1
8
(
mi −mj

)t ∑i +∑j
(
mi −mj

)
2−1

1
2

ln

∣∣∣(∑i +∑j /2
∣∣∣∣∣∣∑i|

1/2
∣∣∣∑j

∣∣∣1/2 (11)

where mi and mj represent the means of variable x in categories i and j, respectively, and
∑I, ∑j represent the covariance matrices of variable x in categories i and j, respectively. ln
represents the natural logarithm.

JMD is a method for measuring the difference between two probability distributions,
which can be used to understand the spectral characteristics of each tree species and
select variables that can be used as independent variables in a random forest model. To
comprehend the spectral characteristics of each tree species, the wavelength reflectance
data was extracted from all points within the study area. The JMD values were then
computed by taking the average of the spectral values for each species. In order to utilize
an independent variable in the random forest models, there must be a discernible difference
between the factors. If the machine learning model is trained with the same or similar input
dataset, the reliability of the input may decrease, resulting in a reduction in classification
accuracy. Thus, separate variables derived from vegetation indices should be utilized as
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independent variables for training the model only when the degree of separation between
variables varies significantly.

2.6. Refined Forest Type Map

The forest type map was utilized as a primary data source for tree species classification.
The forest type map is a commonly used forest map in the Republic of Korea, which
provides various attributes such as tree type, tree species, diameter, age, and crown density,
and is one of the major theme maps produced by national institutions on a national
scale. The forest type map, with a scale of 1:5000, was field surveyed from 2006 to 2019,
and was used to set the true value of the tree species in the random forest models. The
forest type map was investigated in units of stands and was corrected by considering the
field information. Additional investigations were conducted by [46] to identify changes
in misclassified species, which were then corrected with data from field surveys using
electronic equipment, such as global positioning system (GPS) and Vertex. The field surveys
were conducted on trees with a diameter at breast height (DBH) of 6 cm or higher for the
major tree species and species with a high occupancy rate. The area of one standard plot
was 0.04 ha (20 m × 20 m), and a total of 513 sample plots were selected based on the status
of the tree species from the precise field survey.

The study area, Gwangneung region, has a forest cover mainly consisting of nine
tree species, namely P. densiflora, P. koraiensis, L. kaempferi, Pinus rigida, A. holophylla,
Quercus acutissima, Quercus (aliena, dentata, serrata), C. crenata, and R. pseudoacacia (Figure 4).
These nine tree species occupy more than 55% of the total forest area distributed throughout
the Republic of Korea [23,47]. The total distribution area of tree species in the study site was
28,200 ha, with P. densiflora covering 2702 ha (9.58%), P. koraiensis covering 6682 ha (23.70%),
L. kaempferi covering 4063 ha (14.41%), P. rigida covering 4342 ha (15.40%), A. holophylla
covering 786 ha (2.79%), Q. acutissima covering 296 ha (1.05%), Quercus (aliena, dentata,
serrata) covering 8309 ha (29.46%), C. crenata covering 840 ha (2.98%), and R. pseudoacacia
covering 180 ha (0.64%).

Figure 4. Cont.
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Figure 4. Photographs of Nine Tree Species Used in the Study (Wikipedia, 2023).

2.7. Random Forest Model for Tree Species Classification

According to [48], the Random Forest (RF) model is a machine learning technique
designed to explain the spatial relationships between variables by generating multiple
decision trees. RF creates an ensemble of decision trees, forming a forest of multiple decision
trees, and performs predictions using the majority rule or average values. Unlike linear or
logistic regression models, RF does not provide information on the statistical significance of
individual variables. Instead, RF determines variable importance indirectly in three steps:

I. Calculating the out-of-bag (OOB) error from the raw data set.
II. Calculating the OOB error for the dataset in which the values of specific variables are

randomly mixed.
III. Determining individual variable importance by considering the mean and variance of

the difference between OOB errors in steps 1 and 2.

The use of RF in tree species classification models offers several advantages [48]. Firstly,
RF exhibits high accuracy even in the presence of multicollinearity between variables, and
there is no need to remove unnecessary variables as it considers the interaction between
variables in decision-making. Secondly, RF uses ensemble learning to avoid overfitting
by combining multiple decision trees, leading to higher prediction accuracy compared
to models that use a single decision tree. Thirdly, RF can evaluate variable importance,
making it useful for feature selection and extraction. Fourthly, RF can evaluate model
performance through OOB error, which is more effective than performing cross-validation
as it uses data that was not used in model training. Finally, many studies have shown that
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RF outperforms other classification techniques, making it an effective tool for achieving
high classification accuracy in tree species classification models.

Variable importance can be measured using the mean decrease Gini (MDG), which
measures the extent to which a variable reduces the Gini impurity metric in a particular
class [48,49]. RF also provides an OOB estimate of the error rate, which can be used to
select the best model [16,50,51]. Previous studies have shown that RF outperforms other
classification techniques [52–55]. To create the RF model in this study, bootstrap sampling
with a sample size of n was performed on the training set, and an optimal classifier was
selected at the end of this process. A final ensemble model of decision trees was created,
and the calculation of the class of each decision tree is called classification, and the resulting
average prediction value is called regression [56]. For nine species based on the refined
tree-type map, 5000 points per species were extracted, and a total of 45,000 sample points
were randomly generated. Of all sampled points, 70% were used as the training data set,
and the remaining 30% were set as OOB, which was used to evaluate the model without
using it for training.

3. Results
3.1. Gray-Level Co-Occurrence Matrix (GLCM)

In the GLCM analysis, the variability of GLCM statistics can be significantly influenced
by the size of the analysis target area and the window size, which should be considered
based on the spatial resolution and texture of the input data. To select an appropriate
window size for the study area, the number of windows was increased by 4 pixels to
account for the influence of each tree species, and the number was increased 13 times from
3 × 3 pixels to 51 × 51 pixels, based on the window size.

Seven types of GLCM statistics were calculated using the NIR band of multi-temporal
RapidEye imageries. The x-axis of Figure 5 represents the increasing pixels by 4, while
the y-axis indicates the variability of each statistic by normalization to the range of 0–1.
The lower the variability value in the graph, the higher the similarity of the pixel value
for each species. Overall, the graph shows that when the window size is mostly below
11 × 11 pixels, the variability value per pixel is largely large for all species. However,
increasing the window size indiscriminately leads to the loss of raw data due to the
padding that fills the space with 0, and the excessive blurring of image texture, making it
difficult to differentiate between tree species. In this study, a window size of 31 × 31 pixels
was chosen as the appropriate size, as it minimizes variability by tree species and reduces
data loss to a minimum.
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3.2. Spectral Separability and Similarity

The JMD (Jeffries–Matusita Distance) value, which represents the similarity between
the spectral values of different tree species, was calculated by taking the average of the
spectral values for each species. The separation value between P. koraiensis and L. kaempferi
was found to be 0.009, which was very small, indicating a high degree of similarity between
these two species. On the other hand, A. holophylla and Q. acutissima exhibited the most
distinct spectral patterns, with a separation value of 0.287, which was in line with the
characteristic differences between needle-leaved and broad-leaved trees. The average
degrees of separation between broad-leaved and needle-leaved trees were found to be 0.060
and 0.040, respectively. This suggests that there is a spectral difference between these two
types of trees. While the overall JMD value for all tree species appeared to be low at 0.110
on average, the difference by wavelength band was notable, particularly in the NIR and
SWIR bands (Table 3; Figure 6).

Table 3. Jeffries–Matusita Distance (JMD) Values of Wavelengths in Tree Species.

S1 S2 S3 S4 S5 S6 S7 S8

S2 0.016
S3 0.023 0.009
S4 0.039 0.024 0.023
S5 0.134 0.119 0.115 0.096
S6 0.158 0.173 0.176 0.196 0.287
S7 0.116 0.130 0.133 0.154 0.245 0.046
S8 0.107 0.121 0.125 0.145 0.237 0.053 0.010
S9 0.084 0.099 0.102 0.122 0.215 0.076 0.032 0.023

S1: Pinus densiflora, S2: Pinus koraiensis, S3: Larixkaempferi (Lamb.) Carrie ‘re, S4: Pinus rigida, S5: Abies holophylla
MAX, S6: Qeurcus acutissima, S7: Quercus (aliena, dentata, serrala), S8: Castanea crenata, S9: Robinia pseudoacacia.

Figure 6. Spectral Distribution according to the Tree Species.

The average JMD values of RapidEye and Sentinel-2 reflectance, vegetation indices,
and GLCM statistics were 1.233, 1.329, and 1.125, respectively. The smallest JMD value
was 0.668, which indicated the separation between SWIR-1 and SWIR-2 in the wavelength
reflectance. The separation between SWIR-1 and red-edge was also relatively small, with
a difference of 0.699. However, these values still showed sufficient separation among the
statistics. The vegetation indices exhibited high JMD values, indicating sufficient separation
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between the indices. Although the dissimilarity and angular second moment of GLCM
statistics had the lowest JMD value of 0.175, their separation with other GLCM statistics
was still sufficiently high, and therefore, all GLCM statistics were included as input data.
Overall, the independent variables demonstrated a sufficiently high degree of separation
for all indices, and therefore, they were deemed suitable for use in model evaluation.

3.3. Random Forest based Tree Classification using Multi-Temporally Integrated Satellite Imageries

The Random Forest (RF) algorithm was employed to classify tree species in different
scenarios using various combinations of remote sensing data. In Scenario I, using only
the spectral wavelengths of RapidEye, the tree species classification accuracy was 64.0%
(kappa value: 0.595). In Scenario II, incorporating both RapidEye’s spectral wavelengths
and GLCM statistics, the classification accuracy improved significantly to 83.2% (kappa
value: 0.812). The inclusion of GLCM information alone increased the accuracy by 19.2%,
highlighting the importance of texture information in tree species classification. Despite
the difficulty in visually interpreting the morphological characteristics of tree crowns in
satellite imageries, numerous studies have demonstrated the statistical differences between
tree species using GLCM [7,14–18].

In Scenario III, where vegetation indices produced by RapidEye were added to
Scenario II, the accuracy decreased by 3.6% to 79.6% (kappa value: 0.796), suggesting
that adding various vegetation indices with similar patterns may lower the accuracy of
tree species classification, although each vegetation index may have an impact on the
model [21,22]. In Scenario IV, where the spectral wavelengths of Sentinel-2 were added
to Scenario II, the model achieved the highest accuracy of 84.5% (kappa value: 0.825).
Compared to Scenario II, the accuracy increased by 1.3%, confirming the positive effects of
the SWIR and WVP bands on the classification [12,13].

Adding vegetation indices produced by RapidEye in Scenario V, where Scenario IV
was used as the base, resulted in a slightly decreased accuracy of 81.6% (kappa value: 0.793),
similar to the result of Scenario III. In Scenario VI, where all the factors were used, the
inclusion of Sentinel-2’s vegetation indices in Scenario V increased the accuracy to 83.3%
(kappa value: 0.801). The tree classification accuracy of RF ranged from 64.0% (kappa value:
0.595) to 84.5% (kappa value: 0.825), demonstrating that the classification accuracy varied
significantly with the combination of input data. The difference between the maximum and
minimum accuracies for each scenario was 20.5%, indicating a significant improvement in
tree classification. Among the scenarios tested, Scenario IV was identified as the best one
(Table 4; Figure 7).

Table 4. Overall Results of Random Forest Model by Scenarios.

Scenario User Accuracy 95% CI p-Value Kappa Value

I 0.640 (0.631, 0.649) <2.2 × e−16 0.595

II 0.832 (0.825, 0.839) <2.2 × e−16 0.812

III 0.796 (0.788, 0.803) <2.2 × e−16 0.770

IV 0.845 (0.838, 0.851) <2.2 × e−16 0.825

V 0.816 (0.809, 0.823) <2.2 × e−16 0.793

VI 0.833 (0.826, 0.840) <2.2 × e−16 0.801
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Figure 7. Cont.
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Figure 7. Map of tree species by scenarios using Random Forest.

In the Random Forest (RF) results, the variable importance was expressed by the mean
decrease in the Gini value. The integration of Sentinel-2’s SWIR band was found to have
the greatest influence on tree species classification, confirming the importance of image
integration. Additionally, the variable importance was relatively high in the WVP band and
all GLCM statistics (Figure 8). Although the influence of blue, green, and red was relatively
low, it is unlikely that the low variable importance significantly reduced the classification
accuracy. Further analysis, such as the effect of each variable on classification accuracy
using linear or multiple regression methods, is required to prove this. This study used
a combination of input datasets that have been shown to sufficiently affect tree species
classification in previous studies. However, the quantitative impact range of the input
dataset requires additional verification from other models.

The classification accuracy for each species ranged from 79.8% for P. koraiensis to 96.9%
for R. pseudoacacia. The average classification accuracies for needle-leaved and broad-leaved
trees were 86.2% and 91.1%, respectively (Table 5). The results showed that the classification
accuracy was higher for broad-leaved trees, in which the time-series effect was prominent
due to the use of multi-temporal imageries.
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Figure 8. Variable Importance Plot from Random Forest.

Table 5. Comparison of Classification Accuracy by Tree Species using Random Forest.

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9

I 0.745 0.741 0.830 0.776 0.846 0.852 0.748 0.737 0.901

II 0.874 0.811 0.903 0.862 0.957 0.983 0.842 0.943 0.985

III 0.849 0.798 0.873 0.851 0.936 0.969 0.823 0.898 0.975

IV 0.881 0.808 0.915 0.877 0.960 0.984 0.858 0.949 0.989

V 0.857 0.802 0.896 0.861 0.944 0.975 0.837 0.924 0.981

VI 0.863 0.807 0.899 0.866 0.953 0.977 0.835 0.928 0.985

Average 0.845 0.795 0.886 0.849 0.933 0.956 0.824 0.896 0.969

Rank 7 9 5 6 3 2 8 4 1

S1: Pinus densiflora, S2: Pinus koraiensis, S3: Larixkaempferi (Lamb.) Carrie ‘re, S4: Pinus rigida, S5: Abies holophylla
MAX, S6: Qeurcus acutissima, S7: Quercus (aliena, dentata, serrala), S8: Castanea crenata, S9: Robinia pseudoacacia.

4. Discussion

Tree species classification using satellite imagery is a challenging task due to the
complex nature of the forest ecosystem and the inherent variability in satellite imagery
data. However, recent advancements in satellite technology, including high-resolution
spatial and temporal data, multispectral data, and machine learning algorithms, have made
accurate tree species classification feasible. In this paper, we compared the accuracy of tree
species classification across different scenarios using multi-temporal integrated satellite
imagery and achieved a maximum accuracy of 84.5% (kappa value: 0.825). The current
state-of-the-art methods for tree species classification using satellite imagery primarily rely
on machine learning algorithms, including deep learning, random forests, and support
vector machines. These algorithms use spectral, textural, and contextual features extracted
from satellite imagery to classify trees into different species. Despite the advancements
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in tree species classification using satellite imagery, there are still several challenges and
limitations that need to be addressed. One of the key challenges is the lack of ground-truth
data for training and validating machine learning algorithms. In this regard, future research
should focus on collecting high-quality ground-truth data and developing methods for
incorporating this data into machine learning algorithms. Another challenge is the need
to account for the variability in satellite imagery data due to atmospheric conditions,
sensor noise, and image acquisition parameters. In this regard, future research should
focus on developing methods for pre-processing satellite imagery data to account for these
sources of variability. Moreover, future research should focus on the integration of multi-
temporal imageries to capture the temporal changes in the forest ecosystem, which can
help in identifying and mapping different forest types, tracking individual tree growth
and health, and capturing seasonal changes in the ecosystem. This information can also be
used to classify trees based on their phenology and to monitor forest disturbances such as
forest fires and insect outbreaks. Future research should also focus on the development
of novel machine learning algorithms that can effectively integrate spectral, textural, and
contextual features from satellite imagery data for accurate and comprehensive tree species
classification. Tree species classification using satellite imagery has the potential to support
forest inventory, management, and conservation.

Tree classification using satellite imagery is a significant area of research in remote
sensing, forestry, and ecology. Accurate tree classification is essential for forest inven-
tory, monitoring, and management, particularly under climate change. Multi-temporal
imagery is a crucial factor in achieving accurate tree classification. It provides information
about the temporal changes in the forest ecosystem and can help identify and map differ-
ent forest types, track individual tree growth and health, and capture seasonal changes.
This information can also be used to classify trees based on their phenology and monitor
forest disturbances such as fires and insect outbreaks. Furthermore, the integration of
multi-temporal satellite imagery provides several advantages for achieving accurate tree
classification. Firstly, it provides high spatial and temporal resolution data that can capture
the variability in the forest ecosystem. Secondly, multispectral data provided by satellite
imagery can capture the spectral response of vegetation in different wavelengths, provid-
ing information on health, growth, and species, thereby improving the accuracy of tree
classification. Thirdly, satellite imagery provides a large coverage area, making it possible
to identify and map different forest types. Fourthly, satellite imagery provides an objective
way of collecting data, reducing errors and biases associated with traditional ground-based
methods. Finally, satellite imagery is cost-effective and allows for repeatable measurements
over time, which can provide insights into the long-term changes in the forest ecosystem.
Overall, the integration of satellite imagery is critical for accurate tree classification and
offers several advantages, including high spatial and temporal resolution, multispectral
data, large coverage area, objectivity, and cost-effectiveness, which are essential for forest
inventory, monitoring, and management.

The utilization of texture information such as Gray-Level Co-occurrence Matrix
(GLCM) is crucial for performing tree classification using satellite imagery. In this study,
the optimal window size of 31 × 31 was extracted. Window size plays an important role
in calculating the Gray-Level Co-occurrence Matrix (GLCM). It determines the size of the
window used to calculate GLCM. When the window size is small, GLCM reflects local
image features and is sensitive to noise. On the other hand, when the window size is large,
GLCM reflects overall image features and may miss detailed information. Moreover, even
with the same window size, the GLCM values may vary depending on the location in the
image. This is because the pixel values within the window vary depending on the size
and location of the object in the image. To reduce this error range, multiple window sizes
can be used to calculate GLCM values and then averaged. Therefore, when extracting
GLCM, it is important to consider the error range caused by the window size and select
an appropriate window size. Using multiple window sizes and averaging them can also
improve the accuracy of the extraction results.



Forests 2023, 14, 746 20 of 22

Various factors can affect the accuracy of tree species classification. These factors
include spectral variability due to differences in canopy structure, pigment content, and
phenological cycles; environmental factors such as soil type, topography, and climate; and
confusion with other species that may have similar spectral characteristics. For instance,
coniferous trees such as pine and spruce may be challenging to differentiate based on
their spectral signatures. To improve the accuracy of tree species classification, several
approaches can be considered. One possible direction is to incorporate other sources of
information such as LiDAR data or hyperspectral imagery, which can provide additional
information on the three-dimensional structure and spectral characteristics of the forest.
Additionally, machine learning algorithms such as Neural Networks can be used to classify
trees, considering multiple variables and interactions between them. Moreover, further
research can be conducted to investigate the potential of integrating data from different
satellite sensors, such as combining optical and radar data, to improve the accuracy of tree
species classification. Lastly, it is important to continue exploring the potential of advanced
image processing techniques such as object-based image analysis and deep learning, which
may provide more robust and accurate results for tree species classification in the future.

5. Conclusions

This study aimed to evaluate the feasibility of using satellite imagery for tree species
classification, which is essential information for the forest sector under climate change.
While the method has limitations such as lower spatial resolution and shadow effects, it
provides a quick and efficient way to analyze tree species information nationwide. In
this study, various multi-temporal imageries, GLCM, and vegetation indices were used to
improve accuracy. The study resulted in the establishment of an optimal range of window
size calculation methodology and the proposal of an optimal input dataset for tree species
classification. The accuracy was improved by approximately 20.5% using multi-temporally
integrated satellite imageries in the RF model. However, there are limitations to this study,
such as the misclassification that may occur with additional tree species and complex
heterogeneous forests. Subsequent studies can investigate the possibilities of utilizing more
advanced remote sensing technologies and machine learning algorithms to improve the
precision and versatility of tree species classification and forest monitoring across diverse
ecosystems and regions. Moreover, further research is necessary to refine the approach
and develop a more precise machine learning model, incorporating supplementary input
variables such as topography, climate factors, and LiDAR data for various ecosystems
and forest conditions. Additionally, more experiments and tests are necessary to broaden
the study area and verify the feasibility of this method. Overall, this study contributes to
improving the performance of the random forest model to a level that can be used in the
field of forestry by continuously accumulating a large amount of training data for each tree
species and applying it to the classification model.
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