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Abstract: Leaf water content (LWC) is very important in the growth of vegetation. LWC and leaf
spectra change when the leaves are under pest stress; exploring the change mechanism between LWC,
leaf spectra, and pest stress can lay the foundation for pest detection. In this study, we measured the
LWC and leaf spectra of moso bamboo leaves under different damage levels, used the Pearson–Lasso
method to screen the features, and established a multiple linear regression (MLR) and random
forest regression (RFR) model to estimate the LWC. We analyzed the relationship between LWC and
spectral features of moso bamboo leaves under Pantana phyllostachysae Chao (PPC) stress and their
changes. The results showed that: (1) the LWC showed a decreasing trend as the pest level increased.
(2) The spectra changed substantially when the leaves were under pest stress. (3) The number and
significance of response features associated with the LWC were diverse under different damage levels.
(4) The estimation of LWC under different damage levels differed significantly. LWC, leaf spectra,
response features, and the model estimation effect were diverse under different damage levels. The
correlation between LWC and features was higher for healthy leaves than for damaged and off-year
leaves. The two models were more effective in estimating the LWC of healthy leaves but less effective
for damaged and off-year leaves. This study provides theoretical support for the prediction of PPC
stress and lays the foundation for remote sensing monitoring.

Keywords: Pantana phyllostachysae Chao; changing relationships; water content; spectral features;
Pearson–Lasso; moso bamboo

1. Introduction

Bamboo is one of the most important forest resources that is predominantly distributed
in tropical and subtropical regions. Currently, there are three major bamboo regions world-
wide, namely, the Asia–Pacific, American, and African bamboo regions. According to the
latest Global Forest Resources Assessment, the bamboo forest area in Asia is 24.87 × 106 ha,
making it the largest bamboo region worldwide. The main bamboo producers are China,
Bangladesh, Bhutan, and India. Among them, China is the country with the most abundant
bamboo resources worldwide, with more than 7.01 × 106 ha of bamboo forest. Therefore,
China is known as the “Kingdom of Bamboo”. With increasing ecological pressure on
forests and scarcity of wood resources in recent years, bamboo is now considered an ex-
cellent substitute for traditional wood. On 7 November 2022, the Second Global Bamboo
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and Rattan Congress was held in Beijing, where the proposal for “Bamboo as a Substitute
for Plastic” was put forward, which reflects the importance of sustainability of bamboo
products. With the innovation of bamboo use technology, some high-energy-consumption
and high-pollution materials have been replaced by bamboo. China’s bamboo winding
composites can replace cement, steel, and plastic. Therefore, bamboo has considerable
potential in supporting global green development. Among many bamboo species, moso
bamboo is the most important species in China with considerable ecological and economic
value because of its rapid growth and high rate of use. However, owing to its asexual
reproduction and due to invasive growth, its pure forest rate has been rising. Forests that
comprise a single species can severely affect forest biodiversity and lead to frequent pest
disturbance events. Pantana phyllostachysae Chao (PPC) is one of the most common and
destructive pests. According to the national survey data of forestry pests released by the
National Forest and Grassland Administration, PPC is a level 3 harmful forestry pest in
China, with an annual occurrence area of more than 6.7 × 104 ha. Therefore, the harm
caused by PPC has become an important factor threatening the health of bamboo forests as
well as restricting the production of high-quality bamboo and sustainable development of
the bamboo industry. It is of considerable ecological and economic importance to increase
monitoring of this pest. The traditional method mainly used for pest monitoring is manual
walking surveys. However, using this method, it is difficult to detect pest presence in a
timely and thorough manner. Now, we usually use remote sensing technology to detect
forest pests; this has achieved positive results [1–3].

The external morphology and internal biochemical composition of moso bamboo
leaves appear substantial changed under PPC stress [4–6]. When leaves have been gnawed
by the larvae, the stomata of the leaf cannot be closed, which leads to the loss of water,
protein, pigments, inorganic salts, and other leaf biochemical components. Symptoms of
water shortage and chlorosis become present in the leaves, which can be directly reflected
in the spectral information [7]. Therefore, plant damage can be assessed by inverting plant
biochemical components through the spectral information of plants [8,9]. Research on the
content of plant biochemical components and pest levels has shown that some biochem-
ical components have a pronounced ability to respond to pest stress [10,11], which is of
considerable importance in pest identification and monitoring. However, satellite sensors
are prone to certain errors when they acquire images, due to the influence of atmosphere,
terrain, and illumination conditions. Therefore, it is difficult to quantitatively study the re-
lationship between biochemical components and pest information. Thus, measured spectra
are necessary for investigating the microscopic mechanisms of biochemical components
and pest information. They are also important in exploring the change mechanisms in
plant biochemical components and leaf spectra when pests are present. The quantitative
relationships between them can be clarified, which can lay a foundation for real-time, rapid,
and large-area monitoring and early warning of pests using satellite images.

As an important biochemical component, LWC plays a vital role in photosynthesis
and transpiration in plants [12]. We can determine crop yield and plant health status by
monitoring LWC, and this technique has been widely used in agriculture and forestry. For
example, LWC is an important indicator for crop yield estimation and can help detect
pests [13,14]. Additionally, LWC is closely related to other biochemical components, such as
chlorophyll and nitrogen content [15]. In-depth research is important in the physiological
monitoring of plants. Therefore, LWC is important in agricultural and forestry monitoring,
and examining this indicator has considerable value in scientific research and production
applications. Water in leaves absorbs radiant energy in the near-infrared (NIR) and short-
wave infrared (SWIR) regions, forming water absorption peaks at 970, 1200, 1450, and
1950 nm [16–18]. These water absorption characteristics have been used to establish
correlations with LWC [19–23]. Studies on LWC and leaf spectra have indicated that
continuum removal and spectral derivative processing of the original bands can improve
the accuracy of LWC estimation [24,25]. However, indices are more reliable than single
bands for LWC estimation [26]. Given that LWC is closely related to NIR and SWIR, many
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different vegetation water content diagnostic indices have been proposed based on specific
water absorption regions in the NIR and SWIR regions (WI, SRWI, MSI, NDII, GVMI
RDI, and DWI). However, most of these indices only involve two or three specific bands
and are only suitable for estimating the LWC of fixed plants. Therefore, indices based
upon the spectral absorption of different plant leaves, which are suitable for different leaf
types, have been proposed [27]. The canopy reflectance model and leaf optical model
have been combined, and leaf and canopy parameters have been estimated by using the
coupled model. This has increased the range of study of water content from the leaf scale
to the canopy scale and resulted in an effective earth–sky interface [28]. Several radiation
transfer models are now commonly used, including the PROSPECT, LIBERTY, and SAIL
models [20,29].

To date, there has been a strong focus on model optimization and feature selection to
improve the estimation effect of LWC. However, the relationships between the changing
water content and spectral features of vegetation under pest stress have not yet been
examined in detail. To address these gaps in the literature, this study classified moso
bamboo leaves with different damage levels and investigated the relationship between
them as pest damage stress increases. We have investigated the following questions: (1) how
do the LWC and leaf spectra change when the leaves are under different damage levels?
(2) How can the features of LWC be examined and models be established? (3) How can
changes in spectral features be used to determine the presence of insect pests?

2. Materials and Methods
2.1. Study Area

Shunchang County is located in Fujian Province, China (Figure 1). The area is in-
fluenced by the subtropical maritime monsoon and continental climate, with abundant
rainfall. Due to its unique climate, the forest cover for Shunchang County has reached
approximately 80%. The main tree species are Eucalyptus grandis, Ginkgo biloba, China fir,
Horsetail pine, and moso bamboo. Among them, the spatial area of moso bamboo has
reached 4.4 × 104 ha. However, pests cause substantial ecological and economic losses
to locals every year. Statistics from the forestry department for 2021 have shown that
the PPC is one of the most important leaf-eating pests of bamboo forests in this county.
Although the local government has invested considerable human and material resources
to control pests each year, there are still many pest disaster areas. Therefore, timely moni-
toring of pest presence is an effective way of mitigating pests and reducing ecological and
economic losses.

2.2. Sample Collection and Damage Level Classification

Our group visited the study area for investigation and sample collection on 20–23 August
2019. The principles of sample collection were: (1) sampling locations were selected at
different elevations, and (2) leaves in the canopy were randomly selected. We classified
moso bamboo leaves into different damage levels refer to the rules described by LY/T
2011–2012, and took the leaf damage rate as the evaluation criteria. Leaf damage rate refers
to the percentage of the leaf area of missing and diseased spots in relation to the total leaf
area. Leaf damage rate between 0% and 5% refers to healthy leaves (H), leaf damage rate
between 5% and 25% refers to mildly damaged leaves (Mi), leaf damage rate between 25%
and 50% refers to moderately damaged leaves (Mo), and leaf damage rate > 50% refers
to severely damaged leaves (S). A unique growth habits of moso bamboo is its on- and
off-year phenomenon, whereby moso bamboo shoots and grows during its “on” year, and
then produces whips and changes leaves in its “off” year. The parameters of its biochemical
components are quite different during on and off years. [30]. Therefore, to avoid the effects
caused by off-year leaves, they were grouped separately (O). In this study, we selected
50 sampling sites (distribution shown in Figure 1) at different elevations, and 5–6 standard
bamboo leaves from each of the upper, middle, and lower part of each sampled bamboo
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were acquired from each sampling site. Finally, we collected a total of 382 bamboo leaves;
the number of leaves for each level were 78 (H), 67 (Mi), 94 (Mo), 79 (S), and 64 (O).
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2.3. Leaf Physical and Chemical Parameters
2.3.1. Leaf Spectra

An ASD FieldSpec3 spectrometer and an ASD plant spectral probe e (Analytical
Spectral devices (ASD) Inc., Longmont, CO, USA) were used for the indoor spectral mea-
surements. The spectral sampling intervals of the spectrometer were 1.4 nm (350–1000 nm)
and 2 nm (1001–2500 nm). The resampled bandwidth was 1 nm. The experiment was
conducted in a closed environment equipped with a lightbulb to reduce interference from
the external environment. The leaves were placed horizontally on a black background, and
five frontal spectra were measured and averaged as the leaf spectra. All the spectral data
were preprocessed using the Savizky–Golay smoothing algorithm in Unscrambler X10.4
software to reduce the effects of particle size, scattering, and covariance. The continuum
removal method was used to enhance the spectral absorption in the sensitive bands of each
biochemical parameter [31].

2.3.2. Leaf Water Content

We collected the moso bamboo leaves from the field site and weighed them at once
using a precision electronic scale; the fresh weight was recorded as Wf. The leaves were
then brought back to the laboratory and were placed in an oven to kill the enzymes and
render them inactive. When the leaves were dried to a constant weight, we weighed the
leaves again and the dry wight (Wd) was recorded. The equation for LWC is as follows:

LWC =
Wf −Wd

Wf
× 100% (1)
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where LWC is the leaf water content, Wf is the fresh weight of the leaf, and Wd is the dry
weight of the leaf.

2.4. Leaf Spectral Features
2.4.1. Spectral Index

The Spectral index is more reliable than the single band in LWC estimation, and
this index is, therefore, widely used for LWC estimation [26]. The absorption capacity
of water is different for bands in different regions. In the visible region, the absorption
of water by electromagnetic waves is relatively low. Meanwhile, in the NIR and SWIR
regions, the absorption is relatively high, and the absorption peak increases with increasing
wavelength. Therefore, the indices that are used for LWC estimation are predominantly
constructed using bands in the NIR and SWIR regions, including the WI, WBI, and LWI.
LWC has a strong correlation with chlorophyll [15]. Some photosynthetic pigment indices
and vegetation indices have also been used to estimate LWC, including NDVI, PSSRb, and
CI. These indices have had a strong performance in pest stress monitoring and crop water
stress monitoring. Mutanga et al. [32] estimated EWT by WI and NDWI and successfully
monitored Eurasian wood wasp by observing changes in WI and NDWI. Watt et al. [33]
estimated maize leaf water content using NDVI, which provides a theoretical basis for
monitoring crop water stress. In this study, we combined previous research results and
selected indices related to LWC (Table 1).

Table 1. Indices included in the analysis.

Index Full Name Calculation Formula Source

CI Chlorophyll index R750/R710 [34]
GM1 Gitelson and Merzlyak index 1 R750/R550 [35]
GM2 Gitelson and Merzlyak index 2 R750/R700 [35]

MCARI Modified chlorophyll absorption ratio index [(R700 − R670) − 0.2 (R700 − R550)](R700/R670) [36]
PSSRb Pigment-specific simple ratio chlorophyll b R800/R635 [37]
TCARI Transformed chlorophyll absorption ratio index 3[(R700 − R670) − 0.2 (R700 − R550)(R700/R670)] [38]

TCA/OSA TCARI/OSAVI TCARI/OSAVI [38]
VOG Vogelmann index R740/R720 [39]
NDVI Normalized difference vegetation index (R800 − R670)/(R800 + R670) [40]
OSAVI Optimized soil adjusted vegetation index (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16) [41]
RDVI Renormalized difference vegetation index (R800 − R670)/(R800 + R670)0.5 [42]
PRI Photochemical reflectance index (R531 − R570)/(R531 + R570) [43]

Datt1 Datt1 (R850 − R2218)/(R850 − R1928) [17]
Datt2 Datt2 (R850 − R1788)/(R850 − R1928) [17]
DDI Double difference index 2R1530 − R1005 − R2005 [44]
fWBI Floating position water band index R900/minR930 − R980 [45]
GVMI Global vegetation moisture index [(R820 + 0.1) − (R1600 + 0.02)]/[(R820 + 0.1) + (R1600 + 0.02)] [46]
LWI Leaf water index R1300/R1450 [47]
MSI Moisture stress index R1600/R820 [48]
MSI1 Moisture stress index 1 R1650/R1230 [49]
MSI2 Moisture stress index 2 R1650/R830 [49]
NDII Normalized difference infrared index (R820 − R1600)/(R820 + R1600) [50]

NDWI1 Normalized difference water index 1 (R860 − R1240)/(R860 + R1240) [51]
NDWI2 Normalized difference water index 2 (R870 − R1260)/(R870 + R1260) [52]

NDWI1640 Norm. diff. water index 1640 nm (R860 − R1640)/(R860 + R1640) [53]
NDWI2130 Norm. diff. water index 2130 nm (R858 − R2130)/(R858 + R2130) [53]
Ratio975 Ratio975 2mean(R960 − R990)/[(mean(R920 − R940) + mean (R1090 − R1110)] [34,54]
Ratio1200 Ratio1200 2mean(R1180 − R1220)/[(mean(R1090 − R1110) + mean(R1265 − R1285)] [34,54]

SIWSI Shortwave infrared water stress index (R1640 − R858)/(R1640 + R858) [55]
SRWI Simple ratio water index R860/R1240 [56]
SRWI1 Simple ratio water index 1 R1350/R870 [52]
SRWI2 Simple ratio water index 2 R880/R1265 [52]
TM57 Ratio of thematic mapper B5 to B7 R1650/R2220 [57]
WBI Water band index R970/R900 [58]
WI Water index R900/R970 [59]

SAI970 Spectral absorption index 970 d = (λ2 − 970)/(λ2 − λ1), SAI970 = (d × R1 + (1 − d) × R2)/R970 [27]
SAI1200 Spectral absorption index 1200 d = (λ2 − 1200)/(λ2 − λ1), SAI1200 = (d × R1 + (1 − d) × R2)/R1200 [27]
SAI1600 Spectral absorption index 1600 d = (λ2 − 1600)/(λ2 − λ1), SAI1600 = (d × R1 + (1 − d) × R2)/R1600 [27]

Note: λ1 and λ2 are the wavelengths corresponding to the wave peaks on the left and right, respectively. R1 and
R2 are the reflectance of the wave peaks on the left and right, respectively.
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2.4.2. Spectral Derivative

The data after the spectral derivative can suppress the background information in
the spectra and solve the problem of spectral overlap [60]. They can also amplify subtle
changes in the spectral curve, providing a spectral profile with higher resolution and
definition than original spectra. Derivative spectra can reflect the change rate of the original
spectra and quickly determine the location of the rapid change in the original spectra. This
provides the conditions for the selection of water content-sensitive bands. The data after
spectral derivation are less affected by the canopy and leaf structure and have advantages
in characterizing the total reflectance. Danson et al. [22] treated the spectra with derivative;
the result showed that the derivative spectra were insensitive to leaf structure and were
closely related to LWC at 1450 nm. Kumar [61] found that derivative spectra have a strong
correlation with FMC at the leaf scale. Rollin et al. [25] found that the spectral derivative
of grass at 1156 nm was closely related to EWTc. Therefore, in this study, we performed
spectral derivative processing on the spectra to improve the response ability between
spectra and LWC. The spectral derivative is calculated as follows:

R(λi)
′ =

R(λi+1)− R(λi)

∆λ
(2)

where R(λi) is the value of reflectance at band i, R(λi)′ is the value of derivative spectra
between bands i and i + 1, and ∆λ is the step size of neighbor bands.

2.5. Model Feature Screening Method

The Pearson correlation coefficient is often used to measure the linear relationship
between variables. We can use this coefficient to screen out features that are more correlated
with LWC. However, there may be a problem of collinearity between the features screened
by the Pearson correlation coefficient. Stronger collinearity between independent variables
may lead to a reduced estimation accuracy of dependent variables [62]. Therefore, effective
removal of collinearity between independent variables is an important problem to be
addressed. Lasso regression is also known as L1 regularization of linear regression. It uses
the regularization term to form a penalty term on the original loss function to prevent
the problem of collinearity between independent variables. Therefore, the Pearson–Lasso
method was chosen to screen features in this study. We used the Pearson correlation
coefficient method to screen features that were related to the LWC first, and then removed
the features with strong collinearity using the Lasso regression method for feature selection.

The features used for estimation of the LWC were spectra of continuum removal
(SCR), derivative (SD), and the spectral index (SI). Therefore, the features are preliminarily
screened using Pearson correlation coefficient, and the calculation formula is [63]:

ρ = Cor(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
(3)

where Cov(X, Y) is the covariance of X and Y, and Var(X) and Var(Y) are the variances of
X and Y, respectively.

2.6. Relationship between LWC and Leaf Spectral Features

To study the relationship between the LWC and spectral features of moso bamboo
leaves under PPC stress and their changes over time, we established two models and
focused on: (1) how the estimation effect of LWC varies for different damage levels; and
(2) how the estimation effect of LWC varies between models. Linear models can reflect
simple linear relationships between variables, whereas machine learning can reflect complex
nonlinear relationships between variables. We used MLR and RFR to estimate the LWC. We
compared the estimation effect of the two models for different damage levels and explored
the relationship between the LWC and spectral features of moso bamboo leaves under
different damage levels.
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MLR is a basic and simple analysis method, that is, a linear regression between
one label and multiple features. For sample i with n features, the regression results are
as follows:

ŷi = ω0 + ω1xi1 + ω2xi2 + · · ·+ ωnxin (4)

where ω is collectively referred to as the parameter of the model, ω0 is the intercept, and
ω1~ωn is the regression coefficient.

RFR is a relatively new discriminant model with a decision tree as the unit. It is a
bagging integration algorithm that takes the average results of the base evaluator as the
result of the integrated evaluator. Therefore, RFR can substantially improve the estimation
accuracy. RFR has strong adaptability to datasets, effective anti-noise performance, a strong
fitting ability, and it is not easy to produce overfitting with RFR [64].

In this study, we randomly divided the moso bamboo leaf data under different damage
levels into a training set (70%) and a test set (30%). A fivefold cross-validation was per-
formed to test model stability. The coefficient of determination (R2) and root-mean-square
error (RMSE) were used to assess the accuracy of the model. The formulas for calculating
R2 and RMSE are as follows:

R2 = 1−
n

∑
i=1

(yi − ŷ)2/
n

∑
i=1

(y− y)2 (5)

RMSE =

√
1
n
×∑n

i=1 (yi − ŷ)2 (6)

where y is the measured values, ŷ is the estimated values, y is the mean of all the measured
values, and n is the sample size.

2.7. Study Workflow

We mainly divided our work into two parts (Figure 2). In the first part, we collected
moso bamboo leaves and then performed preprocessing on them. In the second part, we
analyzed the change mechanism of LWC and leaf spectra under different damage levels.

Forests 2023, 14, x FOR PEER REVIEW 8 of 25 
 

 

where ω  is collectively referred to as the parameter of the model, 0ω  is the intercept, 

and 1ω ~ nω  is the regression coefficient. 
RFR is a relatively new discriminant model with a decision tree as the unit. It is a 

bagging integration algorithm that takes the average results of the base evaluator as the 
result of the integrated evaluator. Therefore, RFR can substantially improve the estimation 
accuracy. RFR has strong adaptability to datasets, effective anti-noise performance, a 
strong fitting ability, and it is not easy to produce overfitting with RFR [64]. 

In this study, we randomly divided the moso bamboo leaf data under different dam-
age levels into a training set (70%) and a test set (30%). A fivefold cross-validation was 
performed to test model stability. The coefficient of determination (R2) and root-mean-
square error (RMSE) were used to assess the accuracy of the model. The formulas for cal-
culating R2 and RMSE are as follows: 

2

11

2
i

2 )(/)ˆ(1 yyyyR
n

i

n

i
−−−= 

==
 (5) 

 =
−×= n

i i yy
n

RMSE
1

2)ˆ(1
 (6) 
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3. Results and Analysis
3.1. Difference in LWC under Different Damage Levels

The LWC changes when the leaf is damaged by PPC. Figure 3 shows that, with
increasing damage level, the LWC shows a gradual declining trend overall. However, the
rate of decline is substantially slower. The LWC of healthy and damaged leaves varied
significantly, whereas the LWC was not significantly different between the Mi-Mo and Mo-S
groups (Table 2). The possible factor was that the turgor pressure changed when the leaf
was damaged. The pressure of cell water on the cell wall is known as the turgor pressure.
When the leaf was not damaged, the turgor pressure was relatively high. However, when
moso bamboo leaves start to become damaged, the water content is rapidly lost under the
effects of turgor pressure [65]. Therefore, the LWC of healthy and damaged leaves varied
significantly. However, with water loss, the leaf turgor pressure continued to decrease, and
the water loss rate also slowed down. This may be the reason for the small difference in
water content between the damaged leaves. There was no significant difference in LWC
among Mi, Mo, and O (Table 2). When moso bamboo is in the off-year stage, most of the
nutrients in the maternal bamboo are used for rhizome growth [66], and moso bamboo will
show symptoms of water shortage and chlorosis. Therefore, although the bamboo leaves
from this period were not affected by PPC, their LWC was highly similar to that of the
leaves at the damage level.
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Table 2. ANOVA analysis of LWC of moso bamboo leaves under different damage levels.

Groups H-Mi H-Mo H-S H-O Mi-Mo Mi-S Mi-O Mo-S Mo-O S-O

p-values <0.001 ** <0.001 ** <0.001 ** <0.001 ** 0.214 <0.001 ** 0.968 0.261 0.867 0.004 **

Note: ** indicates p < 0.01, showing that the difference is very significant.
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3.2. Differences in Leaf Spectra under Different Damage Levels

When moso bamboo leaves are affected by PPC, they show symptoms of water short-
age and chlorosis and their spectra change (Figure 4). In the visible region, the green
reflectance decreased, and the red reflectance increased as the PPC stress increased. In the
NIR region, the reflectance of healthy and damaged leaves were significantly different,
showing a decreasing reflectance trend with increasing damage level. In the SWIR region,
the reflectance of healthy leaves was generally lower than that of the damaged leaves. The
reflectance of off-year leaves was generally higher than that of healthy leaves across the
entire range. Compared with damaged leaves, the off-year leaves had higher reflectance in
the visible and NIR regions. However, in the SWIR region, they were not distinguishable.
In order to further analyze the differences in the spectra of moso bamboo leaves under
different damage levels, we conducted a paired t-test for the spectra under different damage
levels. The results are shown in Table 3, and there are significant differences in the spectra
under different damage levels in the visible, NIR, and SWIR regions.
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Table 3. Paired t-test of spectra for leaves with different damage levels.

Pest Level
p-Values

Visible Region NIR Region SWIR Region

H-Mi 0.004 ** <0.001 ** <0.001 **

H-Mo <0.001 ** <0.001 ** <0.001 **

H-S <0.001 ** <0.001 ** <0.001 **

H-O <0.001 ** <0.001 ** <0.001 **

Mi-Mo <0.001 ** <0.001 ** <0.001 **

Mi-S <0.001 ** <0.001 ** <0.001 **

Mi-O <0.001 ** <0.001 ** <0.001 **

Mo-S <0.001 ** <0.001 ** <0.001 **

Mo-O <0.001 ** <0.001 ** <0.001 **

S-O <0.001 ** <0.001 ** 0.010 **
Note: ** indicates p < 0.01, showing that the difference is very significant.

3.3. Model Feature Screening Based on the Pearson–Lasso Method

In this study, the LWC of moso bamboo leaves was used as Variable Y, and SCR, SD,
and SI were used as Variable X for the Pearson correlation analysis. The features selected
are determined based on the absolute value of the correlation coefficient. Given that SCR
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and SD have more than 4000 features and there are many features that were significantly
related to LWC, their selection process was complex. To this end, SCR and SD were divided
into visible, NIR, and SWIR regions. The top correlated features were selected as alternative
features in each region. In comparison, the SI number was relatively low, and all the indices
that were significantly associated with the LWC could be selected as alternative features.
Lasso regression produces items with a regression coefficient of zero under the constraint
of the model properties. When selecting features, removing these items can significantly
reduce collinearity between features [67]. We randomly divided all the alternative features
into a modeling set and a validation set in a 7:3 ratio and eliminated features with strong
collinearity for feature optimization.

The correlation between the spectral features and LWC was different for leaves un-
der different damage levels (Figure 5a–l). In terms of quantity, there were more features
significantly related to the LWC of the entire sample, H, and S (3207, 2762, and 2322,
respectively). Meanwhile, there were relatively few features significantly related to the
LWC of Mi, Mo, and O (1295, 627, and 817, respectively). The LWC of the entire sam-
ple, H, and S had a strong correlation with the features. The mean Pearson coefficients
were 0.187, 0.281, and 0.231, respectively. The correlation between LWC and features of
Mi, Mo, and O was relatively low. The mean Pearson coefficients were 0.148, 0.115, and
0.159, respectively. According to these principles of feature selection, the results are as fol-
lows, for the entire sample: SCR367nm, SCR665nm, SCR1928nm, SCR2033nm, SD520nm, SD1939nm,
SD2062nm, SAI1660; H: SCR765nm, SCR2117nm, SD422nm, SD1836nm, SD2038nm, CI, VOG, NDWI1,
NDWI2130; Mi: SCR1280nm, SCR2254nm, SD436nm, SD1763nm, SD2265nm, SD2,316nm, SIWSI,
TM57; Mo: SCR1703nm, SCR2272nm, SD1918nm, SD1948nm, SD2249nm, SD2466nm, SAI970;
S: SD1222nm, SD1742nm, SD1811nm, SD2260nm, SD2312nm, MCARI, LWI, SAI1200; O: SCR706nm,
SCR2223nm, SD399nm, SD687nm, SD1182nm, DDI, MSI2, and SAI1200.
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It can be seen that the bands involved in response features of leaf water content at
different damage levels are distributed differently in the visible, NIR, and SWIR regions.
The bands involved in response features of healthy moso bamboo leaves were distributed in
all regions (visible, NIR, and SWIR), which is due to different healthy leaves with different
colors and cell structures, and due to the ability of water to absorb the spectrum, resulting
in significant differences in spectra in the visible, NIR, and SWIR regions. For mildly
damaged leaves, as they begin to become damaged, the leaf water is rapidly lost, and the
ability of water to absorb the spectrum varies widely among leaves. Therefore, the bands
involved in response features were mostly distributed in the SWIR region. But the color
and cell structure of the leaves were also changed after being bitten by pests, so the bands
involved in response features were also partly distributed in the visible and NIR regions.
Moderately and severely damaged moso bamboo leaves have been infested with insects
for a longer period of time, and the color and cell structure of the leaves will not be very
different; therefore, the bands involved in response features were mainly concentrated
in the SWIR region. For off-year moso bamboo leaves, they were mainly affected by the
lack of nutrients and, as a result, the phenomena of leaf yellowing and water deficiency
appeared. In addition, the cell structure was changed; therefore, the bands involved in
response features were distributed in all regions (visible, NIR, and SWIR).

3.4. Model Construction and Relationship Analysis between LWC and Spectral Features of Moso
Bamboo Leaves
3.4.1. LWC Estimation for Leaves from the Entire Sample and Leaves with Different
Damage Levels

We substituted the features selected into MLR and RFR models, respectively. We then
used fivefold cross-validation to estimate the LWC of the leaf samples under different
damage levels, with the model evaluation indicators of the R2 and RMSE. Figure 6 shows
the effect of MLR and RFR on estimating the LWC of bamboo leaves for the entire sample
and different damage levels. Most points were within the 95% confidence ellipse, and
p-values for both models were less than 0.01. The estimated R2 values of MLR for the LWC
of the entire sample, H, Mi, Mo, S, and O were 0.761, 0.803, 0.620, 0.482, 0.675, and 0.598,
respectively. The RMSE were 0.038, 0.014, 0.022, 0.041, 0.035, and 0.022, respectively. The
estimated R2 of the RFR for the LWC of the entire sample, H, Mi, Mo, S, and O were 0.790,
0.819, 0.689, 0.562, 0.712, and 0.666, respectively. The RMSE was 0.036, 0.013, 0.020, 0.038,
0.033, and 0.020, respectively. The estimation accuracy of the two models for the LWC of
H, Mi, Mo, S, and O first decreased and then increased, and the performance of RFR was
generally better than that of MLR.
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Figure 6. Estimated LWC of bamboo leaves in different damage states: (a) entire sample, MLR
model; (b) entire sample, RF model; (c) H-MLR; (d) H-RFR; (e) Mi-MLR; (f) Mi-RFR; (g) Mo-MLR;
(h) Mo-RFR; (i) S-MLR; (j) S-RFR; (k) O-MLR; (l) O-RFR. Multiple linear regression (MLR), random
forest regression (RFR).

3.4.2. Paired t-Test of LWC Estimation Indices for Entire Leaf Samples and Leaves with
Different Damage Levels

To quantitatively analyze the estimation effect of the model on the LWC of the leaves
from the entire sample and leaves at different damage levels, we conducted a paired t-test on
the results of five trials of MLR and RFR. Table 4 shows that for the MLR estimation method,
the RMSE was not significantly different between Mi and O. For the RFR estimation method,
the R2 and RMSE were not significantly different between Mi and O. The two methods for
the other groups were significantly different. This shows that PPC has a pronounced effect
on the estimation of LWC. The estimation effect of MLR and RFR on LWC showed that
healthy leaves were significantly better than the entire sample leaves, and the leaves from
the entire sample were significantly better than the damaged and off-year leaves (Table 4).
This indicates that the damaged and off-year leaves would reduce the estimation accuracy
of the LWC of the entire sample.
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Table 4. Paired t-test of LWC estimation indices for leaves from the entire sample and leaves with
different damage levels.

Pest Level

MLR RFR

R2 RMSE R2 RMSE

t p t p t p t p

H-Mi 12.246 <0.001 ** −18.480 <0.001 ** 12.982 <0.001 ** −19.382 <0.001 **

H-Mo 53.281 <0.001 ** −123.195 <0.001 ** 25.713 <0.001 ** −64.062 <0.001 **

H-S 9.684 0.001 ** −36.381 <0.001 ** 18.274 <0.001 ** −72.242 <0.001 **

H-O 20.670 <0.001 ** −28.173 <0.001 ** 8.323 <0.001 ** −11.730 <0.001 **

H-entire sample 3.720 0.020 * −66.237 <0.001 ** 4.616 <0.001 ** −103.505 <0.001 **

Mi-Mo 11.191 <0.001 ** −45.079 <0.001 ** 9.315 <0.001 ** −35.650 <0.001 **

Mi-S −3.064 0.038 * −18.605 <0.001 ** −2.840 0.047 * −55.985 <0.001 **

Mi-O 3.596 0.023 * −1.955 0.122 0.722 0.510 0.119 0.911

Mi-entire sample −22.073 <0.001 ** −114.789 <0.001 ** −7.393 0.002 ** −33.987 <0.001 **

Mo-S −16.175 <0.001 ** 9.454 0.001 ** −16.744 <0.001 ** 11.228 <0.001 **

Mo-O −7.501 0.002 ** 42.582 <0.001 ** −14.789 <0.001 ** 67.952 <0.001 **

Mo-entire sample −32.577 <0.001 ** 5.665 0.005 ** −38.641 <0.001 ** 6.230 0.003 **

S-O 7.667 0.002 ** 22.978 <0.001 ** 2.940 0.042 * 28.670 <0.001 **

S-entire sample −7.482 0.002 ** −5.114 0.007 ** −12.852 <0.001 ** −9.360 0.001 **

O-entire sample −22.746 <0.001 ** −63.114 <0.001 ** −9.007 0.001 ** −36.475 <0.001 **

Note: * indicates p < 0.05, showing that the difference is significant; ** indicates p < 0.01, showing that the
difference is very significant.

3.4.3. Paired t-Test for MLR and RFR Models

To analyze the difference between MLR and RFR in estimating the LWC, we conducted
a paired t-test on the results from the two methods under the same damage level. Table 5
shows that there is no significant difference between R2 and RMSE estimated by the two
methods for the LWC of healthy leaves. However, there is a significant difference between
R2 and RMSE as estimated by the two methods for the LWC of damaged and off-year leaves.
The estimation effect of RFR is significantly stronger than that of MLR. MLR can reflect
the simple linear relationship between variables, whereas RFR can reflect the complex
nonlinear relationship between variables. MLR and RFR were not significantly different
in estimating the LWC of healthy leaves. MLR was able to estimate the LWC effectively,
indicating that the relationship between LWC and features of healthy leaves tended to be a
simple linear relationship. In contrast, RFR was significantly more effective than MLR in
estimating the LWC of damaged and off-year leaves. This indicates that the relationship
between LWC and features can no longer be expressed by a simple linear relationship.
Therefore, the relationship between LWC and features of damaged and off-year leaves
tends to be more complex.

Table 5. Paired t-test of MLR and RFR models.

Pest Level

MLR-RFR

R2 RMSE

t p t p

H −1.427 0.227 1.636 0.177

Mi −3.936 0.017 * 3.945 0.017 *

Mo −4.171 0.006 ** 4.194 0.006 **
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Table 5. Cont.

Pest Level

MLR-RFR

R2 RMSE

t p t p

S −5.157 0.007 ** 5.247 0.006 **

O −9.980 0.001 ** 9.478 0.001 **

Entire sample −17.252 <0.001 ** 15.442 <0.001 **
Note: * indicates p < 0.05, showing that the difference is significant; ** indicates p < 0.01, showing that the
difference is very significant.

4. Discussion
4.1. Leaf Loss Rate, Die-Off Rate, and LWC

To investigate the effects of leaf loss and die-off rates on LWC, we analyzed their
correlation. As shown in Figure 7, the sum of the leaf loss rate and leaf die-off rate had the
highest correlation with LWC. This was followed by the correlation between leaf die-off
rate and LWC. The correlation between leaf loss rate and LWC was the lowest.

Forests 2023, 14, x FOR PEER REVIEW 17 of 25 
 

 

4. Discussion 
4.1. Leaf Loss Rate, Die-Off Rate, and LWC 

To investigate the effects of leaf loss and die-off rates on LWC, we analyzed their 
correlation. As shown in Figure 7, the sum of the leaf loss rate and leaf die-off rate had the 
highest correlation with LWC. This was followed by the correlation between leaf die-off 
rate and LWC. The correlation between leaf loss rate and LWC was the lowest. 

Water is directly involved in the transformation and synthesis of various substances 
in plants and is an indispensable factor for maintaining cell turgor pressure and balancing 
plant temperature. When leaves are stressed by PPC, their cell walls, cell membranes, and 
other tissues are damaged and internal water is lost. This may result in cellular water 
deficiency, reduced turgor pressure, reduced stomatal conductance, and a slower transpi-
ration rate [68]. If the leaves are in a suitable external environment, slow transpiration can 
maintain the normal temperature of the leaf without permanent damage. When the dam-
aged part of the leaf gradually heals, the leaf water loss rate slows down. Vegetation has 
a certain water compensation mechanism that can alleviate the damage caused by leaf 
water loss. Even when the leaf loss rate increased, the LWC of the entire leaf did not sub-
stantially change (Figure 8a). If the leaves are exposed to high temperatures or direct sun-
light after being eaten by PPC, the leaf water loss rate is relatively rapid, and the water in 
the roots is difficult to supplement in time. The transpiration of the leaves then becomes 
weak and the excess heat on the leaves cannot be removed. Parts of the leaf become com-
pletely desiccated with dead spots appearing (Figure 8b). This leads to a water deficit in 
the entire leaf. The appearance of dead spots on the leaves implies greater water loss, 
which may be the reason why the die-off rate has a higher correlation with LWC. The rate 
of leaf loss and leaf die-off jointly caused a reduction in LWC. However, there was no 
significant correlation (Figure 7), indicating that they have their own independent contri-
butions to the reduction in LWC. Therefore, the interaction between the rate of leaf loss 
and leaf die-off had the most pronounced impact on LWC. 

 
Figure 7. Correlation between LWC, rate of leaf loss, rate of leaf die-off, and their interaction. 

  

Figure 7. Correlation between LWC, rate of leaf loss, rate of leaf die-off, and their interaction.

Water is directly involved in the transformation and synthesis of various substances
in plants and is an indispensable factor for maintaining cell turgor pressure and balancing
plant temperature. When leaves are stressed by PPC, their cell walls, cell membranes, and
other tissues are damaged and internal water is lost. This may result in cellular water
deficiency, reduced turgor pressure, reduced stomatal conductance, and a slower transpi-
ration rate [68]. If the leaves are in a suitable external environment, slow transpiration
can maintain the normal temperature of the leaf without permanent damage. When the
damaged part of the leaf gradually heals, the leaf water loss rate slows down. Vegetation
has a certain water compensation mechanism that can alleviate the damage caused by
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leaf water loss. Even when the leaf loss rate increased, the LWC of the entire leaf did
not substantially change (Figure 8a). If the leaves are exposed to high temperatures or
direct sunlight after being eaten by PPC, the leaf water loss rate is relatively rapid, and
the water in the roots is difficult to supplement in time. The transpiration of the leaves
then becomes weak and the excess heat on the leaves cannot be removed. Parts of the
leaf become completely desiccated with dead spots appearing (Figure 8b). This leads to a
water deficit in the entire leaf. The appearance of dead spots on the leaves implies greater
water loss, which may be the reason why the die-off rate has a higher correlation with LWC.
The rate of leaf loss and leaf die-off jointly caused a reduction in LWC. However, there
was no significant correlation (Figure 7), indicating that they have their own independent
contributions to the reduction in LWC. Therefore, the interaction between the rate of leaf
loss and leaf die-off had the most pronounced impact on LWC.
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4.2. Inconsistent Accuracy of LWC Estimation under Different Damage Levels

Leaf reflectance in the visible region was predominantly influenced by photosynthetic
pigments. After being stressed by PPC, the leaves suffer from water shortages. Their
transpiration efficiency also declines, which means that the necessary pigment synthesis
materials cannot be transported to the leaves. Therefore, the leaf reflectance changes in
the visible region. Leaf reflectance in the NIR region was predominantly influenced by
its structure. When the leaf is stressed by PPC, its structure is damaged, and the internal
scattering of light inside the leaf is weakened [69–71]. Thus, the reflectance of the leaf
changes in the NIR region. Leaf reflectance in the SWIR region is predominantly affected
by water, and water loss may lead to changes in the SWIR region. The leaf spectra in
the visible, NIR, and SWIR regions were different under different damage levels. The
number of response features and degree of response changed with different damage levels.
Therefore, the estimation accuracy of LWC differed under different damage levels.

When the leaf was stressed by PPC, the water loss rate of the damaged section occurred
faster than that of the undamaged section, and the water content near the leaf vein was
higher than that of the other sections. Therefore, the distribution of water in the leaves has
pronounced spatial heterogeneity. Physical and chemical parameters, such as chlorophyll
and nitrogen content, also show pronounced spatial heterogeneity after being stressed by
pests [72]. This spatial heterogeneity leads to high complexity in the leaf spectral curve and
increases the difficulty in estimating the LWC. There was almost no spatial heterogeneity
in the healthy leaves, and the spectral curves of different parts of the leaf showed little
difference. The spatial heterogeneity of the damaged and off-year leaves was relatively
high, and the spectral confusion was severe (Figure 9). In this study, we used spectral
information as the basis for LWC estimation, and a high degree of spectral confusion
significantly affected the accuracy of the LWC estimation.
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4.3. Correlation Analysis of LWC and Features under Different Damage Levels

To further examine changes in the correlation between the LWC and features with the
increase in damage level, we calculated the correlation coefficients between the LWC and
all features under different damage levels and analyzed their changes. Figures 10 and 11
showed that the number of features significantly related to the LWC of healthy leaves was
2762, accounting for approximately 64% of the total features. The maximum correlation
coefficient reached approximately 0.75. Therefore, the correlation coefficient between the
LWC and the features of healthy leaves was generally high. The correlation coefficient
between features and LWC of severely damaged leaves was 2322, accounting for more
than 50% of the total features. However, the maximum value was less than 0.6, with a
larger gap than that of healthy leaves. The correlation coefficients between features and
LWC of Mi, Mo, and O were generally low. The number of significantly correlated features
was small, and the maximum value did not exceed 0.5. In general, with an increase in the
level of damage, the number and significance of features significantly related to LWC first
decreased and then increased. The correlation between LWC and features of healthy leaves
was significantly higher than that of damaged and off-year leaves. The spectra of moso
bamboo leaves would change when they were under PPC stress or in the off-year stage, the
correlation between LWC and features would worsen, and the estimation accuracy of the
model would decrease. Therefore, when there is a less strong relationship between LWC
and features, it indicates that PPC is present or that the moso bamboo is in the off-year stage.

4.4. Measured Non-Imaging Hyperspectral Data for Research and Application

Measured non-imaging spectra and satellite images are important remote sensing data.
Although their data manifestations are different, their databases are spectroscopic, so the
two sets of data have a high coincidence in some waveband ranges. Fu et al. [73] researched
the biochemical composition of tobacco using measured non-imaging hyperspectra and
matched them with Landsat 8 images to improve the accuracy of the model. This had
considerable theoretical importance and practical application value for determining the
quality of tobacco. Chu et al. [74] used a measured non-imaging hyperspectrum for
fine classification of tree species and concluded that non-imaging spectral research could
provide theoretical support for remote sensing spectral imaging research and applications.
Therefore, measured non-imaging spectral data can be used as multisource data to perform
spectral matching with satellite images and can provide theoretical support for the research
and application of satellite images. In this study, measured non-imaging hyperspectral
data were used to investigate the microscopic mechanisms of biochemical components and
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pest information to explore the change mechanism in plant biochemical components and
leaf spectra when PPC is present. The quantitative relationships between them were also
clarified, which can lay a foundation for real-time, rapid, and large-area monitoring and,
using satellite images, can provide early warning systems for pests.
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4.5. Study of the Change Mechanism of LWC and Spectra to Support Pest Detection

When moso bamboo suffers from pest stress, its biochemical components and leaf
spectra will be changed. It is of great significance for pest detection to study the change
mechanism and regularity of biochemical components and spectral features under different
damage levels. Previous researchers have investigated the change mechanism and regular-
ity between chlorophyll [70], nitrogen [10] and spectral features under different pest levels,
which have laid the foundation for pest detection. In this paper, we started with LWC to
explore the change mechanism and regularity, which is expected to aid with pest detection.
The correlation between response features and LWC is different and the prediction effect of
LWC is also different under different pest levels. Therefore, we may not be able to build an
accurate pest detection model using these features; nevertheless, change in spectral features
exhibits parity with LWC and pest stress damage and may provide a robust predictive tool
for developing a remote sensing model for pest stress survey in the targeted region.

5. Conclusions

In this study, we used the measured spectra and LWC of moso bamboo leaves as the
main datasets and used the Pearson–Lasso algorithm to screen the response features. We
also established an MLR and RFR estimation model for LWC. We analyzed the relationship
between LWC and spectral features of moso bamboo leaves under PPC stress and their
changes by comparing the results of feature screening and model estimation. The following
conclusions were drawn.

(1) LWC and spectra of moso bamboo changed under PPC stress, and the number and
significance of features associated with the LWC of moso bamboo leaves varied under
different damage levels. With increasing damage levels, the number and significance
of features significantly related to LWC first decreased and then increased. The
correlation between LWC and features of healthy leaves was significantly higher than
that of damaged and off-year leaves.

(2) The most effective estimation model for samples under different damage levels
was RFR, achieving model accuracy as follows: for the entire sample (R2 = 0.790,
RMSE = 0.036), for H (R2 = 0.819, RMSE = 0.013), for Mi (R2 = 0.689, RMSE = 0.020),
for Mo (R2 = 0.562, RMSE = 0.038), for S (R2 = 0.712, RMSE = 0.033), and for O
(R2 = 0.666, RMSE = 0.020).

(3) The estimated effect of LWC under different damage levels was significantly different.
The estimation effect of MLR and RFR for different damage levels showed a trend of
healthy leaves being significantly better than leaves from the entire sample, and the
leaves from the entire sample were significantly better than damaged and off-year
leaves. This indicates that PPC damage had a pronounced effect on the estimation of
the LWC. Damaged and off-year leaves reduced the estimation accuracy of the LWC
from the entire sample.

(4) For healthy leaves, there was no significant difference between the estimation effects
of MLR and RFR. MLR was effective in estimating the LWC. For damaged and off-year
leaves, the estimation effect of RFR was significantly better than that of MLR. The
estimation effect of MLR was at a lower level. This indicated that the relationship
between LWC and features of healthy leaves tended to be a simple linear relationship.
Meanwhile, the relationship between LWC and features of damaged and off-year
leaves tended to be relatively complex.

In summary, we used the Pearson–Lasso method to screen features and RFR to estimate
the LWC of bamboo leaves, which has a positive effect. By analyzing the relationship
between leaf spectra and PPC occurrence, we found that leaf spectra differed when leaves
were subjected to different damage levels. By analyzing the level of correlation between the
LWC and spectral features under different damage levels, as well as the model estimation
effect, we also found that when the relationship between LWC and spectral features of moso
bamboo leaves tends to be disordered, this indicates that moso bamboo is in an off-year
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stage or that PPC is present. Although we have not explored the direct response features of
pest stress, the change in spectral features exhibits parity with LWC and pest stress damage,
which may provide a robust predictive tool for developing a remote sensing model for
pest stress survey in the targeted region. In terms of limitations, we only explored the
relationship between measured spectra and LWC of moso bamboo leaves under pest stress,
without further discussing the docking relationship between measured spectra and satellite
images. In the future, we will further study the relationship between them.
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