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Abstract: The necessity for accurate biomass estimates is greater than ever for the sustainable
management of forest resources, which is an increasingly pressing matter due to climate change. The
most used method to estimate biomass for operational purposes is through allometric equations.
Typically, each country develops their own models to be applied at the local scale because it is more
convenient. But, for Quercus suber, a joint regional model can be more beneficial, since the species
is distributed across the Mediterranean and is challenging to account for due to felling limitations
and the nature of mature cork biomass itself. We found that these characteristics are reflected in the
biomass datasets and compatibility was, perhaps, the largest impediment to such a model. The use of
dummy variables to differentiate between countries, as well as compromises in the limits of biomass
compartments, allowed us to develop two joint models to estimate aboveground biomass in Portugal,
Spain and Tunisia. One model as a function of diameter and another as a function of diameter and
total tree height. In addition, we developed a separate model for roots (modelling efficiency of
fitting = 0.89), since it was not possible to assure additivity of the whole tree. All coefficients were
estimated using Seemingly Unrelated Regressions (SUR) and model fitting assured additivity in the
aboveground compartments—leaves and woody biomass (modelling efficiency of fitting = 0.89 and
0.93, respectively). This work proves that it is possible to have a biologically sound and efficient
model for the three countries, despite differences in the observed allometric patterns.

Keywords: biomass estimation; cork oak; seemingly unrelated regression; allometry; regional equations;
Portugal; Spain; Tunisia; montado; dehesa

1. Introduction

The nature of carbon is temporary. It moves from one ecosystem to the next, changing
its form. Excess of carbon residing in the atmosphere has caused severe global changes [1];
however, it is possible to slow the rate of climate change by increasing residence time in
terrestrial carbon pools [2]. Forests are a significant part of that carbon pool, as regulators of
the carbon global cycle. Furthermore, forests store carbon in their soils and biomass, both
above and belowground, and many countries in the European Union have made carbon
neutrality commitments [3] using carbon sequestration by forests as a strategy to deal with
climate change [4]. So, accurately quantifying carbon biomass in trees, while only part of
the solution, is of the utmost importance, either to evaluate stand productivity, the success
of forest policies, or to study the processes involved in carbon sequestration [5].

The most accurate method to quantify tree biomass is through tree felling and weight-
ing after drying (destructive sampling), which is always an onerous task. But, even if
slightly less accurate, biomass estimates can alternatively be obtained from non-destructive
biometric measures using allometric equations e.g., [6,7]. The development of such equa-
tions relies on statistical concepts and the existence of suitable datasets obtained from
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destructive sampling that will ultimately dictate the circumstances in which the models
should be applied. A comprehensive review on this subject has been made elsewhere [8],
pointing out that models are often developed from small and geographically limited
datasets, while discussing the limitations.

An adequate equation to estimate biomass within a given region should ideally be
based on a set of trees harvested in stands with different site conditions, so as to encompass
the variability of growth patterns observed in trees. The biomass data should preferably be
kept without any transformation, in order to avoid biased parameter estimates [9], even if it
means that it might be necessary to model the error term variance [10]. It is also important
to incorporate the property of biomass additivity, i.e., predicted estimates for the different
tree components adding up to the total biomass, to preserve the coefficients biological
meaning [11,12]. Furthermore, estimator efficiency is another important aspect to consider,
since providing narrower confidence intervals for the equation parameters will ensure
better biomass estimates [13]. When attempting to incorporate all these aspects, one of the
most commonly used methodologies is an additive system of equations where parameters
are estimated with seemingly unrelated regression (SUR) [14–16]. Despite these guidelines,
the greatest source of error in biomass predictions can be the choice of the model [17], and
often times, the performance metrics reported and error procedure methodology can be
insufficient [18]. In this regard, well evaluated allometry studies are relevant to understand
the adequacy of a model.

Cork oak (Quercus suber L.) is a tree species with economic importance and carbon sink
potential in the West Mediterranean basin [19–21]. The most commonly used tree variable
to model cork oak biomass is diameter at breast height under bark (du); when using two
variables, it is customary to add total tree height (h). Portugal has developed a system of
equations as a function of du to estimate crown biomass—encompasses leaves and smaller
branches—woody and total aboveground biomass [22], but has developed no model for
roots. Both Spain and Tunisia have two sets of models: one with du as a regressor, to estimate
stem wood, branches of diverging thickness, leaves and belowground biomass; and another
set of models that add the h variable to estimate the biomass of aboveground components
only [23–25]. Several studies have quantified cork oak biomass [26–31], but these were
focused on individual countries. The use of distinct models and tree compartments in each
country is an issue to compare biomass estimates [32], as it makes it difficult to disentangle
whether the differences in estimates are due to sampling and data treatment, environmental
conditions or allometry. Given these issues, the present work has several objectives to
accomplish and questions to investigate:

1. join Quercus suber biomass datasets and compare the different allometries in cork oak
growth among three countries—Portugal, Spain and Tunisia;

2. is it feasible to develop a joint model that can consistently estimate biomass in the
regions where cork oak is prevalent?

3. is the addition of total tree height significant for biomass prediction?
4. provide two alternative root biomass models and two additive SUR aboveground

biomass models—one set as a function of du, to be used when tree height has not been
measured, and the other as a function of du and h.

2. Materials and Methods
2.1. Dataset Description

A total of 212 trees from Portugal, Spain and Tunisia were gathered into a dataset to fit
allometric models. Trees that had already been debarked were considered adult, while trees
that were never debarked were considered juvenile. There was a total of 158 juvenile trees
(152 from Portugal and 6 from Spain) and a total of 54 adult trees (12 from Portugal, 16 from
Tunisia and 26 from Spain). Every country considered different tree compartments in the
field procedure to determine biomass, which is described in detail by the respective authors:
adult trees in Portugal [33,34], juvenile trees in Portugal [35], trees in Tunisia [24] and trees
in Spain [23]. The majority of differences were found in the diameter values to separate
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branch size along the tree crown architecture. So, in order to make biomass contents
compatible, the dataset was homogenized into the three following compartments: leaves,
woody biomass—includes stems, branches and virgin cork—and roots. Total aboveground
biomass results from the sum of leaves and woody biomass, while belowground biomass is
comprised of roots. Mature cork biomass was not considered, as it is periodically extracted.
In the case of trees from Spain and Tunisia, it was necessary to estimate the amount of
mature cork present in the stem at the moment of felling, since it had not been accounted for
in the harvest procedure. This was done in three steps, requiring cork thickness and cork
age at felling [36]. When du was not directly measured, it was calculated by deducting the
cork thickness. A summary of all available variables for the dataset and basic descriptive
statistics is given in Table 1 (full dataset available in the supplementary materials, Table S1).

Table 1. A summary of the available tree variables.

Variable 1 n Min. Median Mean Max. sd

du (cm) 212 2.45 5.95 13.49 79.44 14.68
h (m) 212 1.52 2.44 4.75 15.80 3.93

wl (kg) 212 0.10 1.25 4.95 51.28 8.52
ww (kg) 212 0.64 6.51 178.86 3032.49 412.02
wa (kg) 212 0.99 7.67 183.81 3078.68 418.79
wr (kg) 26 7.42 116.67 132.10 454.06 88.89

1 du: diameter at breast height under bark, h: total height, wl: leaf biomass, ww: woody biomass, wa: aboveground
biomass and wr: root biomass.

2.2. Model Fitting

The biomass models were based on the allometric model that has been recognized as
appropriate to establish the relationship between two parts of the same organism [37,38]:

Biomass Compartment = a × xb, (1)

where, x is a tree variable (du, in this case); a and b are parameters. The value of the
allometric scalar—a—is heavily influenced by the actual values of the tree variables used to
build the power law and the respective units, while the allometric exponent—b—is much
more stable and captures the growth pattern of a species [9,39].

The model described by Equation (1) will henceforth be referred to as the reduced
model. However, the allometric model in its generalized form to two variables, has also
been used and will be referred to as the full model:

Biomass Compartment = a × xb × yc, (2)

where, x and y are tree variables (du and h, in this case); a, b and c are parameters.
The biomass models were developed in the following steps:

(1) fitting individual allometric equations for each biomass compartment using the re-
duced and full model, without differentiating between countries;

(2) addition of dummy variables for each country at each individual equation and se-
lection of a model for each biomass compartment, in which all the parameters were
significantly different from zero;

(3) fitting aboveground components in a system of equations, in order to guarantee the
additivity between total biomass and the other two biomass components.

The full model fitting procedure was done for both SUR models (reduced and full)
and the biomass model for roots did not require step 3, since the additivity property could
not be taken into account because root biomass was only available for a small subset of the
total trees sampled.

Basic descriptive statistics and scatterplots were produced in the R software [40],
while all steps of the model fitting procedure were carried out in SAS software [41] with
the MODEL procedure. Steps 1 and 2 used ordinary least squares (OLS) as estimator
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for all biomass components and step 3 used iterated SUR for the aboveground biomass
components only.

The aboveground biomass system has three equations, according to the compartments:
leaves, woody biomass and one for the sum of leaves and woody biomass. The starting
point to fit the system was to use the best individual model for each compartment selected
in step 2. Furthermore, in order to separate the observations by country, two dummy
variables were created: SP and TUN. If the tree belonged to Spain, SP = 1 and 0 otherwise.
If the tree belonged to Tunisia, TUN = 1 and 0 otherwise. So, if both dummy variables were
0, then the model applied to the trees from Portugal. The general equation with dummy
variables is defined as follows:

Biomass Compartment = (a1 + a2 × SP + a3 × TUN)× du(b1+b2×SP+b3×TUN) × h(c1+c2×SP+c3×TUN), (3)

where ai, bi and ci are the parameters associated with each dummy variable (i = 1, 2 and 3).
It is important to note that if SP = 1 or TUN = 1, parameter values are presented taking
into account a1, b1 and c1, i.e., taking into account similarities between countries through
the common parameters. In addition, there were no roots from Portugal, so the baseline of
that model was Spain and the only dummy variable is TUN. Parameters were added in a
forward stepwise procedure until all were significantly different from zero (α = 0.05), while
minimizing the sum of squared errors (SSE).

Reporting metrics of model fit is imperative in order to guarantee model adequacy [42–44].
Several performance metrics were used to compare models, namely: SSE, Root Mean
Squared Error (RMSE), a measure equivalent to the adjusted coefficient of determination—
the modelling efficiency of fitting (EFf it). However, we report only EFf it, as this is the only
comparable measure when different weights are applied to the models. Since the dataset
was small and it was not feasible to collect an additional independent dataset, model
validation was done using the so called PRESS residuals, that are successively computed
for each data point with the parameter estimates obtained with a model fitted without
this particular data point (leave-one-out jackknife method) [45]. The following validation
statistics were computed: mean of PRESS residuals (mPRESS), mean of absolute PRESS
residuals (maPRESS) and predictive modelling efficiency (EFpred.).

The usual plots to test the regression assumptions of normality and heteroscedasticity
of the residuals were evaluated. Weighted regression was applied when heteroscedasticity
was not verified and several weight functions were tested, namely the inverse of the
response variable, the inverse of the squared fitted values and fitted values, the inverse
of the dependent variable and similar variations, following the method described by
Parresol [12].

3. Results
3.1. The Need for Country Specific Models and for including Total Height

Step 1 of the fitting procedure (Section 2.2) allowed confirmation that the height
variable is significant, but most importantly, suggested the need for a dummy variable to
differentiate between countries. Step 2 showed the results reported in Table 2, where the
need to have country specific models, at least in the aboveground compartments, is clear.

The coefficient a2 in both of the root biomass models displayed a high p-value at any
of the usual significance levels. But it cannot be dropped since it is not an additive term in
the model. We opted to keep the estimate fixed because assuming a2 = 1 was not correct, as
it does not fall within the confidence interval for the estimate.
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Table 2. Coefficients and performance metrics for the weighted models described by Equation (3).

Model Description
Coefficients Performance

a1 a2 a3 b1 b2 b3 c1 c2 c3 EFfit

Reduced
model

wl 0.09 *** 0.02 *** 0.06 *** 1.58 *** 0.86
ww 0.08 *** 0.24 * 2.60 *** 2.13 *** 2.49 *** 0.87
wa 0.15 *** 2.42 *** 2.23 *** 2.31 *** 0.88

wr 1 0.26 2 1.76 *** 1.86 *** 0.87

Full
model

wl 0.10 *** 0.02 *** 0.05 *** 1.21 *** 1.80 *** 0.89
ww 0.10 *** 2.07 *** 1.48 ** 1.84 *** 0.75 *** 1.41 * 0.92
wa 0.14 *** 1.97 *** 1.81 *** 1.75 *** 0.74 *** 0.89

wr 1 0.16 2 1.43 *** 0.76 *** 0.89
All coefficients ai , bi and ci , were marked with symbols according to the following: *** indicates p < 0.001,
** p < 0.01 and * p < 0.05. Empty cells indicate that the parameter was not significantly different from zero at
the usual α levels. Greyed out cells indicate that the parameter is not part of the model fitting. wl: leaf biomass,
ww: woody biomass, wa: aboveground biomass, wr: root biomass. EFf it: modelling efficiency of fitting, calculated
with non-weighted residuals. 1 Both models for roots do not have weights. 2 The coefficient estimate was fixed.

As expected, the coefficients bi are generally always significant and the addition of
h always improves model performance. But it is interesting to note that the coefficients
bi and ci associated with Spain and Tunisia were not statistically significant for leaves
(wl). In addition, coefficient a2 loses significance when height is added in the woody
compartment (ww).

3.2. Two Systems of Equations for Aboveground Biomass

Step 3 of the fitting procedure (simultaneous fitting of the aboveground biomass
compartments, Section 2.2) provided the results reported in Table 3, where all parameters
remained with the same level of significance as reported in Table 2, or even higher.

Table 3. Coefficients and performance metrics for the SUR weighted systems of equations.

Model Description
Coefficients Performance

a1 a2 a3 b1 b2 b3 c1 c2 c3 EFfit

wl 0.09 *** 0.02 *** 0.06 *** 1.60 *** 0.86
ww 0.08 *** 0.26 ** 2.59 *** 2.09 *** 2.48 *** 0.89Reduced

model wa wl + ww 0.89

wl 0.11 *** 0.03 *** 0.05 *** 1.13 *** 0.65 *** 0.89
ww 0.10 *** 2.07 *** 1.40 *** 1.84 *** 0.75 *** 1.54 ** 0.93Full

model wa wl + ww 0.93
All coefficients ai , bi and ci , were marked with symbols according to the following: *** indicates p < 0.001 and
** p < 0.01. Empty values indicate that the parameter was not significantly different from zero at the usual α levels.
Greyed out cells indicate that the parameter is not part of the model fitting. wl: leaf biomass, ww: woody biomass,
wa: aboveground biomass. EFf it: modelling efficiency of fitting, calculated with non-weighted residuals.

As expected, the metric EFf it improved or was maintained from the individual fits
to the simultaneous equation fits. A graphical representation of all final reduced models
are shown in Figure 1, where it is possible to see that the compartments with the greatest
variability are woody and aboveground biomass. However, their patterns are nearly
identical, since most of the biomass can be found in wood at the moment of sampling.
Leaves show less variability of observed values but starkly different patterns.
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Figure 1. Best reduced models with weights for all biomass compartments: leaves, woody and
aboveground show the simultaneous equations fit, while roots show the individual equation fit. The
green dots represent the models for Portugal, orange triangles represent Spain and purple squares
represent Tunisia.

3.3. Evaluating the Models

Regarding model validation (Table 4), the best performance was found to be in the
SUR full model for aboveground compartments (wl, ww and wa). Roots also had better
predictive ability in the full model.

Table 4. Cross-validation metrics for all models.

Model Description Cross-Validation Metrics

mPRESS maPRESS EFpred.

INDIVIDUAL
EQUATIONS

Reduced
model

wl −0.0032 0.14 0.84
ww −0.0005 0.06 0.85
wa −0.0286 0.36 0.86
wr 3.17 25.50 0.59

Full model

wl −0.0013 0.08 0.87
ww 0.0002 0.04 0.90
wa 0.0002 0.05 0.88
wr 1.48 24.28 0.84

SUR

Reduced
model

wl 0.0029 0.14 0.86
ww 0.0020 0.04 0.89
wa 0.0053 0.08 0.89

Full model
wl −0.0060 0.08 0.89
ww −0.0002 0.04 0.93
wa −0.0007 0.05 0.93

wl: leaf biomass, ww: woody biomass, wa: aboveground biomass, wr: root biomass. mPRESS: mean of PRESS
residuals, maPRESS: mean of absolute PRESS residuals and EFpred.: predictive modelling efficiency.
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There were issues with heteroscedasticity for all aboveground compartments. The
best method to solve the issues was Parresol’s method to model the error term by taking
the logarithm of the squared residuals and the logarithm of the original dependent variable.
There were no serious issues with heteroscedasticity for roots. Figure 2 shows all the plots
of studentized residual for each compartment.
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4. Discussion
4.1. Advantages and Disadvantages of Joining a Dataset from Three Countries

The most obvious limitation to joining separate datasets is the difference in sampling
procedures. This is especially true for foliage and roots [8,32], which can have considerable
differences due to the practical difficulties associated with the sampling process. Further-
more, there is no standard definition of compartments, so in order to join a dataset the
modeler is forced to group compartments to achieve data compatibility. These issues are
exacerbated in cork oak trees for two reasons: cork can be extremely heterogeneous and
each country accounts for cork biomass with its own guidelines. Another important issue
is that cork oak trees are usually protected by legislation which prevents their felling and
determines a reduced number of observations. Thus, the gain in joining datasets in the
Mediterranean region, for cork oak particularly, could far outweigh the weaknesses.

The advantages of joining datasets are the increase in range of tree characteristics—du
and h, in this case—and a higher level of geographical representation. It is common practice
to build allometric models based on du alone, since it is highly correlated with biomass
growth, while also being relatively easy, accurate and inexpensive to measure. However,
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this practice assumes a constant du
h , which is not true due to tree competition e.g., [46,47]

further deviates from the truth in larger scale models [48]. Several authors support the idea
that more complex regional models with a greater availability of data and variables can be
useful, especially in regions that are underrepresented [49,50], provided that due diligence
in model use and dataset compatibility is exerted.

4.2. Is It Feasible to Develop a Joint Model That Can Consistently Estimate Biomass in the Regions
Where Cork Oak Is Prevalent?

It was not possible to develop a system of equations with additivity for the whole
tree, since Portugal had no data on root biomass and in Spain and Tunisia not all trees had
been sampled for roots. Therefore, it was necessary to separate between belowground and
aboveground biomass.

Belowground biomass models used only data from two countries—Spain and Tunisia—
which show that there are significant differences in root allometry (Figure 1 and Table 2).
These differences are related to climatic and stand characteristics, as well as soil type and
soil water dynamics, since these factors have a great influence in root development [51,52].
However, the best general model for roots is the full model, in which no significant al-
lometric differences were found, but both the fit and predictive modeling efficiencies
(Tables 2 and 4) were better.

Aboveground biomass data allowed a joint model with no distinction between coun-
tries, i.e., no dummy variables. However, such a model would not be accurate for any one
country. This inadequacy is especially noticeable in the leaves compartment (Figure 1),
which was to be expected due to their intrinsic variability [53,54]. But we found that all
aboveground biomass estimates for each particular country can be significantly improved
by including dummy variables (Equation (3) and Table 2). Furthermore, the full model
for woody biomass required dummies for coefficients related to du and h only—bi and
ci—which are more related to growth patterns, and thus, indicating that each country has
indeed significantly different allometries. On the other hand, the equation for leaf biomass
required only dummies for the ai coefficient, which is sensitive to the choice of independent
variables and its units [9,39], suggesting that the growth patterns exhibited by tree foliage
were masked either by du or by its measurement units.

The growth pattern of tree foliage is influenced by different management practices
related to pruning, thinning and stand density and several authors have found that crown
variables are tremendously important in describing the leaf allometry of cork oak [6,55,56].
These variables were not available for this study. However, some information on stand
density (N, trees/ha) was accessible. Portugal and Tunisia were found to be more similar in
the aboveground compartments, despite extremely different stand densities: 4–304 versus
512–560, respectively. The stands in Los Alcornocales Natural Park, Spain, where many
biomass samples were collected, have a density in the range 87–334 [57,58]. So it seems
that stand density cannot explain all the variability in leaves, at least not straightforwardly.
Furthermore, cork oak forests of low density don’t exhibit signs of tree competition and we
can expect the management options often applied in these systems, namely pruning, to be
the dominant cause of differences [59–62]. It is also possible that differences in leaf biomass
could simply be from a distinct timing in the sampling method itself, since leaf biomass is
not static. But a more detailed exploratory analysis of the effect of stand density, crown
width and crown length in future studies would be highly enlightening.

Regardless, it is clear that the full SUR model is superior to the individual allometric
models, which has been shown by other authors to be true when there is some correlation
between the response variables and restrictions on the coefficients are necessary e.g., [11,13].
In addition, and as expected, forcing additivity is a suitable pre-requisite for biomass
modelling, since the quality of the SUR model is not worsened by imposing such a restraint
(Tables 2 and 3).
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4.3. Is the Addition of Total Tree Height Significant for Biomass Prediction?

The full model with du and h provide better estimates of biomass, in all compartments,
than the reduced models (Tables 2 and 4). But it should be noted that when h was added
to the roots reduced model, the coefficients associated with dummy variables were not
significant. This indicates that a model with no distinction between countries works well
for roots, provided that enough information about tree characteristics, namely du and h,
are used. Despite this, we provide the reduced models for every compartment because on
its own, du is the best, most common regressor of biomass and h might not be available.
Furthermore, h estimation in cork oak could be a bit inaccurate in comparison with other
species due to the crown architecture.

5. Conclusions

The biomass estimates for leaves, woody, total aboveground and roots always improve
with the addition of height, even though height is not the most adequate variable to estimate
leaf biomass. We found that by making reasonable compromises in the level of detail with
which biomass compartment limits are set, it is possible to join datasets from three different
countries and mitigate the scarcity of cork oak destructive sampling data. Furthermore,
each country had significantly different allometries in every biomass compartment, but
these differences can be accounted for with dummy variables, thereby allowing a regional
model that can harmoniously quantify the carbon stocks of cork oak.

Supplementary Materials: The biomass datasets with which the models were developed are avail-
able online at https://www.mdpi.com/article/10.3390/f14030649/s1, Table S1: Dataset_SupMaterials.
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