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Abstract: Potential vegetation distribution is an important study in environmental sciences. We
utilized the Mixed Least Squares–Total Least Squares (MLS-TLS) method and the Signal Mode Decom-
position method and the Ecological Niche model to identify the inter-correlations of internal climate
change factors and constructed an environmental factor response regression model. We identified
the resonance periods and trend relationships among climate factors (temperature, precipitation,
and evapotranspiration) and found that the evapotranspiration of the watershed interferes with the
correlation between temperature and precipitation on a five-year scale. The specific change degree of
extreme climate indicators in the region was quantified by the Range of Variability Approach, among
which the precipitation indicators were all below 33% (low change). There were significant differences
between the key bioclimatic variables and Aspect of the development of suitable vegetation habitats.
The difference between the Aspect and average daily air temperature is the main contributor to the
spatial distribution of vegetation, and the mutual contribution is 76.19%. Our regression model can
effectively simulate the potential distribution of vegetation (r = 0.854). Compared to the MaxEnt
model, our regression model can quantitatively and intuitively provide suitable habitat values for
Cryptomeria fortunei at any given location in the basin. Under future scenarios (2021–2040), suitable
habitat for Cryptomeria fortunei in the eastern and western regions of the basin is projected to deterio-
rate further. The research results can provide some help for policymakers to eliminate the potential
adverse effects of future climate change on regional ecology.

Keywords: vegetation habitat; mixed least squares–total least squares method; quantitative evaluation;
remote sensing; ecological niche model

1. Introduction

In the past century, climate change, as an important manifestation and part of the
changing environment, has brought a profound influence on the hydrological cycle process
and the Earth’s ecosystem [1]. The response relationship between vegetation and climate
has always been the focus of global scholars’ research reports and attention [2–6]. In
addition to being a crucial ecological component, vegetation has a significant impact on
human society and is easily impacted by human activity in the global ecosystem. Not only
does vegetation contribute to climate change, but it is also one of its positive feedback
regulators [7]. However, research shows that human activities are promoting the habitat
change of forest vegetation system on large scale and settlement scale from climate level [8].
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Climate change has many different spatial and temporal scales, and vegetation re-
sponses in different regions are also different. An increase in temperature beyond a thresh-
old enhances vegetation respiration [9]. Changes in precipitation will directly affect forest
system productivity [3]; both temperature and precipitation vary over temporal and spa-
tial scales, consequently affecting vegetation distribution. [10,11]. Spatially, the complex
distribution of vegetation communities is mainly controlled by altitude. It has also been
reported that when AT and precipitation become factors limiting plant growth, they may
have a greater impact on local vegetation than altitude [12]. If we can clarify the response re-
lationship between vegetation distribution and AT, precipitation, and regional topography,
it will provide intuitive guidance for the current vegetation suitability and future regional
ecological restoration. However, at present, most of the research uses the normalized differ-
ence vegetation index (NDVI) to represent vegetation for climate change research [6,13].
However, NDVI is based on band interpretation and has low sensitivity to areas with
high vegetation density, so it cannot fully reflect the distribution and growth status of
vegetation in the area [14]. Furthermore, the complex meteorological and hydrological
systems contain various interactions between meteorological elements. Under the influence
of climate change and human activities, individual meteorological time series and their
interactions tend to become more complex, and simple correlation tests between two vari-
ables may not be able to demonstrate their intrinsic correlations and their evolution [15].
Over a given time period, the variations in hydro-meteorological sequences do not exhibit
fixed periodic motions but rather contain changes and local fluctuations across multiple
time scales. The process characteristics of these nonlinear and non-stationary states can be
identified through the Signal Mode Decomposition method [16]. Therefore, clarifying the
relationship between the internal factors of climate change on temporal and spatial scales,
as well as quantifying the response process of climate and vegetation spatial distribution,
remains a work of practical importance.

The Ecological Niche model based on existing species distribution data and ecologi-
cally meaningful meteorological data has been widely used by ecologists to analyze and pre-
dict the potential distribution of species in time and space [17–20]. Its results can be used as
a species habitat suitability index for qualitative analysis in space [21]. The MaxEnt model,
which models species distribution prediction using a maximum entropy algorithm based
on basic data, has been applied to Point Reyes Bird Observatory (http://www.prbo.org,
accessed on 15 January 2022) and Atlas of Living Australia (http://www.ala.org.au, ac-
cessed on 15 January 2022) [17,22]. Therefore, it is a new idea to seek and quantify species’
responses to climate through the Ecological Niche model.

People can use the MaxEnt model to understand the contribution of different factors
to species distribution but cannot intuitively obtain the response relationship between dif-
ferent factors and species distribution [21]. The least squares method is a commonly used
method to solve curve fitting problems, which seeks to minimize the sum of squared errors
to determine the best matching function corresponding to the data, thereby intuitively ex-
pressing the relationship between the independent and dependent variables and reflecting
their physical meanings. The Mixed Least Squares–Total Least Squares (MLS-TLS) method
is an advanced least squares method structure [23]. It is a method that can eliminate noise
from the covariance matrix, subtracting the noise influence term first, then inverting and
solving the matrix to obtain the least squares solution. Therefore, based on the reliable
results of the MaxEnt model, constructing a multi-factor relationship model through the
MLS-TLS method is highly meaningful work.

Dongting Lake (DTL) wetland is one of the 200 important ecological regions in the
world, and it is very representative to choose the DTL basin as the study area [24]. Affected
by both natural factors and human activities, DTL wetland plants show zonal distribution
characteristics [25]. Paying attention to the habitat development of wetland plants in
the DTL basin is of great significance to the maintenance of global wetlands ecosystem
functions. Zhang et al. found that climate change has threatened DTL wetland vegetation
by 59.19% from 2000 to 2019 [5]. Therefore, taking the DTL basin as the research object has

http://www.prbo.org
http://www.ala.org.au


Forests 2023, 14, 614 3 of 20

high ecological value and reference significance for species diversity protection in other
important ecological regions in the world under the background of climate change.

In our study, our goal is to quantify the relationship between climate and vegetation
habitat (spatial distribution). However, we also focused on and clarified the relationship
and trend within the climate (AT, precipitation, and evapotranspiration) and quantified the
change degree of extreme regional climate. More specifically, the following questions are
addressed: (1) Are there interfering scenarios of correlations between regional climates?
(2) What are the contribution rates of different climatic factors to suitable vegetation
habitats on a spatial scale? (3) An intuitive and reliable model of Climate–Vegetation
Suitable Habitat Response Regression (CSHRR) is proposed. We employed the Signal Mode
Decomposition method to identify the climate change trend and utilized the Cross Wavelet
Transform and Local Running Correlation Coefficient to elucidate the correlation between
climate factors. Moreover, the Range of Variability Approach was employed to quantify
the extent of extreme climate change within the basin. Subsequently, we constructed
a regression model by coupling the MaxEnt model with the MLS-TLS method.

2. Materials and Methods
2.1. Study Area

The DTL Basin (24◦63′–30◦29′ N, 107◦25′–114◦24′ E) is an important sub-basin in the
middle reaches of the Yangtze River Basin, which flows through six provinces and one
municipality directly under the Central Government of China (Figure 1). Many water
systems in the basin flow into the Yangtze River through Chenglingji Hydrological Station
in Hunan Province. The basin area is 26.28 × 104 km2, accounting for 14.6% of the Yangtze
River basin area [17]. The DTL basin belongs to a typical subtropical monsoon humid
climate, with four distinct seasons and simultaneous rain and heat. The average annual
precipitation is 1200 mm to 1500 mm, and the average annual temperature is 17 ◦C, with
the lowest temperature in January and the highest temperature in July. The vegetation
types in the basin are mainly evergreen coniferous forest, evergreen broad-leaved forest,
and Salix woody plants [25].
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Cryptomeria fortunei Hooibrenk ex Otto et Dietr (Cryptomeria fortunei), belongs to the
family Cupressaceae and is a species of evergreen coniferous tree endemic to China [26].
It can grow up to 48 m tall with a diameter of over 2 m at breast height and has a narrow
conical or conical-shaped crown. It prefers a warm and humid mountainous climate with
cool summers and well-drained sandy soil while avoiding water-logged areas. The bark
is reddish-brown and fibrous, peeling off in long strips. The larger branches are nearly
whorled, spreading, or drooping, while the smaller branches are slender and often drooping.
The leaves are awl-shaped, slightly inwardly curved, with a length of 1–1.5 cm and stomatal
lines on all four sides. The leaves on fruiting branches are usually shorter than those on
young trees or sprouting branches, which can reach up to 2.4 cm in length with stomatal
lines on all sides [27]. It is commonly found growing in wet mountainous forests or open
areas at an altitude of 500 to 1300 m in the DTL basin, where it is considered a wild forest
species. Cryptomeria fortunei, as one of the evergreen coniferous forests widely distributed
in the DTL watershed, is sensitive to climate change and is a favored research object in
dendrohydrology and dendroclimatology [28]. Its growth distribution is an important
proxy data for reconstructing the evolution law of hydrology and climate in the historical
period. Therefore, Cryptomeria fortunei was selected as the indicator species in this study.

2.2. Data preparation
2.2.1. Data Source

Meteorological data were daily data sets of 34 weather stations in the DTL basin
from 1961 to 2019. Mean air pressure, sunshine hours, relative humidity, wind speed,
and maximum, minimum, and average air temperature were used to calculate potential
evapotranspiration (ETo). The China Meteorological Data Service Center (http://data.cma.
cn/ accessed on 1 March 2021) provided these meteorological data. Raster data includes
bioclimatic variables and elevation. Bioclimatic variables are 19 variables with biological
significance obtained from monthly temperature and precipitation values, and elevation
data is processed to obtain slope and Aspect data. All raster data resolution is 30 s and is
provided by WorldClim (https://www.worldclim.org/, accessed on 1 September 2022).
In this study, all raster data are georeferenced and corrected. The current bioclimatic
variable time series runs from 1970 to 2000, while the future bioclimatic variable time
series runs from 2021 to 2040. Regarding future climate scenarios, most studies are based
on the Coupled Model Intercomparison Project Phase 5 (CMIP5), while the new version,
CMIP6, shows significantly higher climate sensitivity [29]. CMIP6 models simulate the
climate system closer to observational results, with less uncertainty, and allow for a wider
exploration of future outcomes. SSP245 is an updated RCP4.5 scenario, where radiative
forcing will stabilize at 4.5 W/m2 in 2100, and is a commonly used scenario for assessing
species distribution under future scenarios [30]. According to the research results [31], the
following six variables (Table 1) are determined to be bioclimatic variables required for
the study after spatial data autocorrelation is removed. The longitude and latitude data of
indicator species are from National Specimen Information Infrastructure (http://www.nsii.
org.cn/2017/home.php, accessed on 1 September 2022) and the Chinese Virtual Herbarium
(https://www.cvh.ac.cn/, accessed on 1 September 2022).

Table 1. Bioclimatic variables and their abbreviations.

Bioclimatic Variables Abbreviation Bioclimatic Variables Abbreviation

Mean diurnal air temperature range MDA Mean temperature of coldest quarter MTC
Isothermality − Annual precipitation AP

Max temperature of warmest month MTW Precipitation of the warmest quarter PWQ

Note: These data are from WorldClim (https://www.worldclim.org/, accessed on 1 September 2022).

http://data.cma.cn/
http://data.cma.cn/
https://www.worldclim.org/
http://www.nsii.org.cn/2017/home.php
http://www.nsii.org.cn/2017/home.php
https://www.cvh.ac.cn/
https://www.worldclim.org/
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2.2.2. Species Occurrence Data

In this study, a total of 104 records of occurrence data for Cryptomeria fortunei were
collected. Furthermore, to avoid the adverse effects of spatial autocorrelation and pseudo-
replication of occurrence data on the model’s results, we set the buffer range to 10 km
to select distribution points of the Cryptomeria fortunei. Finally, 70 species occurrence
records were retained for modeling after removing highly spatially autocorrelated and
duplicate records.

2.3. Methods
2.3.1. Time-Varying Characteristics of Meteorological Elements and Signal Mode
Decomposition Method

For the meteorological series, we employed the non-parametric Mann–Kendall Test
and Pettitt’s Test [32] to identify the abrupt changes in the basin climate variables (temper-
ature, precipitation, ETo) and then used Signal Mode Decomposition Method to identify
their characteristics within the basin. Abrupt changes and the corresponding year indi-
cate a turning point in the trend of the meteorological factor at that watershed, which is
generally considered to be the accumulation of disturbance effects to the point of extreme
value. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-
DAN) has broad application prospects in signal prediction and decomposition [33,34]. It
can deal with data sequences with complex changes and non-stationary and multi-time
scale characteristics. By decomposition, accurate and complete components with different
fluctuation periods are obtained locally [28]. The i-th intrinsic mode component obtained
by CEEMDAN decomposition is Ci(t), and its specific core algorithm is as follows:

(1) The new signal was decomposed by Empirical Mode Decomposition (EMD) to
obtain the first-order intrinsic mode component C1 [35].

E(µ) = Cj
1(t) + rj (1)

In the formula µ = x(t) + (−1)kωvj(t), vj is a Gaussian white noise signal satisfying
the standard normal distribution, j was the number of white noise added, ω was the
standard table of white noise, x(t) was the original signal, k was the signal-to-noise ratio,
and r was the residual after decomposition.

(2) The first residual r1(t) was obtained by subtracting the first intrinsic mode compo-
nent C1(t) (the first intrinsic mode component was obtained by the overall average of the j
mode components) from the original signal x(t).

(3) Add the positive and negative paired Gaussian white noise in r1(t) to obtain the
new signal, and use EMD to decompose the new signal to obtain the first mode component
F1. Repeat step 2 until the residual signal is a monotonic function. At this time, the number
of intrinsic mode components is N, and the original signal is expressed as follows:

x(t) =
N

∑
N=1

CN(t) + rN(t) (2)

(4) The final intrinsic mode function (IMF) value was determined by calculating the
total average value across the period of each intrinsic mode function. The noise level
decreases as the IMF component sort increases [36].

2.3.2. De-Interference Meteorological Analysis Technology

For two time series, if a single fixed value is used to express the correlation between
them, the intermediate change process is ignored, which may lead to misjudgment of
their correlation [37]. We combined the Cross Wavelet Transform (XWT) method and the
definition of Partial Correlation and proposed De-interference Meteorological Analysis
Technology to clarify the relationship between climate variables (AT, precipitation, ETo).
The XWT seeks the correlation between the time domain and frequency domain by analyz-
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ing the common spectral signals between sequences xn, yn [38]. This technology first uses
XWT to diagnose the common period and periodic trend relationship among AT, Precipita-
tion, and ETo. The XWT of two time series, xn and yn, can be defined as Mn

X(l), Mn
Y(l).

The Cross Wavelet Spectrum Formula is as follows:

Mn
XY(l) = Mn

X(l)Mn
Y∗(l) (3)

where Mn
Y∗(l) is the complex conjugate of Mn

Y(l), and Mn
XY(l) was the crossed wavelet

spectrum. The continuous cross-wavelet power spectrum is tested by calculating the red
noise spectrum RK

X and PK
Y of xn and yn. The theoretical distribution of cross wavelet

power of two time series can be found in references [39]; the formula is as follows:

D

(∣∣Mn
X(t)Mn

Y∗(t)
∣∣

σXσY

)
=

Zν(p)
ν

√
RKXPKY (4)

where Zν(p) represents the confidence degree associated with the probability p, and the
probability distribution function is defined by the square root of the product of two χ2

distributions; σX and σY are the standard deviations of xn and yn, respectively.
After using the XWT to identify whether there is interference and its period between

the meteorology in the watershed, the partial correlation [40] was used to determine
the relationship between the elements. Local Running Correlation Coefficient (LRCC)
represents the changing trend of the correlation between two factors under a fixed time
window [41]. LRCC was widely used, and its principle and calculation process can be
found in the references [42]. According to partial correlation theory and LRCC window
characteristics, the analytical expression of the meteorological correlation process after
removing interference factors is as follows:

λ(ti) =
rα ,β(ti)− rα,γ(ti)× rβ,γ(ti)√
(1− rα,β(ti)

2)× (1− rβ,γ(ti)
2)

(5)

where rα,β(ti), rα,γ(ti) and rβ,γ(ti) are the LRCC between the two meteorological elements,
respectively, and i is the serial number.

2.3.3. Extreme Climate Range of Variability Approach

In this study, RClimDex software was used to control the quality of daily data of AT
and precipitation from 1961 to 2019 as input data. Through statistical analysis of various
extreme climate indicators, nine extreme temperature and precipitation indicators were
obtained (Table 2). Combined with the Range of Variability Approach (RVA) [43], the
change degree of extreme temperature and precipitation in the basin was explored, and the
calculation Formula of the change degree is as follows:

Vi =

∣∣∣∣Yξ −Yτ

Yτ

∣∣∣∣× 100% (6)

Vτ = η ×YT (7)

where Vi is the change degree of the i-th meteorological index; Yξ and Yτ are the actual
number of years and the expected number of years that fall within the RVA target threshold
after the meteorological index changes; η is the proportion of the index falling within the
RVA target threshold before being disturbed; YT is the total number of years after the
change of meteorological indicators.
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Table 2. Extreme temperature and precipitation indicators.

Air Temperature Index Abbreviation Precipitation Index Abbreviation

Warm Days TX90p Simple Daily Intensity Index SDII
Warm Nights TN90p Max one-day Precipitation Amount RX1D

Ice Days ID Extremely Wet Days R99p
Frost Days FD Very Wet Days R95p

Summer Days SU Number of Very Heavy Precipitation Days R20
Warm Spell Duration Indicator WSDI Number of Heavy precipitation Days R10
Cold Spell Duration Indicator CSDI Max five-day Precipitation Amount RX5day

Growing Season Length GSL Consecutive Wet Days CWD
Diurnal Temperature Range DTR Consecutive Dry Days CDD

2.3.4. MaxEnt Model and Geographical Detector

The MaxEnt model is a Niche model based on the maximum entropy theory and
calculated through species distribution information and living conditions [19]. The model
has a self-inspection function, which can automatically generate Receiver Operating Char-
acteristic (ROC) curves to evaluate the results [20]. The area under curve (AUC) of ROC is
not affected by the judgment threshold, so it is recognized as the best evaluation index of
model prediction accuracy at present [17]. The value range of AUC is 0 to 1. The larger the
value is, the farther the AUC is from the random distribution and the more accurate the
prediction effect will be.

We imported the collected geographic distribution data of Cryptomeria fortunei, 19 cli-
matic variables, and 3 terrain factors (DEM, slope, and Aspect) into the MaxEnt model
and ran it once while removing variables with zero contribution. For any two highly
correlated environmental variables (r > 0.8), the variable with the greater contribution to
the response was retained [44]. Among the initial 22 variables, we ultimately selected
7 environmental variables for modeling, and after 10 runs, we obtained the distribution of
Cryptomeria fortunei. The AUC derived in this study was 0.832, indicating that the species
distribution results obtained by the model were credible (Figure 2). Jackknife results
showed that MDA had the highest contribution to the model, followed by Aspect, MTC,
Isothermality, PWQ, MTW, and AP. The overall gain of these variables reached 0.47. The
Jackknife test reflects the importance of explanatory variables based on permutations, and
these results indicate that each variable contributes to the gain of the model. Therefore, all
included explanatory variables contribute to improving the predictive probability, resulting
in higher reliability [45].
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GeoDetector, i.e., Geographical Detector, is a set of statistical methods to quantitatively
reveal the driving force of spatial differentiation of each element [46]. The basic idea is that
if the spatial distribution of the independent variable is similar to that of the dependent vari-
able, then the independent variable has an important influence on the dependent variable.
The greater the similarity, the greater the degree of influence [47]. GeoDetector helps us
quantitatively analyze the driving forces affecting the suitable habitats of watershed plants
from the perspective of spatial heterogeneity. The Geographical Detector consists of four
modules: Interaction detector, Ecological detector, Factor detector, and Risk detector. For
specific modules and methods, please refer to the references [48]. Geographical Detector
requires that the data type of the independent variable input is discrete. Therefore, we refer
to Chen et al. and use the natural breakpoint method to divide all independent variables
into seven levels [49].

2.3.5. Mixed Least Squares–Total Least Squares (MLS-TLS)

Least-squares (LS) based algorithms are often used in economic demonstration, ma-
chine learning, and remote sensing inversion [50]. The mixed least squares method is based
on the difference of the coefficient matrix; for the coefficient matrix A and the matrix X to be
obtained, the method of solving the parameters by the coupled least squares method and
the total least squares method [51]. In this study, raster data were imported into Stata soft-
ware for programming (StataCorp LP, College Station, TX, USA). The basic mathematical
principles are as follows:

A1X1 + (A2 + EA2)X2 = L + EL (8)

R = QT P = QT [A1 A2 L] =
[

R11 R12 R1L
0 R22 R2L

]
(9)

where R is the matrix of m× (n + 1); Q is the m-order orthogonal matrix; A is the coefficient
matrix, and A = [A1 A2], A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , X1 ∈ Rn1 , X2 ∈ Rn2 ; L is the
observation vector; p is an augmented matrix; R11 ∈ Rn1×n1 is an upper triangular matrix,
R12 ∈ Rn1×n2 , R1L ∈ Rn1×1, R22 ∈ R(m−n1)×n2 , R2L ∈ R(m−n1)×1 [46].

R11X1 + R12X2 = R1L (10)

R22X2 = R2L (11)

X = [XT
1 XT

2 ]
T (12)

The TLS method is used to solve Equation (11) to obtain X2, and after putting X2 into
Equation (10), the LS method is used to solve X1, then X is obtained.

2.3.6. The Climate–Vegetation Suitable Habitat Response Regression Model
(CSHRR Model)

Based on the results of the MaxEnt model, the Climate–Vegetation Suitable Habitat
Response Regression (CSHRR) model was constructed using MLS-TLS. The habitat in the
model is presented as a continuous change value of 0 to 1 in the raster layer. The closer the
value is to 1, the better the habitat suitability is, and the more suitable the species is in the
area. We divided the watershed habitat quality values into five classes, including excellent
(0.7–1), good (0.45–0.7), average (0.25–0.45), poor (0.1–0.25), and unsuitable habitats (0–0.1).
The Formula of the CSHRR model is as follows:

H0 = β0 + β1Variablej + β2ijControlsij + βkTj + ε0 (13)

where H0 is the habitat value of the target species; β1 and Variablej are the correlation coef-
ficients of explanatory variables and their values in raster J, respectively. β2ij and Controlsij
are the correlation coefficient of control variable i and its value at raster J, respectively. Tj
and βk are the level value of the measure index at raster J and the correlation coefficient
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corresponding to the level. ε0 is the error term; β0 is a constant term. The value of Controlsij
is the natural log plus 1, and the value range of H0 is 0 to 1.

3. Results
3.1. Temporal Characteristics and Mode Trends of Climate

The Mann–Kendall Test showed that the AT (maximum, average, and minimum) all
passed the 99% significance test, and their statistics were 3.27, 4.58, and 5.93, respectively.
Precipitation and ETo did not pass the significance test, and their statistics were 0.54 and
−0.51, respectively. Figure 3 displays the interannual value of each climate component. We
use Pettitt Test to identify the actual abrupt change years of each factor, and the abrupt
change points of different factors are different. The minimum temperature and average
temperature change year are both in 1997, while the maximum temperature abrupt change
time lags behind by one year. Therefore, we believe that the actual abrupt change year of
temperature in the study area can be set as 1997. In addition, the interannual fluctuation
of the average temperature maintains a strong synchronization with the maximum and
minimum temperatures, so the average temperature is used in the subsequent analysis.
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CEEMDAN was used to analyze AT, precipitation, and ETo and the results are shown
in Figure 4. Rainfall has 5 IMF components, while AT and ETo have 4 IMF components. The
IMF component of each element better reflects the fluctuation and change characteristics
of the original sequence in different periods. The change frequency and amplitude of the
IMF1 component of rainfall are faster and higher than those of the other two types of
elements, while the ETo lags behind the AT. The IMF5 component of precipitation shows
a decline cycle (1974–1986) before the abrupt change (1993). By analyzing the trend, we can
see that the AT and ETo show an upward trend as a whole, while the precipitation shows
a fluctuating state. Rainfall increased from 1985 and reached its maximum in 2010, while
ETo basically fell back to the state in 1990 and continued to rise after that.
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3.2. Climate Periods and Their Correlation Analysis

The analysis results of XWT and Wavelet Coherence (WTC) are shown in Figure 5. In
the high-energy region (XWT), both AT, precipitation, and ETo pass the red noise test with
a confidence level of 95%. There is a negative correlation between AT and precipitation on
a three-year scale and a positive correlation between AT and ETo on a four-year scale. AT
was 1/4 period later than precipitation, while ETo was 1/4 period ahead. The result was
similar to the trend of the IMF component. In the low-energy region (wavelet coherence),
AT-precipitation and AT-ETo still maintained opposite characteristics in terms of phase and
period but showed multi-time-scale positive correlations with ETo. The phase correlation
between precipitation-ETo is negative, but the change of the phase relationship between
the two on the five-year scale shows uncertainty, which means that the response of AT-
precipitation may be mixed with the interference of ETo.

After filtering the influence of ETo on rainfall (Figure 6), the annual correlation curve
between AT-precipitation removes the negative correlation characteristics. The correlation
results were centered around 0.7, indicating a positive correlation. This is consistent with
the arrow pointing to the right trend of AT precipitation on the five-year time scale in the
WTC, suggesting that the LRCC in this study is reasonable. It is worth noting that before the
abrupt change (1962–1967), there was a high negative correlation between AT-precipitation.
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AT-precipitation.

3.3. Assessment of Watershed Climatic Environment

AT and precipitation are the most direct factors reflecting climate change [52]. Further
quantitative analysis of their change degree will help us to judge the habitat status of
vegetation in the basin. The RVA method is used to evaluate the extreme indicators of
AT and precipitation, and the results are shown in Figure 7. For AT indicators, Warm
nights (TN90p) and Warm days (TX90p) have changed moderately (between 33% and 66%),
which is in line with the current global warming trend. The rainfall indicators were all



Forests 2023, 14, 614 12 of 20

maintained below 33% (low change), with the lowest change in Consecutive Dry Days
(CDD) and Extremely Wet Days (R99P) and the greatest change in R10 (19%). Changes in
extreme temperature and rainfall indicators can quantitatively support the conclusion that
the current watershed climate environment is stressing the survival of native vegetation [5].
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3.4. Analysis of the Factors Influencing Species-Appropriate Habitat

We input the MaxEnt model to simulate the spatial distribution of the representative
vegetation Cryptomeria in the research area based on current bioclimatic variables derived
from AT and precipitation (1970–2000). It was found that the contribution rates of Aspect,
MDA, AP, MTW, Isothermality, MTC, and PWQ to the indicator species were 46.3%, 25.5%,
12.9%, 7.1%, 4.8%, 2.9%, respectively.

Further understanding the driving forces of vegetation habitat suitability from spatial
heterogeneity is a prerequisite for constructing the CSHRR model. The quantitative contri-
bution of 7 factors to vegetation habitat in space is shown in Figure 8. The Geographical
Detector shows that Aspect and MDA still maintain a high contribution rate in space, which
is 43% and 39%, respectively. However, the spatial promotion effect of MTC on vegetation
habitat exceeded AP at this time, reaching 26%. On the basis of the above research, the
influence of driving forces on the suitable habitat for vegetation has been analyzed from
both external and internal aspects. The external analysis results are shown in Figure 9,
and the factor interactions show nonlinear superposition. In particular, the interaction
group of Isothermality with AP, MTW, PWQ, and the interaction group of AP with MTW;
Aspect are a nonlinear enhancement, and the other interaction groups are bi-nonlinear
enhancements, which indicates that the joint action of these factors is beneficial to promote
the development of suitable vegetation habitats. The internal analysis results are shown
in Figure 10. We found that MDA, Aspect, MTW, MTC, and Isothermality have relatively
high contribution rates at 1–4 levels, while PWQ and AP are concentrated at 6–7 levels, and
the driving forces at the same level show a trend of ebb and flow.
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Figure 9. Thermodynamic diagram of driving force interaction. Note: nonlinear enhance: (q(x1∩x2) >
q(x1) + q(x2); bi-nonlinear enhance: q(x1∩x2) > Max(q(x1), q(x2)). Y indicates that there is a significant
difference between the two factors on the vegetation habitat at the 95% confidence level, and N
indicates that it is not significant.
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3.5. Watershed Vegetation Habitat Assessment

The preliminary analysis indicates that Aspect plays an important role in spatial het-
erogeneity of vegetation, so Aspect is selected as the explanatory variable, six bioclimatic
variables as control variables, and the level of the explanatory variable (obtained by the Nat-
ural Breakpoint method) as the measurement index. The CSHRR model of the DTL basin
was obtained. The CSHRR model constant β0 of this basin is 2.56, and other parameters
are shown in Table 3.

Table 3. CSHRR model parameters of Dongting Lake Basin.

Variable Correlation
Coefficient Value Measure Index Correlation

Coefficient Value

Aspect −0.035 T1 0.278
MDA −1.685 T2 0.256

AP 0.596 T3 0.209
MTC −0.433 T4 0.159

Isothermality −0.746 T5 0.100
MTW 0 T6 0.044
PWQ 0.095 T7 0

Note: T is the coefficient of level value.

The whole basin vegetation habitat values were calculated by the CSHRR model and
fitted with the MaxEnt model results (Figure 11). Pearson correlation coefficient achieved
0.854, and the residuals were shown in the upper left corner, where the residuals were
mainly the point of concentrated (−0.15, 0.15). The above results show that the fitting
effect is good. Spatially, the Empirical Bayesian Kriging Interpolation was used to display
the results in the watershed space. The CSHRR model can describe the habitat status of
indicator species in the basin well on the whole and can quantitatively give the vegetation
habitat value of any region in the watershed (Figure 12).
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The reliability of the CSHRR model is further verified by future climate data. The
SSP2-4.5 path scenario refers to the decline of carbon dioxide emissions in the middle of
this century, which is a moderate radiative forcing scenario, which is more in line with
the current global climate environment [53]. The habitat status of the indicator species in
2021–2040 was simulated by the CSHRR model, and the results are shown in Figure 13.
Compared with the results obtained by the MaxEnt model under future climate scenarios,
the CSHRR model still maintains a high accuracy in the distribution of indicator species in
watershed space. Under the radiative forcing scenario, the vegetation habitat conditions
tend to deteriorate, and the habitat conditions remain at a moderate level, especially in the
east and west, which are basically no longer suitable for the survival of the indicator species.
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4. Discussion
4.1. Model Evaluation and its Advantages

The mean AUC of the potential distribution of Cryptomeria fortunei in the DTL water-
shed, constructed by our MaxEnt model, was 0.832 with a standard error of 0.036. This
result was greater than 0.7, indicating that the model’s output was reasonable. However,
the performance of the MaxEnt model was influenced by many hyperparameters, such as
regularization strength, iteration number, and regularization multiplier [45]. In the next
step, optimizing the parameters of the MaxEnt model can enhance the applicability of
quantifying the response relationship between different factors and species. The correlation
coefficients of our CSHRR model revealed an interesting result. Due to space constraints,
we discuss Aspect and MDA as examples (Figure 14). Despite Aspect having a higher con-
tribution to the species distribution, it showed a negative correlation (Correlation coefficient
value = −0.035), which corresponds to the response curve of the MaxEnt model. When
the Aspect reached a certain degree, it was unfavorable for the suitability of the species’
habitat, and the MDA response curve also conveyed the same phenomenon. Combining
the correlation coefficients of the variables, we can have a more intuitive understanding
that the current DTL Basin is relatively suitable for the survival of Cryptomeria fortunei,
and the quantitative relationships between different environmental factors and species
distribution are revealed.
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4.2. Attribution of Watershed Climate Change

In this study, we also described the relationship between AT, precipitation, and ETo
in detail. AT, as an important physical factor driving water form transformation in the
ecosystem, is also the basis for us to build the CSHRR model. Clarifying the correlation
between AT and precipitation is helpful to further optimize and improve the model. The
bioclimatic variables MDA, Isothermality, and MTW in the CSHRR model are all related
to the maximum temperature. However, the maximum temperature sequence is not
synchronized with the mean temperature and the minimum temperature in terms of abrupt
change time (Figure 2). High-temperature events are mainly influenced by an increase in
net shortwave radiation from the surface. The abnormal subsidence of the troposphere
and the decrease in the water vapor content will promote the increase in the surface net
shortwave radiation, leading to the occurrence of a high-temperature event [9]. This may
be related to El Niño and the Southern Oscillation (ENSO) because there is generally a short
cycle of about 2–8 years between them and precipitation [54,55]. In general, the La Nia
phase of ENSO is accompanied by an increase in the frequency and intensity of excessive
precipitation during one year and a decrease in both during the following year [56]. Among
them, ENSO had an impact on the DTL basin in 1997 [57], which also explained why the
sudden change point of the maximum temperature in the DTL basin lagged behind by one
year. At the same time, we propose the De-interference Meteorological Analysis Technology
to remove the interference of ETo and find that there is a significant negative correlation
between precipitation and AT from 1963 to 1967 (Figure 5), a low positive correlation in
1997, and a low negative correlation in 2015. According to references [58,59], the DTL
basin was affected by strong El Niño in 1953, and severe floods occurred in 1954, and then
from 1963 to 1965, 1997, and 2015, heavy precipitation occurred under the influence of
strong El Niño. This is because El Niño sometimes causes reverse circulation anomalies,
resulting in an abnormally high regional high pressure [60], which generates the West
Pacific subtropical high pressure in the DTL basin of the Yangtze River, thus forming
a high-temperature climate. As a result, we think that El Niño is likely to have an impact
on the negative partial correlation between AT and precipitation.

4.3. Improvement of CSHRR Model

It is worth noting that the CSHRR model does not have fixed variables. It is coupled
with the MaxEnt model. The control and explanatory variables may vary for different
species because each species has different environmental requirements [61]. The develop-
ment of the CSHRR model aims to further enhance the practical value of the MaxEnt model
in predicting animal and plant distributions [62,63].

In this study, Aspect is a key channel connecting water transport in the atmosphere
and lithosphere, and Aspect is used as an explanatory variable in the CSHRR model. Above
ground, Aspect involves vegetation canopy interception and evapotranspiration, such as
vegetation sunshine duration and photosynthesis and other factors [64,65]. For below
the surface, after precipitation, Aspect affects vegetation’s access to water by controlling



Forests 2023, 14, 614 17 of 20

groundwater content, so groundwater flow is significantly affected by the Aspect [66].
As a result, the relationship between vegetation and Aspect can be seen as extending
the impact of vegetation on changes in rainfall-ETo. We are also very concerned about
how future climate scenarios will affect the suitability of vegetation for habitat. We further
discuss the difference between current bioclimatic variables and future bioclimatic variables
(Figure 15). MDA is the climate driving force with the highest contribution rate except for
Aspect, and the difference shows that the boundary between the minimum temperature and
the maximum temperature gradually shrinks (the difference fluctuates between −0.2 ◦C
and 4 ◦C in most regions). The changes in Isothermality, MTW, and MTC all proved this
trend, in which MTW increased by 2 ◦C and MTC increased by at least 1.5 ◦C. For vegetation
in the northern hemisphere, when the temperature exceeds a certain threshold, their growth
will be inhibited [4]. In terms of precipitation, the lower sections of the DTL basin and its
surroundings will experience an increase in precipitation under the future climatic scenario,
especially PWQ in the central part will decrease significantly. The occurrence of climate
change is unstoppable, but human beings, as important participants and contributors to
the ecosystem, cannot be ignored. More attention should be paid to studying the impact of
future climate change on species distribution [30]. However, the impact of human activities
on climate has been considered in future climate scenarios. However, for the response
study of the future vegetation phenology model, we think that the next step can be to
incorporate the positive elements of human activities (such as quantifying the policies of
regional decision-makers on vegetation protection and the number of funds invested in
related ecological restoration), so as to revise the response results of the CSHRR model to
future scenarios.
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5. Conclusions

We examined the mode properties of AT, precipitation, and ETo and proposed the
De-interference Meteorological Analysis Technology in light of the complexity of climate
change and its ecological influence on vegetation. In order to quantify the relationship
between climate and vegetation habitats, MLS-TLS was introduced, and CSHRR models
were created by accounting for the influence of ecological factors. We found that the
existence of evapotranspiration will make the AT-precipitation show a false negative
correlation. We also obtained the degree of change in an extreme climate, in which the two
indicators of temperature (TN90p, TX90p) have reached moderate changes, respectively
44% and 36%, while the extreme precipitation indicators are all low-level changes. We
determined that Aspect and MDA were the primary influences on vegetation suitability
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and that MTC contributed 26% more to spatial heterogeneity than AP. The CSHRR model
created using MLS-TLS has a good quantitative indicator function, which has practical
value for assessing the potential distribution of local vegetation. This is in contrast to the
qualitative analysis of the MaxEnt model. Its benefit is that depending on the quantitatively
determining the influence coefficients of different driving forces, it can offer the most direct
reference for the preservation of local vegetation or the repair of its ecological environment.
In conclusion, the CSHRR model that we have proposed tries to provide some suggestions
and aid in quantifying the impact of climate change. However, additional research into the
model’s positive benefits of human activity may produce more precise and realistic results.
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