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Abstract: Assessing and predicting forest fires has long been an arduous task. Nowadays, the
rapid advancement of artificial intelligence and machine learning technologies have provided a
novel solution to forest fire occurrence assessment and prediction. In this research, we developed
a novel hybrid machine-learning-technique algorithm to improve forest fire prediction based on
random forest (RF), gradient-boosting decision tree (GBDT), support vector machine (SVM), and other
machine learning models. The dataset we employed was satellite fire point data from 2010 to 2018
from the Chinese Department of Fire Prevention. The efficacy and performance of our methods were
examined by validating the model fit and predictive capability. The results showed that the ensemble
model LR (logistic regression)-RF-SVM-GBDT outperformed the single RFSVMGBDT model and
the LR-RF-GBDT integrated framework, displaying higher accuracy and greater robustness. We
believe that our newly developed hybrid machine-learning algorithm has the potential to improve
the accuracy of predicting forest fire occurrences, thus enabling more efficient firefighting efforts and
saving time and resources.

Keywords: forest fires; machine learning; hybrid model; China

1. Introduction

Large-scale forest fires can result in considerable environmental damage, atmospheric
pollution, decreased wildlife populations, altered soil composition, and the potential for
significant loss of human life and property [1]. On the other hand, small-scale forest fires
can be beneficial for plant regeneration, eradication of pests and diseases, and increased soil
fertility [2]. China is one of the countries of the world most prone to forest fires. Moreover,
forest fire risk prediction is a critical component of effective fire management and strategic
planning. Therefore, the identification of hazard areas based on fire maps is critical to the
development of effective fire management plans and the proper allocation of firefighting
resources [3,4].

Forest fires are driven by a combination of natural (e.g., topographical, vegetative,
climatic and meteorological) and anthropogenic (human-influenced) factors [5]. Accord-
ingly, methods for predicting forest fires include forest fire weather forecasting, forest
fire occurrence forecasting, and forest fire behavior forecasting [6]. In forest fire weather
forecasting, conventional methods predict the likelihood of a forest fire occurring in relation
to meteorological conditions, without consideration of the ignition source [7]. In contrast,
forecasts of forest fire occurrence should take into account a variety of factors, including
meteorological changes, forest fuel-material conditions, and the potential risk of fire occur-
rence, in order to evaluate the probability of forest fires [8]. Technically, the prognostication
of various indicators, such as the rate of propagation and the rate of energy release, or fire
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intensity, shortly following a forest fire, is known as forest fire behavior forecasting [9].
Only a comprehensive combination of these factors can result in a precise prediction [10].

Research on forest fire occurrence prediction methods and techniques can be divided
into three categories: physical approaches, statistical approaches, and machine learning
(ML) approaches [11,12]. Nowadays, researchers are increasingly devoting attention to ML
algorithms, such as random forest, support vector machine (SVM), gradient boosting deci-
sion tree (GBDT), and multilayer perceptron, which can effectively predict the occurrence of
forest fires. When used alone, these ML methods can simplify the implementation process
of the model, and model optimization and adjustment can also be more easily achieved [12].
However, especially when used in isolation, these ML methods also have some drawbacks.
For example, the utilization of ML methods necessitates immense datasets for training
and validation and is heavily reliant on the quality of the data. Additionally, its intricate
nature and propensity to rapidly evolve exacerbate its incapacity to effectively process
complex, ever-altering problems and capitalize on the information and potential features
of the data. Therefore, from our point of view, single ML prediction models have inherent
limitations. The conceptual basis and technical characteristics of ensemble techniques
possess considerable potential to contribute to the forecasting of forest fire risk [13].

In this study, our aim was to produce high-quality forest fire occurrence maps. Map-
ping the potential for forest fires is essential for forest fire risk assessment. Current research
is confined to specific geographic regions, and there is a paucity of studies on the national-
level distribution and predictive analysis of forest fires. To support an extensive spatial
analysis, satellite hotspot data are an efficient and effective method to provide scientific
data support for forest fire management and can provide the most direct and pertinent
data for forest fire risk assessment. Accordingly, the objectives of this study are to (i) eval-
uate the difference between single ML models and ensemble models for the assessment
of forest fire occurrence likelihood in China; (ii) determine the best integration of single
ML models; (iii) employ geographic spatial analysis tools, such as standard deviation
ellipses and centroid displacement, for the identification of high-risk areas and the assess-
ment of the evolution characteristics of historical forest fires in China; and (iv) develop
models utilizing readily available data to enhance the applicability and generality of
model-building techniques.

2. Data and Methods
2.1. The Study Area

China encompasses multiple climatic zones, ranging from tropical to subtropical and
temperate, exhibiting a complex and diverse spectrum of climates with pronounced north–
south variations. Its topography is characterized by highlands and plateaus in the west
and comparatively lower regions in the east, with an abundance of mountains, hills, and
other geographic entities [14]. Dense woodlands are situated in the mountainous parts of
the southeastern and southwestern regions, and there is a vast expanse of desert in the
northwestern region [15]. In comparison with developed countries with well-established
forestry industries, China has a comparatively lower-quality of forest resource and a
geographically imbalanced regional distribution. China is still a country with insufficient
forest coverage and a relatively fragile ecological environment. As shown in Figure 1, we
selected 121,691 forest fire points.

2.2. Data Sources and Method

The China National Satellite Monitoring Hotspot Data from 2010 to 2018, which were
produced by the Forest Fire Warning and Monitoring Information Center of the Ministry
of Emergency Management [16], served as an essential data source in our research. The
primary elements in this dataset consisted of temporal information, longitudinal and
latitudinal coordinates, and land type.
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Figure 1. Study area (data not available for Hong Kong, Macao, and Taiwan).

As shown in the technology roadmap (Figure 2), at the data processing stage, we
filtered the forest fire data (121,691 items) from the raw dataset. Then, a binary classification
was applied to the attribute, with a value of “1” indicating fire locations and a value of “0”
indicating non-fire locations. In the next step, we randomly generated approximately the
same number of non-fire points (127,257). Meanwhile, we validated the prediction model
using independent data in pursuit of greater reliability of the final results.

At the dataset production stage, two subsets of the forest fire ignition points were ran-
domly selected (70% of the data were used for training, and 30% of the data were used for
validation). The determinants of forest fire occurrence (with reference to our previous stud-
ies) were identified for analysis [8,12]. To be specific, we selected the following condition
factors: weather variables (mean temperature, average air pressure, average wind speed,
daily average relative humidity, daily minimum relative humidity, maximum wind speed,
and sunshine hours), topography (aspect, slope, and elevation), socioeconomic (road net-
work, residential area, Gross Domestic Product, population, and special holiday (Qingming
Festival, Hungry Ghost Festival, Spring Festival, Lantern Festival, etc.)), and vegetation
(FVC), with topography, vegetation, population, and economic data being obtained from
the Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn (accessed on 8 December 2021) and data on roads and residential
areas being obtained from https://www.webmap.cn (accessed on 18 December 2020).

2.2.1. Mann–Kendall Mutation Test

The Mann–Kendall mutation test is a method for examining temporal variability for
possible mutational changes, with the salient benefits of straightforward implementation,
high accuracy, broad assessment scope, minimal human interference, and an elevated
degree of quantification [17]. The sequence of values generated by the time series x of n
samples can be regarded as a representation of the underlying temporal dynamics. By

https://www.resdc.cn
https://www.webmap.cn
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analyzing this sequence, it is possible to gain insight into the temporal evolution of the
system that produced the data [18]:

dk = ∑ k
i=1ri (k = 2, 3, · · · , n). (1)
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The resulting sequence dk is a random-order series, obeying the normal scoring vari-
ables to calculate UF(dk) [19]:

UF(dk) =
[dk − E(dk)]√

Var(dk)
, (2)

where E(dk) represents the expected value, the variance Var(dk) represents the variance,
and the UFk is a typical normal distribution. That is, the statistical order is derived from
the time series x order x1, x2, · · · , xn, the statistics sequence by time series x reverse
xn, xn−1, · · · , x1 is calculated, the above process is repeated, and UB(dk)

= −UF(dk ) is
calculated. If the UF or UB value is greater than 0, the time series is up and down; when
these values are above or below the critical line (significance level line), it is obviously up
or down, and the range beyond the critical line is determined as the mutation time region
of the critical line [20].
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2.2.2. Standard Deviation Ellipse

Standard Deviational Ellipse (SDE) is a useful method for spatial statistics that ef-
fectively reveals the properties of the spatial distribution of geographical elements in
general [21,22]. The center of the standard deviation ellipse, as well as the center of gravity
of the geographical element, reflects the relative position of the forest fire occurrence on
the spatial distribution in two dimensions. The equation to quantify the alteration in the
position and orientation of the center is as follows [23]:

C =

[
var(x)cov(x, y)
cov(y, x)var(y)

]
=

1
n

(
∑n

i=1 X2
i ∑n

i=1 XiYi

∑n
i=1 YiXi ∑n

i=1 Y2
i

)
, (3)

where x and y are the coordinates of variable i; {X; Y} denotes the average center of the
variable; and n is the full count of variables. The direction of the long axis of the ellipse
reflects the direction of the main trend of the distribution of forest fire occurrence in two
dimensions; the direction is perpendicular to the short axis; the long and short axes show
the distribution range of the geographical elements; and the x-axis length and y-axis length
of the ellipse distribution formulae are as follows [24]:

SDEx =

√
∑n

i=1 (xi − X)2

n
, SDEy =

√
∑n

i=1 (yi −Y)2

n
, (4)

where X and Y denote the geographic coordinates (latitude and longitude) of the fire
location, and Xi and Yi represent the specific latitude and longitude coordinates of the grid
fire points. The ratio of the long and short axes is the flatness ratio, which can reflect the
spatial distribution of forest fires.

The directional angle is the angle between the long axis and the clockwise direction
due north, expressing the direction of distribution of geographical elements, calculated as
follows [24,25]:

tan θ =
A + B

C
, (5)

A = Σn
i=1
∼
x

2
i −∑n

i=1
∼
y

2
i , (6)

B =

√
(∑ n

i=1
∼
x

2
i −∑ n

i=1
∼
y

2
i ) + (∑ n

i=1
∼
xi
∼
yi)

2
, (7)

C = 2∑n
i=1 x̃i ỹi, (8)

2.2.3. Logistic Regression

Logistic regression (LR) is classified as a statistical model known as a “generalized
linear model”. Although LR is not an unsupervised ML model, it has achieved good results
in forest fire prediction [26,27]. The formula of the LR model is as follows [28]:

LogitP = ln[P/(1− P)], (9)

The LR model attains a classification effect by identifying a monotone differentiable
function that links the true label of the classification task to the estimated value of the
linear regression model. We set the probability of a forest fire occurring as P and the
probability of it not occurring as (1− P); therefore, the occurrence ratio (i.e., the ratio of the
probability of being satisfied to the probability of being dissatisfied) is Ω = P/(1− P), and
Ω is positively related to P. The model was used in this study for wildfire susceptibility
mapping by adding a fitted link function to a typical linear regression model. A logistic
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regression model is the model most commonly used to study dichotomous problems,
because it is simple, parallelizable, and interpretable [29].

2.2.4. Random Forest

The random forest (RF) model is a classifier proposed by Breiman (2001) that uses
multiple decision trees to train and predict samples [30]. A categorical regression tree
(CART) is employed as the meta-classifier while employing a bagging sampling to generate
multiple training sets. Furthermore, a put-back sampling method is utilized to draw a
subset of training samples, and a split attribute set is randomly chosen to train the sub-
regression tree model. The final result is generated by a multiple decision tree vote [31].
The formula of the RF model is as follows [32]:

h(x) =
1
T ∑ T

t=1{h(x, θt)}, (10)

where T is the number of decision trees, θt is an independent identically distributed random
vector, x is the input vector, and the final prediction is the mean of each regression subtree
{h(x, θt)}. The number of random features and trees determines the final predictive power
of the model.

The RF model is a rapid machine-learning technique, which is able to process copious
input variables and achieves a high degree of predictive accuracy; however, it is subject to
the risk of overfitting [12,33].

2.2.5. Gradient Boosting Decision Tree

A gradient-boosted decision tree (GBDT) is an iterative decision tree algorithm that
consists of multiple decision trees, with the conclusions of all the trees adding up to give
the final answer [34]. GBDT determines the parameters θ̂m for the next decision tree by loss
function reduction using the following equation [35]:

θ̂m = argmin∑ N
i=1L[yiTm−1(xi) + T(x; θm)], (11)

where T(x; θm) denotes the decision tree; θm denotes the parameters of the tree; M is the
number of trees, L(·) denotes the loss function of the decision tree T(x; θm), and Tm−1(xi)
is used to denote the current decision tree.

GBDT can explain the non-linear relationship between variables and does not assume a
linear relationship between predictor variables and response variables. The model predicts
with high accuracy and solves the problem of multiple covariance, but the GBDT model
needs to perform a large number of sorting operations in the process of implementation,
and how to implement an efficient sorting method is a challenge in itself [36].

2.2.6. Support Vector Machine

Support vector machine (SVM) models are a class of generalized linear classifier
proposed by Vapnik (1995) for binary classification of data by supervised learning [37,38].
The fundamental concept is that a non-linear mapping is applied to the input vector so
as to transform it into a high-dimensional feature space, and the optimal classification
hyperplane is then established in this space in order to augment the divergence between
positive and negative examples [39,40]. In the case of non-separability, the following
equation [39] is used to introduce the relaxation variable ξ I :

yI((w× xI) + b) ≥ 1− ξ I , (12)

Then, for misclassification introduce v(0, 1), with the following equation [41]:

L =
1
2
‖ w ‖2 − 1

vn∑ n
i=1 ξ I (13)



Forests 2023, 14, 704 7 of 15

SVM has been demonstrated to be advantageous in addressing issues with limited
datasets, non-linear difficulties, and high-dimensional datasets; however, it is relatively
inefficient and time-consuming when utilized with large samples [42].

2.2.7. Ensemble Model and Validation

The prediction of the jth base model for the ith training sample is used as the jth
feature value for the ith sample in the new training set, and final training is based on the
new training set. Similarly, the prediction process goes through the predictions of all the
base models to form a new test set, and finally, the predictions are made on the test set. The
base models (base classifiers) used are RF, GBDT, SVM, and the target classifier is logistic
regression, as shown in Figure 3.
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In order to make a valid comparison of the predictive efficacy of the models for forest
fire probability [12], accuracy, precision, AUC, and recall should be taken into account [12].
The percentage of samples that the classifier correctly identifies as belonging to a given
dataset is known as accuracy. The precision indicates how many of the samples that
were expected to be positive were actually positive. The recall indicates if the model
has a tendency to underestimation. The calculation formulae for these indicators are as
follows [43]:

Accuracy =
TP + TN

TP + FP + TN + FN
, (14)

Precision =
TP

TP + FP
, (15)

Recall =
TP

TP + FN
(16)

TP and TN are the numbers of positive and negative samples correctly predicted, and
FP and FN are the numbers of positive and negative samples incorrectly predicted. AUC
(area under curve) is defined as the area under the ROC curve and the coordinate axis. As
a value to visually evaluate the goodness of the model, the closer the AUC is to 1.0, the
higher the authenticity of the detection method, and the better the prediction effect [44].
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3. Results
3.1. Changing Trends

Figure 4 shows the result of the Mann–Kendall test for forest fires in China from 2010
to 2018. An analysis of the UF values of forest fires in China between 2010 and 2018 reveals
a fluctuating downward trend. From 2010 to 2015, the UF values were greater than zero,
indicating an upward trend in the number of hotspots. However, from 2016 to 2018, UF
values declined to below zero, indicating a downward trend in the number of hotspots.
Nonetheless, the UF curve never exceeded the 0.05 (±1.96) confidence line, indicating that
both the upward and downward trends were of low significance.
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Figure 5 presents a cumulative anomaly curve of forest fire points in China from 2010
to 2018. This curve indicates the total number of anomalies for each year. For 2017, a
significant alteration in the cumulative-distance leveling curve (illustrated in Figure 5) is
observed. The intersection of UF and UB within the confidence line at this point confirms
that it is a viable point to identify a dramatic transformation in the number of national
hotspots from 2010 to 2018.

3.2. The Result of Standard Deviation Ellipse Analysis

By plotting the standard deviation ellipses of fire points in China from 2010 to 2018, it
is possible to visually reflect the spatial clustering characteristics and temporal changes of
fire points. As shown in Table 1, between 2010 and 2011 and 2015 and 2018, the azimuths
of the fire points fluctuated in the range of 18◦–28◦. However, between 2012 and 2014, the
azimuths of the fire points increased to 40◦–50◦, suggesting a noticeable shift of the fire
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points towards the east. Despite the angle of shift not being extremely large, the overall
pattern still demonstrated a southwest–northeast orientation.
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Table 1. Standard deviation for oval-shaped parameters of forest fire occurrence in mainland
China, 2010–2018.

Year XStdDist (km) YStdDist (km) Rotation Oblateness

2010 721.16664 1759.22921 18.69649 2.43942
2011 694.68923 1218.07257 26.48714 1.75341
2012 657.32663 1142.30164 49.48381 1.73780
2013 692.69959 1052.93852 41.68827 1.52005
2014 692.69959 930.13757 45.00268 1.34277
2015 740.76901 1444.86086 27.73375 1.95049
2016 586.31607 1451.95680 23.84648 2.47641
2017 663.13500 1585.20545 24.58760 2.39047
2018 672.25122 1446.07839 28.09483 2.15110

The short semi-axis of the national fire point predominantly oscillated between
650 and 750 km, with a decrease from 740.77 km to 586.32 km from 2015 to 2016. In
contrast, the long semi-axis of the fire point experienced a slight overall contraction from
1759.23 km to 1446.08 km from 2010 to 2018, albeit exhibiting a slight augmentation trend
from 2014 to 2017. The national fire point has been contracting in the north–south direction
in accordance with the short and long semi-axes yet has remained relatively stable in the
east–west direction. Furthermore, the rate of flattening has seen a slight decrease from 2010
to 2014, followed by a slight increase from 2014 to 2018.

It is evident that the trend of east–west expansion of the fire point occurrence area
from 2010 to 2014 was considerably more intense than that of the north–south expansion.
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This implies that the influence of the fire point occurrence area in the east–west direction
was becoming more pronounced. Conversely, from 2014 to 2018, the trend of east–west
expansion was much weaker than that of the north–south expansion, indicating that the
influence of the fire point occurrence area in the north–south direction was increasing. This
is further evidenced by the overall flattening rate from 2010 to 2018.

As shown in Figure 6, over the time period from 2010 to 2012, there was a tendency
for the center of gravity of the fire points to move in a southwestern direction. Conversely,
from 2012 to 2018, the center of gravity of the fire points shifted to a northeasterly direction.
Between 2010 and 2018, the center of gravity of fire points was predominantly located in the
provinces of Hubei and Hunan, eventually shifting to Hunan. During the 2010–2011 period,
this center of gravity moved southward by 329.299 km, and then by 462.434 km during
the 2011–2012 period, indicating a notable rise in fire occurrences in the southern region.
In contrast, northward movement was observed in the 2012–2017 period, with a slight
southward shift in 2013–2014, representing a minor increase in the number of fires in
the south.
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Figure 6. 2010–2018 China forest fire standard deviation ellipse.

The majority of the area encompassed by the standard deviation ellipse is situated to
the east of the Heihe–Tengchong line, which is largely due to the frequent occurrence of
fires caused by human activity.

3.3. Accuracy Assessment

The effectiveness of the individual machine-learning models and the hybrid models
was validated using accuracy, AUC, precision, and recall metrics. According to the val-
idation results (shown in Figure 7), the higher accuracy values indicate that the models
have better predictions for positive samples, and the order of the accuracy values for these
models is LR-RF-SVM-GBDT > LR-RF-GBDT > LR-RF-SVM > RF > GBDT > SVM, with
SVM performing the worst. LR-RF-SVM-GBDT performed best, with accuracy of 92.10%,
precision of 90.80%, AUC of 97.17%, and recall of 93.77%; LR-RF-GBDT performed second
only to LR-RF-SVM-GBDT, with accuracy of 92.14%, precision of 90.90%, AUC of 97.12%,
and recall of 93.66%; and SVM performed the worst, with accuracy of 78.97%, precision
of 74.67%, AUC of 86.81%, and recall of 87.88%. In this study, the number of GBDT weak
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learners was set to 100, the learning rate was 0.1, the number of RF decision trees was set to
50, and the SVM kernel function selected was RBF 3.4.
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The predicted probabilities are divided into five classes, according to their likelihood
of occurrence. Class I ranges from 0 to 0.2 and indicates a very low probability; Class II
from 0.2 to 0.4, representing a low probability; Class III from 0.4 to 0.6, indicating medium
probability; Class IV from 0.6 to 0.8, exhibiting a high probability; and Class V from 0.8
to 1, signifying a very high probability. As shown in Figure 8, Our results indicate that
high-risk zone V is mainly located in the northeast (Heihe and Daxinganling regions
of Heilongjiang Province), south China (Heyuan city and Qingyuan city in Guangdong
Province, Fuzhou city and Ningde city in Fujian Province), southwest China (Pu’er city
and Lijiang city in Yunnan Province, Panzhihua city in Sichuan Province), and south-
central China (Hengyang city and Liuzhou city in Hunan Province, Ji’an city in Jiangxi
Province). The spatial distribution of forest fires in China is characterized by a clear
geographical distribution, with the regions with a high probability of forest fires being
mainly concentrated in the northeastern region (Heilongjiang Province’s Daxing’anling area,
Liaoning Province, etc.), the southwestern region (Chongqing, Sichuan, Guizhou, Yunnan
provinces), and the southeastern region (some areas of Fujian Province and Guangdong
Province). The findings of this research are in line with those of our previous studies [12].
The success of the method proposed in this paper is evidently demonstrated by the high
accuracy and effectiveness of the combined model in comparison with each individual
model. For the same dataset, Ma Wenyuan et al. [5] utilized the random forest algorithm
for predicting forest fire occurrence in Shanxi Province, with an area under the curve (AUC)
of 0.92. In comparison, our integrated approach achieved an AUC of 0.97, demonstrating a
superior performance.
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4. Discussion and Conclusions

Forecasting and mapping forest fires is a useful tool for managing fire risk, preventing
fires, and extinguishing blazes [45]. The complexity of large-scale forest fire prediction
modeling necessitates the expeditious and precise assessment of the probability and magni-
tude of forest fire hazard in different regions of China, in order to optimize the accuracy
and dependability of the model and evaluate the potential for future forest fires at varying
locations and times [12]. The utilization of combined forecasting models can promote
the robustness and precision of forecasting outcomes to some degree by combining the
benefits of multiple models in an appropriate way [46]. By exploiting the benefits of various
model algorithms and handling intricate input data, this research can generate results
that are more consistent with the modeling function, thereby tackling issues such as high
dimensionality and sample disproportion, and enhancing the precision and dependability
of the model.

Based on our prior research [12], this study proposes and empirically evaluates a novel
hybrid integrated model—a technique that amalgamates multiple models to augment ma-
chine learning, synthesizing topographical, meteorological, vegetation, and socio-human
aspects—for predicting the incidence of forest fires in China. Our findings show that the
model is successful in the prediction of forest fires. Through the combination of numerous
elementary models to generate a combined model with enhanced performance, the model
has the potential to address multiple intractable problems that cannot be resolved using a
single model. This makes the model highly advantageous in many established machine
learning frameworks. However, due to time and data constraints, there are some limits
to the accuracy of the individual models, and further research is needed to determine the
most effective strategies for improving accuracy after integrating them. Additionally, it is
difficult to assess which model is most appropriate in a given context, as the availability
and quantity of data vary in different environments. Nevertheless, the ensemble learning
model we constructed is most effective in high-dimensional datasets as it can capture
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intricate relationships between variables and address class imbalance issues by balancing
the weights of different classes.

Our hybrid model necessitates the utilization of multiple classifiers, thereby necessi-
tating additional computational resources and time. If the classifiers used in the ensemble
learning model exhibit deficiencies in certain categories of data, their prediction results
may detrimentally affect the overall performance of the ensemble model. Exploring dis-
similar combinations of methods and models to produce robust and powerful models for
predicting natural hazards is an ongoing and promising field of research [47]. The relative
influence of the same driver of forest fire occurrence can vary in importance between
regions and models and can have diverse effects on the likelihood and magnitude of forest
fires [48]. Consequently, it is imperative to select forest fire drivers and assorted models for
predicting the likelihood and frequency of forest fires. It is suggested that distinct data and
driving factors for the characteristics of forest fires in disparate locales should be utilized
to construct models. This is because the manifestation of forest fires in disparate regions
may be affected by dissimilar factors; when constructing models, therefore, these factors
must be taken into account, with suitable data and methods being chosen based on the
actual state of affairs. Additionally, our forthcoming forest fire occurrence forecasts should
be amalgamated with big data platforms [49]. To enhance the accuracy of forecasting
and predicting forest fires, existing forecasting models must be constantly upgraded and
expanded, and a combination of array clusters and integrated models must be utilized to
efficiently process large amounts of data, enhance the effectiveness of data analysis, and
facilitate real-time anticipation of forest fire emergence.
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