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Abstract: Pine wood nematode disease has harmed forests in several countries, and can be reduced
by locating and clearing infested pine trees from forests. The target detection model of deep learning
was utilized to monitor a pine nematode-infested wood. The detecting effect was good, but limited
by low-resolution photos with poor accuracy and speed. Our work presents a staged detection
and classification approach for a dead nematode-infested pine wood based using You Only Look
Once version 4 (YOLO v4) and Google Inception version 1 Net (GoogLeNet), employing high-
resolution images acquired by helicopter. Experiments showed that the detection accuracy of the
staged detection and classification method and the method using only the YOLO v4 model were
comparable for a dead nematode-infested pine wood when the amount of data was sufficient, but
when the amount of data was limited the detection accuracy of the former was higher than that of the
latter. The staged detection and classification method retained the fast training and detection speed
of the one-stage target detection model, further improving the detection accuracy with limited data
volume, and was more flexible in achieving accurate classification, meeting the needs of forest areas
for pine nematode disease epidemic prevention and control.

Keywords: dead nematode-infested pine wood; deep learning; target detection; recognition classification

1. Introduction

Pine wood nematode disease is characterized as pine tree “cancer.” Pine trees might
die about 40 days following infection with this disease [1], which has occurred in many
countries including the United States, Japan, and Korea, and has caused substantial damage
to forest resources and the ecological environment in each country [2]. The intermediate
host of pine wood nematode (Bursaphelenchus xylophilus) transmission in forest regions is
usually the pine brown aspen, which is particularly destructive and difficult to control [3].
Nematode-infested healthy pine trees die within three months, and the disease spreads
to surrounding pine trees if the infested trees are not removed from the forest in time [4].
Therefore, effective diagnosis of pine nematode-infested wood, and timely and thorough
cleanup of dead nematode-infested pine wood are crucial for controlling the disease [5].

Initial monitoring of pine nematode-infested wood mainly relies on visual observation
and regular inspection by forest rangers, which are inefficient and do not ensure accuracy
of judgment [6]. With the development of conventional machine learning methods and
aerial photography technology, scientific research work on monitoring pine nematode-
infested wood has made some progress, including support vector machines [7–9], random
forests [10–12], object-oriented segmentation [13,14], clustering algorithms [15–17], and
others. However, typical machine learning approaches only analyze the differences between
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the low-level properties of diseased and healthy pine wood, such as color and texture for
diagnosing diseased wood, which has some bearing on detection accuracy [18].

With the advent of deep learning, the issues of computational duplication and ineffi-
ciency of simple low-level feature examination generally seen in classical machine learning
have been successfully addressed. Compared with typical machine learning techniques,
deep learning is regarded as a very accurate recognition method [19], and it is often em-
ployed in pine nematode-infested wood monitoring. Deep learning includes convolutional
neural networks [20–22], spatial-context-attention networks [18], semantic segmentation
networks [23–25], target detection models [26–29], among others. Target detection models
are widely used and effective in the field of disease identification [30], but their detection
effect is limited by low-resolution images and cannot reconcile detection accuracy and
speed [31].

Currently, deep learning-based target detection models mainly consist of one-stage
detection or two-stage detection models. Two-stage-based target detection models such as
Faster Region-Based-CNN (Faster R-CNN) [32] are characterized by first forming target
candidate frames and then performing target classification. These models have higher
overall recognition detection accuracy at the expense of increased computational cost,
longer training time, slower detection, and more demanding hardware requirements.
One-stage-based target detection models such as YOLO v4 [33] and Single Shot MultiBox
Detector (SSD) [34] enable simultaneous target border prediction and classification. Their
training and detection are relatively faster, their hardware requirements are less demanding,
and they are easier to deploy in the experimental environment, but they are not as accurate
as two-stage models.

In this study, to address the problem that the target detection model cannot balance
speed and detection accuracy, a staged detection and classification method is proposed to
combine the YOLO v4 model with the GoogLeNet model for target detection and wilting
degree classification of dead nematode-infested pine wood, with high spatial resolution
images acquired by helicopters as the data base. The main objectives of this study are to:

1. compare the performance of two target detection models, YOLO v4 and SSD, in the
task of dead nematode-infested pine wood detection;

2. compare the performance of five recognition classification models, GoogLeNet and
ShuffleNet, ResNet50, MobileNet-v2, ResNet18, in the task of wilting degree classifi-
cation of dead nematode-infested pine wood;

3. investigate whether the staged detection and classification approach can further
improve the detection accuracy of the target detection task while retaining the fast
training speed and detection speed of the one-stage target detection model.

The rest of the paper is organized as follows. The experimental materials and methods
are described in Section 2, the experimental results are in Section 3, and the discussion and
conclusions are in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Data Collection
2.1.1. Overview of the Study Region

The experimental site was situated in the Baihe Conservation Management Station
in the northern part of the Changbai Mountain National Nature Reserve in the Chinese
province of Jilin. This area has a temperate monsoon climate zone in the core of the reserve,
which conducive to the propagation of pine wood nematode outbreaks. The total area
under the control of Baihe Conservation Management Station is 14,487 ha. The core region
is 4762 ha and the experimental area is 9725 ha. The coordinates for the study area are
42◦10′41”42◦11′29” N and 128◦0′19”128◦3′34” E. The geographical location of the study
area and true color photographs from a helicopter are displayed in Figure 1.
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Figure 1. Geographical location and image map of the study area. (a) Map of China with Jilin
Province in green color; (b) map of Jilin Province with the Changbai Mountains in beige color and
the study area in red color; (c) geographical location of the Baihe Conservation Management Station;
(d) RGB image of the study area obtained by helicopter.

2.1.2. Data Acquisition

A Bell 206 L4 helicopter was used as the aerial flight platform for data collection in the
study area. The weather was clear and without clouds at the time of aerial photography,
with ample light and no wind, which was excellent for helicopter aerial photography
activities. A total of three flight strips were laid in the flight area. The flight parameters
were then selected. According to the requirements of the project, the flight parameters were
developed by combining the aerial digital camera system and the aircraft’s performance
indicators while ensuring that the ground resolution of the lowest point in the survey area
and the heading and parallax overlap of the highest point met the technical requirements.
This resulted in the flight height being at 400 m, the parallax overlap being about 45%, and
the heading overlap being 65%.

The helicopter was equipped with a Feith camera with 100 million pixels and
3 bands of red, green, and blue. It captured 2956 images of 11,608 × 8708 in size. The
center wavelengths of the red, green, and blue bands were 660 nm, 550 nm, and 440 nm,
respectively. The resolution of the obtained airborne high-resolution image was 0.03 m,
containing three bands of red, green, and blue, and the total size of the study area was
11.8 km2. The size of the image data was 37.4 GB.

2.1.3. Dataset Production

In this study, multiple JPC images containing dead nematode-infested pine wood were
derived using the high-resolution images consisting of red, green, and blue bands taken
from a helicopter. A target detection model dataset and a recognition classification model
dataset were constructed with the exported JPG images. The former contained a total of
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884 JPG photos of 640 × 640 in size. The ratio of training set, validation set, and test set
was 8:1:1, and the number of images in each set was 707, 89, and 88, respectively. The split
training set was expanded to 2828 images after enhancement operations of flipping, scaling
and color dithering, while the validation and test sets were not enhanced to obtain unbiased
estimates. The augmented set contained 3005 pictures and 10,145 dead nematode-infested
pine wood tags. A schematic representation of the sample labeling method for the target
detection model is shown in Figure 2.

Figure 2. Sample annotation schematic of the target detection model dataset.

The recognition classification model dataset contained a total of 400 JPG images
224 × 224 in size. The ratio of the training and validation sets was 3:1, and the ratio of dry
and recently dead nematode-infested pine wood was 1:1, as indicated in Table 1.

Table 1. Recognition classification model dataset.

Category Example Images
Number of

the Training Set
Samples

Number of
the Validation Set

Samples

Dry nematode-infested pine wood
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2.2. Methods
2.2.1. Experiment Content

We addressed the problem that the target detection model cannot combine speed and
detection accuracy, and used a staged detection and classification method combining YOLO
v4 model and GoogLeNet model for target detection and the wilting degree classification
of dead nematode-infested pine wood using high spatial resolution images acquired by
helicopter as the data base. The technical roadmap is shown in Figure 3.
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Figure 3. Technology roadmap.

Dataset production. Using the high-resolution images acquired from the helicopter, the
target detection model dataset and recognition classification model dataset were produced,
includinga training set, validation set, and test set.

1. Target detection of dead nematode-infested pine wood. YOLO v4 was trained with
the produced target detection model dataset. The trained YOLO v4 model was then
used to detect dead nematode-infested pine wood in forest images and compared
with the SSD target detection model.

2. Wilting degree classification of dead nematode-infested pine wood. A GoogLeNet
model was trained using the produced recognition classification model dataset, and
then used to classify the detected dead nematode-infested pine wood as dry or recently
dead to complete wilting degree classification. It was then compared with four
other recognition classification models, namely ShuffleNet, ResNet50, MobileNet-v2,
and ResNet18.

3. Further experiments. Under the same conditions, the detection and classification
experiments of dead nematode-infested pine wood were conducted using the staged
detection and classification method and the dual target detection and classification
method using the YOLO v4 model only. The experimental results were compared
to investigate whether the staged detection classification method could improve
detection accuracy while retaining the fast training speed and detection speed of the
one-stage target detection model.

2.2.2. Target Detection Model
Introduction to YOLO v4

The YOLO v4 algorithm is built on YOLO v3 and has been further improved by
merging the greatest algorithmic ideas of recent years. The mean average precision (mAP)
was increased to 44% on the MS COCO target detection dataset without lowering the frame
rate, i.e., the number of frames per second (FPS). The key components of the YOLO v4
network are: (1) the backbone feature extraction network Cross Stage Partial DarkNet53
(CSPDarkNet53), (2) the enhanced feature extraction network Spatial Pyramid Pooling
(SPP) and Path Aggregation Network (PANet), and (3) the prediction network YOLO head.
The specific network model structure of YOLO v4 is illustrated in Figure 4.
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Figure 4. YOLO v4 model structure diagram.

The backbone network of YOLO v4 is CSPDarkNet53 [35], which is used to initially
extract image features from the input. YOLO v4 adopts the CSP structure to change the
residual structure: the input image features are convolved and divided into two branches,
the upper branch is stacked with the residual component, and the lower branch is convolved
and then fused with the higher branch for features. There are two advantages to choosing
the CSPDarkNet53 network structure as the backbone. First, it improves the ability of the
convolutional network to extract features without compromising detection accuracy, which
speeds up the detection. Second, it decreases the computational cost of the overall model,
which makes the model simpler for hardware setup.

The SPP [36] structure is a feature re-extraction of the last feature layer previously
extracted from the CSPDarkNet53 structure. After three feature layer convolutions, four
scales are used to accomplish the maximum pooling operation, and the pooling kernel
sizes are 1 × 1, 5 × 5, 9 × 9, and 13 × 13, respectively, to maximize the perceptual field and
isolate the more visible contextual features.

The PANet [37] structure is a cyclic pyramid structure composed of convolution,
upsampling, feature layer fusion, and downsampling operations that iteratively extract
feature images and finally output three feature layers that are fed into the YOLO Head to
evaluate each feature layer’s prediction frame and output the target’s final prediction frame.

Target Detection Optimization Strategy

The target image is relatively large, and we used the sliding window approach to
detect targets. However, if sliding window recognition is applied directly on the target
image, it affects the recognition of discolored nematode-infested standing pine wood trees
at the edges due to less contextual information in the edge region of each image block
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obtained through cropping. Therefore, when target detection was performed on the image,
the expansion prediction method was used for inflation prediction. The sliding window
size was set to 640× 640, and the sliding step size set to 320 each time. Only the recognition
result of the central part of 320 × 320 size was retained for each recognition, and the
discarded area became the central area of other sliding windows. This avoids the problem
of inaccurate recognition results of discolored standing pine wood trees due to the feature
extraction problem at the boundary. A more graphic diagram of inflation prediction is
shown in Figure 5.

Figure 5. Schematic diagram of inflation prediction.

In the target detection process, executing a detection task resulst in a significant num-
ber of redundant detectors that need to be deleted by the Non-Maximum Suppression
(NMS) algorithm. To achieve the suppression effect, each list recursively selects the top scor-
ing checkboxes and removes any that overlap by more than the threshold. The comparison
of the effect before and after NMS optimization is shown in Figure 6.

Figure 6. NMS optimization effect comparison chart. (a) Before NMS (b) After NMS.

2.2.3. Introduction to the Recognition Classification Model GoogleNet

The main structure of GoogLeNet model used in this paper includes an input layer,
five sets of convolutional modules, and an output layer with 22 parametric layers and five
pooling layers [38]. The input layer is a 224 × 224 × 3 image. The group 1 and group
2 convolutional modules include convolutional and maximum pooling layers, the group
3, group 4, and group 5 convolutional modules mainly consist of Inception v1 module
structure and maximum pooling layer, and the output layer consists of average pooling,
drop-out, and fully connected layers. The network structure diagram of GoogLeNet is
illustrated in Figure 7.
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Figure 7. GoogLeNet model structure diagram.

The Inception v1 module [38] consists of 1 × 1, 3 × 3, and 5 × 5 multi-scale convo-
lutional kernels and 3 × 3 pooling layers, which enable the characteristics of the target
object to be captured by the appropriate convolutional kernel during the image recognition
process, no matter how large the target object is. In addition, the parallel operation of pool-
ing layer and convolutional layer may extend the channels and can assure the operation’s
efficiency at the same time. The Inception v1 module’s structure is depicted in Figure 8.

Figure 8. Inception v1 structure diagram.
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2.2.4. Test Environment and Parameter Settings

The CPU was an AMD Ryzen 7 5800H with Radeon Graphics, the GPU is NVIDIA
GeForce RTX 3060 Laptop GPU with 6 GB memory, the main board was a LENOVO, and
the memory was 16 GB. AMD’s headquarters and NVIDIA’s headquarters are both located
in Santa Clara, California, USA. Lenovo is headquartered in Beijing District, China. In deep
learning training, hyperparameter selection is challenging and time-consuming because the
optimal combination of hyperparameters depends not only on the model itself, but also on
the data and hardware environments. Several experiments were conducted to determine
the model’s hyperparameters for this study.

Target detection models were trained using a variable learning rate controlled by equal
interval decay. The initial learning rate was set to 0.0001 with an adjustment interval of
30 rounds and a decay factor of 0.8, i.e., after every 30 rounds, the learning rate decayed
to 80% of its current value. The optimizer employed stochastic gradient descent with
momentum (SGDM) with a momentum of 0.9. The weight decay value was 0.0005, the
batch size was set to 4, and the number of epochs was set to 200.

The recognition classification model training adopted a fixed learning rate mode and
randomly splits the training and validation sets into several batches of size 16. The number
of rounds (or epochs) was set to 30, the learning rate was set to 0.001, and the optimizer
adopted SGDM.

2.2.5. Accuracy Inspection

The test images were manually labeled with dead nematode-infested pine wood, and
the target detection results were compared with manually-labeled images to determine the
accuracy of the detection and validate the results. The precision rate, recall rate, given in
(1)–(2), respectively, were utilized to evaluate the model recognition results. The precision
rate was used to measure the accuracy of the model to detect dead nematode-infested
pine wood, i.e., the detection accuracy. The recall rate was used to evaluate the compre-
hensiveness of the model in detecting dead nematode-infested pine wood, i.e., the overall
detection rate.

Precision =
TPA

TPA + FPA
(1)

Recall =
TPA

TPA + FNA
(2)

where TPA, FPA, and FNA have specific meanings shown in Table 2.

Table 2. The evaluation indicator table of target detection models.

Evaluation Indicators Indicator Description

TPA Dead nematode-infested pine wood is correctly identified as
dead nematode-infested pine wood

FPA Other features are incorrectly identified as
dead nematode-infested pine wood

FNA Dead nematode-infested pine wood
is misidentified as other features

F1 scores are widely used as metrics in statistics to measure the accuracy of binary
classification models. [14,21,22,27]. This also takes into account the precision rate and recall
rate of the target detection model and refers to the harmonic mean of the precision rate and
recall rate, as shown in Formula (3). In this study, the F1 score was used as an evaluation
indicator to evaluate the detection effect of the target detection model, also known as the
detection accuracy, which was statistically significant.

F1 =
2× Precision× Recall

Precision + Recall
(3)
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To evaluate the accuracy of wilting degree classification for dead nematode-infested
pine wood, recognition classification results were compared with manual recognition
results for verification. The model recognition results were evaluated using the classification
accuracy measure defined as:

Classification Accuracy =
TPB + TNB

TPB + FNB + TNB + FPB
(4)

where TPB, FNB, TNB, and FPB have the specific meanings shown in Table 3.

Table 3. Evaluation indicator table of recognition and classification models.

Evaluation Indicators Indicator Description

TPB Dry nematode-infested pine wood is correctly identified as dry
nematode-infested pine wood

FNB Dry nematode-infested pine wood is incorrectly identified as
recently dead nematode-infested pine wood

TNB Recently dead nematode-infested pine wood is correctly
identified as recently dead nematode-infested pine wood

FPB Recently dead nematode-infested pine wood is incorrectly
identified as dry nematode-infested pine wood

3. Results

In the training phase of the deep learning model, loss function and accuracy are
essential indicators to evaluate the accuracy and effectiveness of the model, where the loss
function is often used to estimate how much the model’s predictions differ from reality.
The loss function has an absolute value, and the smaller that value, the better the model fits
the data.

3.1. Target Detection Model Performance Analysis

A performance analysis of the target detection model is shown in Figure 9. As the
number of iterations increased, the loss function in both YOLO v4 and SSD gradually
decreased. YOLO v4 outperformed SSD in the final trained model’s detection accuracy, but
SSD converged faster.

Figure 9. Performance comparison of object detection.

The training process of the target detection model is extremely time-consuming. There-
fore, the training time is also an important metric to evaluate the model’s performance.
It can be seen in Table 4 that the average training time per round and the average time
required per iteration for YOLO v4 was less than that of SSD when setting the same batch
size, and YOLO v4 required less algorithm power than SSD with the same configuration
and the same amount of data. This indicates the benefits of YOLO v4 in terms of training
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speed. Additionally, for the same test image, the detection time of YOLO v4 was 229 s
while the detection time of SSD was 280 s, which again demonstrates the advantage of
YOLO v4 in terms of detection speed.

Table 4. Comparison table of target detection model performance.

YOLO v4 SSD

Training time 17,504 s 23,581 s
Average training time per round 87.52 s 117.91 s

Number of iterations (times) 35,400 35,200
Average time required per iteration 0.4945 s 0.6699 s

Batch size 4 4
Allowable maximum batch size 16 4

Convergence speed (round) 140 51
Time required for convergence 12,362 s 6029 s

Testing time 229 s 280 s

The accuracy and recall of the detection results and the F1 score are important per-
formance indicators of the target detection model. As shown in Table 5, the precision of
YOLO v4 model was 0.9934, the recall was 0.7358, and the F1 score was 0.8454, which
were higher than those of SSD at 0.9761, 0.6880, and 0.8071, respectively. A more intuitive
accuracy comparison is shown in Figure 10. In summary, the training speed and detection
speed of YOLO v4 model were faster than those of SSD model, while the precision and
recall of YOLO v4 model and F1 scores were also higher than those of the SSD model, so
YOLO v4 was more effective than SSD in detecting dead wood of dead nematode-infested
pine wood.

Table 5. Comparison table of target detection accuracy.

YOLO v4 SSD

Manual testing 1843 1843
Model Testing 1365 1299

Correct detection 1356 1268
Precision rate 0.9934 0.9761

Recall Rate 0.7358 0.6880
F1 Score 0.8454 0.8071

Figure 10. YOLO v4 and SSD detection accuracy comparison.
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3.2. Performance Analysis of Classification Model

A training loss comparison graph (Figure 11) of the recognition classification models
reveals that the loss of GoogLeNet decreased the fastest at the start of training and stabilized
first. The training loss values of the four other models varied to some extent, and the final
training loss of GoogLeNet was the lowest of the four models.

Figure 11. Comparison of training loss of recognition classification models.

Analysis of the training accuracy of the recognition classification models (Figure 12)
showed that all four models converge with a high classification accuracy level. GoogLeNet’s
training accuracy increased more steadily and at a faster rate, and reached convergence the
quickest, while the training accuracies of the other models slightly increased with iterations.

Figure 12. Comparison of training accuracy of recognition classification models.

Analyzing the performance comparison table of the recognition classification models,
it can be observed in Table 6 that, in terms of the average model training time, GoogLeNet
trained significantly faster than the other four models, taking only 79.3 s, while the other
four models took more than 90 s, and the final loss value of GoogLeNet was the lowest
among all models. For the validation effect, GoogLeNet achieved 100% classification
accuracy for the validation set, which was the highest classification accuracy among the
four models. Overall, GoogLeNet was the best performer in this recognition categorization.
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Table 6. Recognition classification model performance comparison table.

GoogLeNet ResNet50 MobileNet-v2 ShuffleNet ResNet18

Training time 79.3 s 149.2 s 156.9 s 124.9 s 97.8 s
Final loss value 0.0003 0.0019 0.0031 0.0031 0.0010

Validation
accuracy 1 0.952 0.968 0.971 0.983

3.3. Detection Classification Effect Display

To improve the accuracy of precision evaluation, and to provide more effective guid-
ance for pine nematode control, the model was converted into a shapefile of face element
type utilizing the conversion connection between picture coordinates and geographic co-
ordinates and projection information. The resulting shapefile stored the target detection
confidence information and the discrimination information of dryness degree. Attributes
are shown in Figure 13, where Confidence is the target detection confidence information,
Class is the discriminant information of dryness, ‘ganku’ represents dry nematode-infested
pine wood, and ‘xinku’ represents recently dead nematode-infested pine wood.

Figure 13. (a) YOLO v4 final detection effect. (b) Shapefile attribute representation intent. (c) Original
image. (d) Shapefile overlaid with image data.

3.4. Further Experiments

In the same experimental environment, we choose the YOLO v4 model, which per-
formed better in the experiments, to label the dry and recently dead nematode-infested
pine wood in the same dataset separately, forming a dual-target detection dataset that was
identical except for the different labeling methods. We conducted a dual-target detection
and classification experiment to allow the model to detect and classify dry and recently
dead nematode-infested pine wood at the same time, so that the detection and classification
tasks were completed simultaneously. We compared and analyzed the experimental results
of the dual-target detection and classification method with the staged detection and clas-
sification method that used the YOLO v4 model as the first stage target detection model,
and the GoogLeNet model as the second stage recognition and classification model. The
experimental results were tested with different size sample sets. The accuracy comparison
results are shown in Tables 7 and 8, and two more intuitive accuracy comparison graphs
are shown in Figures 14 and 15.
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Table 7. Comparison of detection effect between staged detection classification and dual-target detection classification.

Staged
Detection

Classification
Small

Sample Set

Dual-Target
Detection

Classification
Small Sample Set

Staged
Detection

Classification
Large

Sample Set

Dual-Target
Detection

Classification
Large Sample Set

Number of pictures 603 603 884 884
Withering degree of dead nematode-infested pine wood

Number of labels
dead Recently dead Dry dead Recently dead Dry
7042 5472 1570 10,145 8365 1780

Total number of labels 7042 7042 10,145 10,145
Manual detection of dead nematode-infested pine wood 1843 1843 1843 1843
Model detection of dead nematode-infested pine wood 1035 752 1365 1388
Correct detection of dead nematode-infested pine wood 1016 747 1356 1369

Precision rate 0.9816 0.9934 0.9934 0.986
Recall Rate 0.5513 0.4053 0.7358 0.7428

F1 Score 0.7061 0.5757 0.8454 0.8473
Training time 7729 s 7813 s 17,504 s 18,262 s

Test time 218 s 217 s 229 s 242 s

Table 8. Comparison of classification effects between classification by staged detection classification by dual-target detection methods.

Staged Detection
Classification

Small Sample Set

Dual-Target Detection
Classification

Small Sample Set

Staged Detection
Classification

Large Sample Set

Dual-Target Detection
Classification

Large Sample Set

Withering degree of
dead nematode-infested pine wood

Number of labels

Recently dead Dry Recently dead Dry Recently dead Dry Recently dead Dry

200 200 5472 1570 200 200 8365 1780

Total number of labels 400 7042 400 10,145
TP 380 372 337 343
FN 5 17 1 7
TN 641 356 1013 1034
FP 9 7 3 4

Classification Accuracy 0.9865 0.9681 0.989 0.9921
Test time 218 s 217 s 229 s 242 s



Forests 2023, 14, 601 15 of 19

Figure 14. Comparison of the detection accuracy of the staged detection classification method and
dual-target detection classification method.

Figure 15. Comparison of the classification accuracy of the staged detection classification method
and dual-target detection classification method.

Analysis of Table 7 and Figure 14 reveals that the training and detection speeds of
the staged and dual-target detection and classification methods were comparable. When
using the same small sample set, the precision rates of both methods reached high, similar
values, i.e., 0.9816 and 0.9934, respectively. However, the recall rate of the former was
0.5513 and the F1 score was 0.7061, which are better than the recall rate of the latter, 0.4053,
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and its F1 score of 0.5757. When employing the same big sample set, the precision rates
of both methods were very high, and similar at 0.9934 and 0.9860, respectively. They also
performed similarly in terms of recall and F1 score.

The above data show that when using the same small sample set, the staged detection
and classification method outperformed the dual-target detection and classification method,
while when using the same large sample set, the detection effects of both methods were
comparable. In other words, when data volume was limited, the detection effect for dead
nematode-infested pine wood of the staged detection and classification method was better
than that of the dual-target detection and classification method, and when the data volume
was sufficient, the two approaches had similar detection performance.

It can be observed in Table 8 and Figure 15 that both the staged and dual-target
detection and classification methods achieved high accuracy for the wilting degree clas-
sification of dead nematode-infested pine wood with similar detection times. However,
the former used a dataset of only 400 tags, which is much smaller than the dataset of more
than 7000 tags used by the latter. In addition, the training time of the staged method was
only 79.3 s compared to the dual-target model, which makes it easier to build and adjust
the sample dataset and experimental parameters, making the classification part of the
experiment more flexible and lightweight.

In summary, when using the same small sample set, the detection effect for dead
nematode-infested pine wood of the staged detection and classification method using
a combination of the YOLO v4 model and the GoogLeNet model was better than that of the
dual-target approach using only the YOLO v4 model, whereas when using the same large
sample set, the detection effects were comparable. That is, the combination of GoogLeNet
and YOLO v4 can further improve the detection accuracy of YOLO v4 in detecting dead
nematode-infested pine wood when data are limited, but this cannot be achieved when
the data are large enough. On the other hand, although the staged and the dual-target
approaches had similar effects on the wilting degree classification of dead nematode-
infested pine wood when using the same sample set, the dataset employed in the former
way much smaller than that in the latter, and the recognition classification model used
in the staged method was faster to train and more flexible for adjusting and constructing
the model. Therefore, while retaining the fast training and detection characteristics of the
single-stage target detection model, the staged detection and classification method also
reduced the dependence of the target detection model on data volume, further improving
the detection accuracy of the model for dead pine nematodes with limited data volume,
and was more flexible in achieving accurate wilting degree classification of dead nematode-
infested pine wood.

4. Discussion

Pine nematode disease has caused significant damage to forests in many countries [2],
and detecting pine nematode-infested wood remains a critical challenge for researchers.
Traditional detection methods suffer from issues such as heavy workload, low efficiency,
strong subjectivity, and limited capacity for large-scale monitoring [39]. To overcome these
limitations, deep learning technology can be applied to achieve rapid and automated
detection and classification of nematode-infested wood based on high-resolution images.

In this study, we utilized helicopter aerial images of forest areas with a spatial resolu-
tion of 0.03 m as the database and employed a combination of YOLOv4 and GoogLeNet
models for detecting and classifying dead nematode-infested pine wood in the images.
We used the YOLO v4 model to detect dead nematode-infested pine wood in the images,
followed by the GoogLeNet model to classify them as dry and recently dead nematode-
infested pine wood. The final F1 score, detection precision, recall, and wilt degree classifi-
cation accuracy were 0.8454, 0.9934, 0.7358, and 0.9890, respectively. Compared with the
F1 score of the detection result of the recognition network SCANet proposed by Qin et al.
(0.79) [18] and the optimized algorithm of a multi-scale attention-UNet model by Ye et al.,
with a recall rate of 0.57 [22], the detection results of this study were better.
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When the sample size is insufficient, researchers usually use rotation, adjusting bright-
ness, and other methods, to increase the sample size [40,41]. To improve the model’s
detection and classification ability, we extended the training dataset by performing im-
age flipping, scaling, and color dithering operations. However, it is worth noting that
the validation and test sets were not subjected to data enhancement operations to obtain
unbiased estimates. Furthermore, we conducted comparative experiments using the staged
detection and classification approach and the YOLO v4 method at different scale sample
sizes. The results show that the staged detection and classification approach had higher
detection accuracy than the method using only the YOLO v4 model when the data volume
was limited. We believe that the addition of GoogLeNet improves the YOLO v4 model,
by allocating more image features extracted from a limited dataset to the target detection
task, resulting in higher detection accuracy. This is important in practical applications,
where data availability can be a limiting factor. The proposed method is also more flexi-
ble in achieving accurate classification tasks, which has implications for preventing and
controlling pine nematode disease epidemics in forest areas.

Despite the promising results, some limitations were also found. The proposed method
was tested on a limited dataset and more research is needed to validate its performance
on larger and more diverse datasets, including lower resolution datasets. In addition,
the images used in the current study included only red, green, and blue bands, and it is
necessary to include supplementary data, such as near-infrared band data, for additional
experiments and comparative analysis. There are some relevant studies on in this regard,
e.g., [7,9]. Hardware limitations also limited the models tested in the experiments, and
incorporating cloud computing may help to improve hardware conditions and expand the
types of models tested.

We encountered challenges in detecting low-height pine woods that were hidden in
the shadows of surrounding taller trees, which led to missed detections and reduced recall
rate. Furthermore, healthy trees were sometimes incorrectly identified as dead nematode-
infested pine wood, resulting in reduced precision rate. To address these issues, we plan to
utilize point cloud data that contains height information as auxiliary data and improve the
network structure of the current target detection model to enhance the recall and precision
of detecting dead nematode-infested pine wood. There is other, current research to draw
on in this regard, e.g., [36,37,42].

In conclusion, the presented staged detection and classification approach has great
promise for detecting and classifying dead nematode-infested pine wood, and has the
potential to contribute to more effective and efficient pine nematode disease epidemic
prevention and control in forest areas.

5. Conclusions

A staged detection and classification method is proposed to combine the YOLO v4
model and GoogLeNet model for target detection of dead nematode-infested pine wood in
the images as well as wilting degree classification, with high spatial resolution, based on
data from helicopter-acquired images of forest areas. The main findings are as follows.

1. In terms of dead nematode-infested pine wood target detection, the YOLO v4 model
outperformed the SSD model with a detection accuracy of 0.9934, a recall of 0.7358,
and an F1 score of 0.8454.

2. For the wilting degree classification of dead nematode-infested pine wood, the
GoogLeNet model outperformed the remaining four models, namely ShuffleNet,
ResNet50, MobileNet-v2 and ResNet18, with a classification accuracy of 0.9890.

3. In the case of limited data volume, the staged detection and classification method
combining GoogLeNet model and YOLO v4 model improved the detection accuracy
of YOLO v4 model for dead nematode-infested pine wood while retaining the fast
training speed and detection speed of YOLO v4 model, and achieved the accurate
classification of wilt degree of dead nematode-infested pine wood in a more flexible
way. With a sufficient amount of data, the detection accuracy of both was comparable.



Forests 2023, 14, 601 18 of 19

Author Contributions: Conceptualization, X.Z. and R.W.; methodology, X.Z.; software, X.Z.; valida-
tion, X.Z., Q.Y., W.S. and X.L.; writing—original draft preparation, X.Z.; writing—review and editing,
X.Z.; visualization, X.Z.; supervision, X.Z. and X.C.; project administration, R.W.; funding acquisition,
R.W. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China ‘biomass precision estimation model
research for large-scale region based on multi-view heterogeneous stereographic image pair of
forest’ (41971376).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malewski, T.; Borowik, P.; Olejarski, I.; Berezovska, D.; Dyshko, V.; Behnke-Borowczyk, J.; Pusz, W.; Matic, S.; Oszako, T.

Mycobiome of Post-Agricultural Soils 20 Years after Application of Organic Substrates and Planting of Pine Seedlings. Forests
2023, 14, 36. [CrossRef]

2. Proença, D.N.; Grass, G.; Morais, P.V. Understanding pine wilt disease: Roles of the pine endophytic bacteria and of the bacteria
carried by the disease-causing pinewood nematode. MicrobiologyOpen 2017, 6, e415. [CrossRef] [PubMed]

3. Robinet, C.; Roques, A.; Pan, H.; Fang, G.; Ye, J.; Zhang, Y.; Sun, J. Role of human-mediated dispersal in the spread of the
pinewood nematode in China. PLoS ONE 2009, 4, e4646. [CrossRef]

4. Li, N.; Huo, L.; Zhang, X. Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands. Ecol.
Indic. 2022, 142, 109198. [CrossRef]

5. Lai, Y. Theory and Practice of Controlling and Extinguishing Pine Wilt Disease. Agric. Sci. Technol. HASTN 2017, 18, 332–343.
6. Wang, Y.M.; Ostendorf, B.; Gautam, D.; Habili, N.; Pagay, V. Plant Viral Disease Detection: From Molecular Diagnosis to Optical

Sensing Technology—A Multidisciplinary Review. Remote Sens. 2022, 14, 1542. [CrossRef]
7. Wu, D.; Yu, L.; Yu, R.; Zhou, Q.; Li, J.; Zhang, X.; Ren, L.; Luo, Y. Detection of the Monitoring Window for Pine Wilt Disease Using

Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning Algorithms. Remote Sens. 2023, 15, 444. [CrossRef]
8. Syifa, M.; Park, S.; Lee, C. Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial

Intelligence Techniques. Engineering 2020, 6, 919–926. [CrossRef]
9. Zhang, S.; Huang, H.; Huang, Y.; Cheng, D.; Huang, J. A GA and SVM Classification Model for Pine Wilt Disease Detection Using

UAV-Based Hyperspectral Imagery. Appl. Sci. 2022, 12, 6676. [CrossRef]
10. Lee, D.; Choi, W.I.; Nam, Y.; Park, Y. Predicting potential occurrence of pine wilt disease based on environmental factors in South

Korea using machine learning algorithms. Ecol. Inform. 2021, 64, 101378. [CrossRef]
11. Cheng, K.; Wang, J.; Yan, X. Mapping Forest Types in China with 10 m Resolution Based on Spectral–Spatial–Temporal Features.

Remote Sens. 2021, 13, 973. [CrossRef]
12. Zhang, Y.; Dian, Y.; Zhou, J.; Peng, S.; Hu, Y.; Hu, L.; Han, Z.; Fang, X.; Cui, H. Characterizing Spatial Patterns of Pine Wood

Nematode Outbreaks in Subtropical Zone in China. Remote Sens. 2021, 13, 4682. [CrossRef]
13. Förster, M.; Kleinschmit, B. Object-based classification of QuickBird data using ancillary information for the detection of forest

types and NATURA 2000 habitats. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 275–290.

14. Sun, Z.; Wang, Y.; Pan, L.; Xie, Y.; Zhang, B.; Liang, R.; Sun, Y. Pine wilt disease detection in high-resolution UAV images using
object-oriented classification. J. For. Res. 2022, 33, 1377–1389. [CrossRef]

15. Carleer, A.; Wolff, E. Exploitation of very high resolution satellite data for tree species identification. Photogramm. Eng. Remote
Sens. 2004, 70, 135–140. [CrossRef]

16. Feret, J.; Asner, G.P. Tree Species Discrimination in Tropical Forests Using Airborne Imaging Spectroscopy. IEEE Trans. Geosci.
Remote Sens. 2013, 51, 73–84. [CrossRef]

17. Oide, A.H.; Nagasaka, Y.; Tanaka, K. Performance of machine learning algorithms for detecting pine wilt disease infection using
visible color imagery by UAV remote sensing. Remote Sens. Appl. Soc. Environ. 2022, 28, 100869. [CrossRef]

18. Qin, J.; Wang, B.; Wu, Y.; Lu, Q.; Zhu, H. Identifying Pine Wood Nematode Disease Using UAV Images and Deep Learning
Algorithms. Remote Sens. 2021, 13, 162. [CrossRef]

19. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens.
2015, 2015, 258619. [CrossRef]

20. Park, H.G.; Yun, J.P.; Kim, M.Y.; Jeong, S.H. Multichannel Object Detection for Detecting Suspected Trees with Pine Wilt Disease
Using Multispectral Drone Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8350–8358. [CrossRef]

http://doi.org/10.3390/f14010036
http://doi.org/10.1002/mbo3.415
http://www.ncbi.nlm.nih.gov/pubmed/27785885
http://doi.org/10.1371/journal.pone.0004646
http://doi.org/10.1016/j.ecolind.2022.109198
http://doi.org/10.3390/rs14071542
http://doi.org/10.3390/rs15020444
http://doi.org/10.1016/j.eng.2020.07.001
http://doi.org/10.3390/app12136676
http://doi.org/10.1016/j.ecoinf.2021.101378
http://doi.org/10.3390/rs13050973
http://doi.org/10.3390/rs13224682
http://doi.org/10.1007/s11676-021-01420-x
http://doi.org/10.14358/PERS.70.1.135
http://doi.org/10.1109/TGRS.2012.2199323
http://doi.org/10.1016/j.rsase.2022.100869
http://doi.org/10.3390/rs13020162
http://doi.org/10.1155/2015/258619
http://doi.org/10.1109/JSTARS.2021.3102218


Forests 2023, 14, 601 19 of 19

21. Han, Z.; Hu, W.; Peng, S.; Lin, H.; Zhang, J.; Zhou, J.; Wang, P.; Dian, Y. Detection of Standing Dead Trees after Pine Wilt Disease
Outbreak with Airborne Remote Sensing Imagery by Multi-Scale Spatial Attention Deep Learning and Gaussian Kernel Approach.
Remote Sens. 2022, 14, 3075. [CrossRef]

22. Ye, W.; Lao, J.; Liu, Y.; Chang, C.; Zhang, Z.; Li, H.; Zhou, H. Pine pest detection using remote sensing satellite images combined
with a multi-scale attention-UNet model. Ecol. Inform. 2022, 72, 101906. [CrossRef]

23. Xia, L.; Zhang, R.; Chen, L.; Li, L.; Yi, T.; Wen, Y.; Ding, C.; Xie, C. Evaluation of Deep Learning Segmentation Models for Detection
of Pine Wilt Disease in Unmanned Aerial Vehicle Images. Remote Sens. 2021, 13, 3594. [CrossRef]

24. Hu, X.; Ban, Y.; Nascetti, A. Uni-Temporal Multispectral Imagery for Burned Area Mapping with Deep Learning. Remote Sens.
2021, 13, 1509. [CrossRef]

25. Natesan, S.; Armenakis, C.; Vepakomma, U. Individual tree species identification using Dense Convolutional Network (DenseNet)
on multitemporal RGB images from UAV. J. Unmanned Veh. Syst. 2020, 8, 310–333. [CrossRef]

26. Deng, X.; Tong, Z.; Lan, Y.; Huang, Z. Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and
UAV Remote Sensing. Agriengineering 2020, 2, 294–307. [CrossRef]

27. Sun, Z.; Ibrayim, M.; Hamdulla, A. Detection of Pine Wilt Nematode from Drone Images Using UAV. Sensors 2022, 22, 4704.
[CrossRef]

28. Li, X.; Liu, Y.; Huang, P.; Tong, T.; Li, L.; Chen, Y.; Hou, T.; Su, Y.; Lv, X.; Fu, W.; et al. Integrating Multi-Scale Remote-Sensing
Data to Monitor Severe Forest Infestation in Response to Pine Wilt Disease. Remote Sens. 2022, 14, 5164. [CrossRef]

29. Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and
UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [CrossRef]

30. Wang, J.; Yu, L.; Yang, J.; Dong, H. DBA_SSD: A Novel End-to-End Object Detection Algorithm Applied to Plant Disease Detection.
Information 2021, 12, 474. [CrossRef]

31. Qian, H.; Wang, H.; Feng, S.; Yan, S. FESSD:SSD target detection based on feature fusion and feature enhancement. J. Real-Time
Image Process. 2023, 20, 2. [CrossRef]

32. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

33. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
[CrossRef]

34. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14. Springer: Berlin/Heidelberg, Germany, 2016.

35. Chen, W.; Wu, G.; Jung, H. An Optimization Method for Personnel Statistics Based on YOLOv4 + DPAC. Appl. Sci. 2022, 12, 8627.
[CrossRef]

36. Yu, J.; Zhang, W. Face Mask Wearing Detection Algorithm Based on Improved YOLO-v4. Sensors 2021, 21, 3263. [CrossRef]
37. Hu, X.; Liu, Y.; Zhao, Z.; Liu, J.; Yang, X.; Sun, C.; Chen, S.; Li, B.; Zhou, C. Real-time detection of uneaten feed pellets in

underwater images for aquaculture using an improved YOLO-V4 network. Comput. Electron. Agr. 2021, 185, 106135. [CrossRef]
38. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015.

39. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early
onset of plant disease and stress. Plant Methods 2017, 13, 80. [CrossRef]

40. Huang, Z.; Su, L.; Wu, J.; Chen, Y. Rock Image Classification Based on EfficientNet and Triplet Attention Mechanism. Appl. Sci.
2023, 13, 3180. [CrossRef]

41. Fang, M.; Damer, N.; Boutros, F.; Kirchbuchner, F.; Kuijper, A. The overlapping effect and fusion protocols of data augmentation
techniques in iris PAD. Mach. Vision Appl. 2022, 33, 8. [CrossRef]

42. Takenaka, Y.; Katoh, M.; Deng, S.; Cheung, K. Detecting forests damaged by pine wilt disease at the individual tree level using
airborne laser data and worldview-2/3 images over two seasons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017,
XLII-3/W3, 181–184. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/rs14133075
http://doi.org/10.1016/j.ecoinf.2022.101906
http://doi.org/10.3390/rs13183594
http://doi.org/10.3390/rs13081509
http://doi.org/10.1139/juvs-2020-0014
http://doi.org/10.3390/agriengineering2020019
http://doi.org/10.3390/s22134704
http://doi.org/10.3390/rs14205164
http://doi.org/10.1016/j.foreco.2021.119493
http://doi.org/10.3390/info12110474
http://doi.org/10.1007/s11554-023-01258-y
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.48550/arXiv.2004.10934
http://doi.org/10.3390/app12178627
http://doi.org/10.3390/s21093263
http://doi.org/10.1016/j.compag.2021.106135
http://doi.org/10.1186/s13007-017-0233-z
http://doi.org/10.3390/app13053180
http://doi.org/10.1007/s00138-021-01256-9
http://doi.org/10.5194/isprs-archives-XLII-3-W3-181-2017

	Introduction 
	Materials and Methods 
	Data Collection 
	Overview of the Study Region 
	Data Acquisition 
	Dataset Production 

	Methods 
	Experiment Content 
	Target Detection Model 
	Introduction to the Recognition Classification Model GoogleNet 
	Test Environment and Parameter Settings 
	Accuracy Inspection 


	Results 
	Target Detection Model Performance Analysis 
	Performance Analysis of Classification Model 
	Detection Classification Effect Display 
	Further Experiments 

	Discussion 
	Conclusions 
	References

