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Abstract: Buprestids are an emerging threat to broadleaf forests across the world. Species such as
emerald ash borer (EAB, Agrilus planipennis) seriously threaten ash (Fraxinus spp.) in North America
and Europe. As it continues spreading west from European Russia, native European ash populations
will suffer dramatic losses. Due to their cryptic lifestyle of the egg and larval stages on developing
bark and vascular tissue, buprestids and other wood borers can be difficult to detect. Early detection
tools are vital to implement fast eradication measures, and prevent the establishment of invasive
species populations. Detection methods using polymerase chain reaction (PCR) assays to target
specific taxa can be extremely timely to obtain results especially since samples need to be transported
to the laboratory first. However, loop-mediated isothermal amplification (LAMP) eDNA assays
are highly specific and sensitive providing results within 30 min after sample extraction. In this
study, we investigated the specificity and sensitivity of an EAB LAMP assay as an early detection
tool in Europe. The assay was specific to EAB when tested against 12 European Agrilus spp., five
buprestids, two Scolytinae, and five cerambycids (n = 24). The LAMP assay sensitivity amplified
DNA from a concentration as low as 0.02 pg/µL. These results demonstrate that the LAMP assay is a
highly specific, sensitive tool that can be used to detect and monitor EAB in European forests and
urban settings.
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1. Introduction

Non-native insects and microorganisms that are introduced to new environments can
cost billions of US dollars annually in lost production and value, and threaten native biodi-
versity and the provision of ecosystem services upon which humans rely [1–3]. Global trade
is the main source of these accidental introductions which have increased exponentially
during the last century [4–6] and unfortunately, there appears to be no sign of saturation in
the number of alien species introductions that will be introduced around the world in the
future [7]. Failure to intercept and quickly eradicate a new invasion allows the organism to
establish a viable breeding population when environmental barriers are overcome and sub-
sequently spread making eradication efforts impossible [8]. The ecological and economic
consequences of biological invasions can be reduced or avoided by investing in biosecurity
tools that prevent the establishment of potentially harmful pests by detecting them early
which will allow for rapid response to curb their establishment and potential impact [8–10].

Buprestids are an emerging group of pests affecting a broad range of tree species
worldwide. Historically, buprestids in their native ranges are secondary pests that attack
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and kill native host trees stressed by other biotic or abitoics factors [11,12]. Over the last
several decades, these beetles have been increasingly observed and detected due to major
damage inflicted on evolutionarily naïve hosts. Bronze birch borer (Agrilus anxius Gory),
for example, started killing healthy Eurasian birch (Betula spp.) trees when these plants
were introduced to North America [13]. Similarly, gold-spotted oak borer (A. coxalis Water-
house) was discovered in the 2000s attacking and killing healthy oak (Quercus spp.) trees
in southern California [14]. The main example of a buprestid pest is emerald ash borer
(EAB), A. planipennis (Fairmaire). This insect was discovered in 2002 after an accidental
introduction to Michigan, USA and Ontario, Canada, where it was found killing evolution-
arily naïve ash (Fraxinus spp.) by girdling the plant via larval feeding on the phloem [15].
Since then, EAB has become one of the most costly biological invasions of forests in North
America [2,16]. In East Asia, EAB is a secondary pest and only attacks and kills stressed
Manchurian ash (F. mandshurica Rupr.) and Chinese ash (F. chinensis Roxb.). But in North
America, EAB attacks and readily kills more than 99% of North American ash trees [17].
A separate introduction of EAB to European Russia occurred around 2003 [18], which has
since spread in a westward direction, recently arriving in Ukraine [19]. Based on evidence
from North America, EAB is expected to continue spreading unhindered as a result of
natural dispersion and the unintentional movement of wood products [20], putting the
fate of European ash (F. excelsior L.) across the rest of Europe at risk if no measures are
taken to contain its spread. The potential impact of EAB on European ash, a valuable and
ecologically important species, is critically important as it is known as a keystone species in
temperate broadleaf forest ecosystems. European ash is already under threat due to the
fungal pathogen Hymenoscyphus fraxineus (Baral, Queloz & Hosoya) which was introduced
to Europe decades earlier and has substantially reduced the ash population across Europe,
impacting critical biodiversity that depends on ash for its habitat [21]. In addition, there is
a strong likelihood that the expanding EAB population will heavily impact other European
Fraxinus species including F. angustifolia (Vahl) and F. ornus (L.) as well as other Oleaceae
species such as olive (Olea europaea L.) in the southern parts of Europe and possibly other
related ornamental landscape trees [22,23].

Biosurveillance tools that are rapid, accurate, and portable allowing for on-site detec-
tion are a critical way forward to prevent the introduction and establishment of harmful
pests and pathogens [8,24]. Detection of Buprestids is difficult due to their cryptic lifestyle,
with larvae feeding on the vascular tissue of their host trees under the bark. Species such
as EAB often can be present for 3–8 years in a novel environment before they are discov-
ered [20,25]. A major limitation of using traditional surveys is to detect and identify taxa
that are rare, in low abundance, or both [8,24,26]. The morphological identification of some
buprestid adults and larvae, such as Agrilus species, can be extremely challenging for non-
experts, which is made worse by the fact that the group is highly speciose [27]. Traditionally,
plant diagnostics are also labor-intensive and time-consuming since it requires a high level
of sampling and multiple processing steps that must be handled by experienced staff in
laboratories. This makes it both expensive and difficult to detect potentially invasive forest
insects at an early enough stage that would allow mitigation measures to be implemented
quickly and effectively [28]. However, surveys using environmental DNA (eDNA) can be
a reliable tool for improving the detection probability of target species [29,30]. Multiple
studies in recent years have demonstrated the power of eDNA over traditional survey
methods for monitoring terrestrial pest populations [31–33]. While significant advances
have been made with portable molecular techniques to detect organisms directly in the
field and offer the possibility to scale up their usage in practice, progress has been largely
curtailed by the need to optimize and validate on-site methods, ensure specificity and
accuracy of detection, and increasing high throughput capacity for screening large numbers
of pests. Portable DNA-based equipment that operates with great simplicity, sensitivity,
specificity, and high speed, that can detect pests in the early stages of attack when symp-
toms are not yet entirely visible, or detect traces of their presence in other forms, would
significantly enhance both diagnostic and surveillance applications to help control outbreak
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populations. Environmental DNA, which can detect trace evidence of DNA shed by pests
on different plant substrates [32,34], shows high promise to advance current biosecurity
efforts and the capacity to detect cryptic species such as Buprestids, including EAB. This
technology has the potential to be adapted to rapid and throughput in-field detection using
a portable system called loop-mediated isothermal amplification (LAMP) [35]. A LAMP
assay was recently developed for EAB in North America [36], but in order for it to be used
for early detection in European conditions, the protocol must be able to discriminate EAB
from European insect fauna, and its sensitivity needs to be determined to understand the
limit of detection (LOD), i.e., the lowest DNA concentration that can be determined by the
molecular assay. The objective of this study was to determine the ability of the EAB LAMP
assay to be specific in relation to European wood borers, other Agrilus spp., Cerambycids,
and Scolytinae; and to determine a lower threshold of DNA detection for field application.

2. Methods
2.1. Collection and Extraction of Specimens

In this study, all insect specimen used for specificity testing were adults and trapped
in broadleaf forests in Europe and North America (Table 1). Insects were collected in
multifunnel traps in a mix of 50/50 monopropylene glycol and water; a common method
used for the collection of buprestids and EAB [37,38] and in connection with the Euphresco
project (2020-A-337-‘Developing and assessing surveillance methodologies for Agrilus
beetles’) in Europe.

Table 1. Insect species used for specificity testing for EAB LAMP primers for use in European
conditions including insect collection location, collection date, and the DNA extraction kit and PCR
primer set to amplify DNA. * represents Figure S1 showing PCR amplification in gels.

Insect Species Label
Name

Collection
Date

(mm-yr)

Insect
Locality

Longitude
Latitude

Extraction
Kit

PCR Primers
(A–F *)

EAB
LAMP

Detection
Buprestidae

1. Agrilus angustulus AA 21 May Vierzon,
France

2.0327◦

47.2611◦ Invitrogen LCO1490-HCO2198 (B) -

2. Agrilus anxius BBB 14,15 June CT, USA; ON,
Canada Qiagen LCO1490-HCO2199 (A, D,

E) -

3. Agrilus ater AAT 2020 Vierzon,
France

2.0327◦

47.2611◦ Qiagen 28 s up–28 s low (F) -

4. Agrilus convexicollis AC 21 June
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen 16a–16b (F) -

5. Agrilus curtulus Acu 20 August France Qiagen 28 s up–28 s low (F) -

6. Agrilus graminis AG 20 August
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen LCO1490-HCO2199 (D) -

7. Agrilus hastulifer AH 21 June
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen 28 s up–28 s low (F) -

8. Agrilus laticornis AL 21 June
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen 28 s up–28 s low (F) -

9. Agrilus obscuricollis AO 21 June
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen 28 s up–28 s low (F) -

10. Agrilus olivicolor AD 21 June
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen LCO1490-HCO2198 (B) -

11. Agrilus planipennis EAB NY, RI, VT,
USA Qiagen LCO1490-HCO2198 (A)

EAB_COIF EAB_COIR (C) +
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Table 1. Cont.

Insect Species Label
Name

Collection
Date

(mm-yr)

Insect
Locality

Longitude
Latitude

Extraction
Kit

PCR Primers
(A–F *)

EAB
LAMP

Detection
12. Agrilus roscidus AR 2020 France Qiagen LCO1490-HCO2199 (E) -

13. Agrilus sulcicollis AS 21 May Vierzon,
France

2.0327◦

47.2611◦ Invitrogen LCO1490-HCO2198 (A) -

14. Agrilus viridis AV 21 June Orléans
campus

1.9383◦

47.8456◦ Qiagen 28 s up–28 s low (F) -

15. Anthaxia nitidula AN 21 May Marcenat 3.3619◦

46.2461◦ Qiagen LCO1490-HCO2199 (E) -

16. Chrysobothris affinis CA 20 June Vierzon,
France

2.1544◦

47.2899◦ Qiagen LCO1490-HCO2198 (E)28 s
up–28 s low (F) -

17. Coraebus undatus CU 21 June
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen LCO1490-HCO2198 (B)28 s
up–28 s low (F) -

18. Lamprodila mirifica LM Summer 2021 Friuli Venezia
Giulia Italy

13.120926◦

45.791784◦ Qiagen 28 s up-28 s low (F) -

Curculionidae:
Scolytinae

19. Anisandrus dispar A dis Summer 2021 Friuli Venezia
Giulia, Italy

13.120926◦

45.791784◦ Qiagen LCO1490-HCO2198 (C) -

20. Xyleborinus saxesenii XS Summer 2021 Friuli Venezia
Giulia Italy

13.120926◦

45.791784◦ Qiagen LCO1490-HCO2199 (C) -

Cerambycidae
21. Aegomorphus

clavipes Aeg Summer 2021 Friuli Venezia
Giulia, Italy

13.120926◦

45.791784◦ Qiagen 28 s up–28 s low (F) -

22. Exocentrus
punctipennis EP Summer 2021 Friuli Venezia

Giulia, Italy
13.120926◦

45.791784◦ Qiagen LCO1490-HCO2199 (C) -

23. Leiopus nebulosus LN Summer 2021 Friuli Venezia
Giulia Italy

13.120926◦

45.791784◦ Qiagen LCO1490-HCO2199 (C) -

24. Saperda punctata SP Summer 2021 Friuli Venezia
Giulia Italy

13.120926◦

45.791784◦ Qiagen LCO1490-HCO2199 (C) -

25. Trichoferus pallidus TN 21 June
Orléans
campus,
France

1.9383◦

47.8456◦ Qiagen LCO1490-HCO2199 (E)28 s
up–28 s low (F) -

Genomic DNA was extracted from EAB and A. anxius specimens from North America
at Rutgers University (New Brunswick, NJ, USA) in December 2021 using the DNeasy
Blood and Tissue Kit (Qiagen) and stored in a −20 ◦C freezer. Extracted DNA was shipped
on dry ice in January 2022 to the Institute for Sustainable Plant Protection—National
Research Council (IPSP-CNR, Florence, Italy) and then transferred to a −20 ◦C freezer
until subsequent processing. All other specimens from France and Italy were shipped to
IPSP-CNR and stored in 70%–95% ethanol. For all specimens (Table 1), each sample was
triple rinsed with DI water to wash any potential exterior DNA contamination. Using
flame-sterilized forceps, we removed legs with attached muscle tissues, and total genomic
DNA was extracted. The number of specimen legs that were used ranged from three
for Cerambycid adults to a maximum of six for smaller Agrilus individuals. A full body
extraction was performed with the two smaller ambrosia beetles (Xyleborinus saxesenii and
Anisandrus dispar) to obtain enough genetic material for subsequent PCR amplification.
For EAB and A. anxius (three-five individuals/species), at least three legs were manually
removed and crushed with a sterilized metal forceps inside the 1.5 mL microcentrifuge tube.
For all other specimens (one per insect species), legs or full body tissue was pulverized
by adding two metal sterile beads to 1.5 mL tubes and running the tubes in a TissueLyser
(Qiagen) for 1–2 min at 300 oscillations/min. DNA extraction was performed from homog-
enized samples by using the standard protocol for insect extractions from two different
commercial kits: Invitrogen JetQuick Blood and Cell Culture and DNeasy Blood and Tissue
Kit (Qiagen) (Table 1). DNA quantity and quality were checked using a Nanodrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).
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2.2. PCR Amplification and Sequencing of Samples

DNA extracted from insects were amplified with PCR in a final volume of 20 µL
containing, 12.5 µL Reaction buffer, GoTaq (Promega), 0.4 µL Primer Forward (10 µM
final concentration, Eurofins Genomics, Ebersberg, Germany, see Table 1), 0.4 µL Primer
Reverse (10 µM final concentration, Eurofins Genomics, see Table 1), 2 µL of extracted
DNA, and 4.7 µL of nuclease-free distilled water. EAB DNA was amplified using the
primer set EAB_COIF and EAB_COIR designed to capture potential polymorphism of
EAB within a conserved region for this species [36] (Table 2). The EAB PCR reactions
were run with an initial denaturation step (94 ◦C for 1 min) followed by five cycles of
denaturation (94 ◦C for 40 s), annealing (45 ◦C for 40 s), and extension (72 ◦C for 60 s), and
then 35 cycles of denaturation (94 ◦C for 45 s), annealing (60 ◦C for 40 s), and extension
(72 ◦C for 60 s) and a final extension (72 ◦C for 10 min). All other species used the primers
LCO1490-HCO2198 [39], rrnl mtDNA (16A)-rrnl mtDNA (16B), and 28S_D1D2.3.a_up-
28S_D1D2.3.a_low (Table 2) with an initial denaturation (94 ◦C 2 min), denaturation (94 ◦C
30 s), annealing (45 ◦C 1 min), extension (72 ◦C 2 min), 34 cycles, and a final extension step
(72 ◦C 5 min). Amplification products were separated by electrophoresis on gels containing
1% (w/v) of agarose LE (Genespin). Each sample (2.5 µL amplified DNA and 2.5 µL SYBR™
Safe DNA Gel Stain-Invitrogen) was run at 90 V for 30 min. The approximate length (bp) of
the amplification products was determined using the 1 kbp DNA ladder Ready to Load
(Genespin). For a several species that did not initially amplify, we ran the DNA at a lower
concentration (1/10 dilution) to show successful amplification (Figure S1).

Table 2. General and specific PCR and LAMP primers used to amplify and confirm insect DNA.

PCR Primer Sequence (5′–3′) Gene Type Reference

EAB_COIF AGG AAT AGT AGG AAC AGC CCT TAG A COI [36]
EAB_COIR TAT TTC ATC TAA GGT AGG CAT CTG G COI
LCO1490 GGT CAA CAA ATC ATA AAG ATA TTG G COI [39]
HCO2198 TAA ACT TCA GGG TGA CCA AAA AAT CA COI

28S_D1D2.3.A_UP GGA ATC CGC TAA GGA GTG TGT AA 28S [40]
28S_D1D2.3.A_LOW AGG GCC TCG CTG GAG TAT TT 28S
RRNL MTDNA (16A) CGC CTG TTT AAC AAA AAC AT mtDNA [41]
RRNL MTDNA (16B) CCG GTC TGA ACT CAG ATC ATG T mtDNA

LAMP PRIMERS

EAB1_F3 CTC CCT CCC TCT TTA ACA TTA C COI [36]
EAB1_B3 GAT CAG ACT AGT AGA GGT GT COI

EAB1_FIP ATA TTA GCC GCT AAT GGT GGG AAT
AGT CGA AAG AGG AGC AG COI

EAB1_BIP GGC TCT GTT GAC TTA GCA AAG GTT ATT
CCT ATT GCT CGC COI

EAB1_LF ATA TAC TGT CCA ACC AGT CC COI
EAB1_LB CTG GAA TCT CCT CAA TTC TAG G COI

2.3. Specificity and Sensitivity Testing of EAB Assay

The LAMP assay (see Table 2) was tested using the extracted DNA from closely related
species (Table 1). The reactions were carried out in a final volume of 25 µL containing 15 µL
of isothermal master-mix (OptiGene, Horsham, UK); 0.5 µL of F3 and B3 (Table 2; final conc.
0.2 µM each) (Eurofins Genomics, Vienna, Austria); 1.0 µL of Loop F and Loop B (Table 2;
final conc. 0.4 µM each) (Eurofins Genomics, Vienna, Austria); 2.0 µL FIP and BIP (Table 2;
final conc. 0.8 µM each) (Eurofins Genomics, Vienna, Austria); and 3.0 µL of extracted
DNA. LAMP amplification reactions were performed at 65 ◦C for 30 min using the Genie®

II (OptiGene Limited, Horsham, UK) according to methods in [42]. Each species was run in
duplicate. In each run, one positive (EAB) control and one negative (No Template Control,
NTC) were also included to verify the success of the reaction and ensure there was no
DNA contamination.
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A standard curve was generated from five-fold serial dilutions (ranging from 2 ng/µL
to 0.02 pg/µL) to determine the lower limit of detection. Each dilution was run in duplicate
under the same conditions previously described.

3. Results and Discussion

To adequately detect target species, molecular assays need to be specific to the species
of concern, highly sensitive to low or degraded DNA quantities, and free from environmen-
tal inhibitors [43]. Specificity is key to successfully designing eDNA assays. Since Agrilus
is the largest described animal genus [27], it is particularly important to demonstrate that
specific primers can be designed to readily and accurately detect the target taxa. In the
study by Kyei Poku et al. [36], the similarity of the targeted gene region for EAB was
compared to other congeners and other taxa from an online database to make the assay
species-specific; however, specificity of a molecular assay, such as LAMP, needs to be
validated with extracted DNA of other taxa. Kyei Poku et al. [36] conducted specificity
testing with extracted DNA of mostly North American co-occurring fauna including four
Agrilus and two Scolytinaes, and none amplified with the EAB LAMP primers. In order
for EAB LAMP to be specific in European conditions and to better understand the risks
of obtaining false positives as a result of having a different suite of co-occurring species
within European forests, we tested the extracted DNA of additional Agrilus spp. native to
Europe to determine specificity.

The EAB LAMP assay was tested on DNA extracted from 25 species (24 non-target; DNA
concentration range of 5 to 160 ng/µL): 13 Agrilus (12 native to Europe) and 12 non-Agrilus
(Table 1). We confirmed by PCR amplification that the DNA of EAB and the non-EAB
specimens were suitable for specificity and sensitivity testing using the LAMP assay
(Table 1). All EAB DNA samples were successfully amplified using the PCR primers
EAB_COIF and EAB_COIR [36]. Three sets of primers were used to amplify the DNA of
other specimens because DNA can be difficult to amplify for specific Agrilus spp. (personal
communication Amanda Roe, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada).
The majority of the insect species were amplified with LCO1490-HCO2199 (Table 1), a
common, universal primer set, and ten samples were successfully amplified with other
common insect primers.

Of the non-target species tested, none were amplified by LAMP primers (Table 1).
Our findings provide additional data supporting that the LAMP assay for EAB is highly
specific and can be used to distinguish EAB DNA from other Buprestids originating from
both North America and Europe. Overall, 30 species have been examined for specificity
testing including those from Kyei-Poku et al. [36]. While these results are promising for
two geographic regions of the world, other locations warrant further investigation because
closer relatives of EAB, such as those in eastern Asia, can be more genetically similar [27].

Similar to Kyei-Poku et al. [36], we demonstrated that the DNA of A. sulcicollis (La-
cordaire) and A. anxius did not amplify by the LAMP assay. In addition, we also found
that non-buprestids that co-occur in European broadleaf forests did not amplify using the
designed EAB LAMP primers, and DNA extracts of two additional Scolytinaes and five Cer-
ambycid were negative for amplification. Overall, our data and that by Kyei-Poku et al. [36]
demonstrate that the LAMP primers appear highly specific to the targeted fauna (EAB),
even among very speciose genera Agrilus, and can be used as a diagnostic tool for early
detection and monitoring on both continents.

Critical to the use of eDNA assays is the ability to detect low concentrations of target
DNA. If the threshold for adequate detection is too high, then the ability to detect a species
at the early stages of invasion may be jeopardized. Insect DNA can be detected at quite
low levels; for example, spotted lanternfly (Lycorma delicatula White) DNA reached a limit
of detection of 0.14 pg/µL with qPCR [33]. For LAMP studies, levels have reached as
low as 0.61–16 pg/µL using the DNA of long-horned beetles [44,45]. Our study revealed
similar levels of sensitivity with a serial dilution experiment detecting as low as 0.02 pg/µL
with the EAB LAMP assay when starting from a higher level of 2.0 ng/µL (Figure 1).
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This concentration is lower but comparable to those results found when running qPCR
assays [33]. Our findings are similar to other studies where LAMP outperforms traditional
PCR methods [46,47]. The results clearly demonstrate that LAMP assays can not only be
specific, portable, and provide rapid results, but also detect lower DNA amounts than some
qPCR assays. The benefits and trade-offs of using eDNA LAMP assays in early detection
and surveillance efforts for EAB are evident. Conventional PCR is more expensive due
to the thermocycler equipment and reagent needs, the necessity of highly trained staff,
and the time needed to prepare samples. This results in an overall higher cost per sample
than running LAMP protocols [48]. In contrast, LAMP equipment (i.e., Genie® II) is
generally cheaper to produce, smaller in size, portable due to isothermal amplification,
and amplification are much faster (generally less than 30 min). Thus, this LAMP assay is
providing a user-friendly tool for stakeholders to use. One potential advantage of PCR over
LAMP is the influence of plant-produced chemicals that can inhibit DNA amplification.
qPCR can outperform LAMP in terms of sensitivity when inhibitors are present [49] and
LAMP is known to be influenced by some plant chemicals [50]. Thus, future research
should consider the influence of host plant chemistry, or other inhibitors present in the
environmental sample, on the sensitivity and false negatives.
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Figure 1. Fluorescence of EAB DNA in a 1:5 serial dilution to determine the lower detection threshold
of the EAB LAMP assay.

Insects are a hyper-diverse group of organisms; beetles (Coleoptera) being the largest
order of all described insects and the genus Agrilus, is the largest among animals [27].
In recent decades, Agrilus spp. have become major forest pests where they have been
introduced outside of their native range, whereas in their native range, they are usually
considered only secondary pests, killing or attacking weakened or stressed host plants.
With so many species, ~3000 in the genus Agrilus, it is often difficult to accurately identify
taxa to a species level and often taxonomic experts are needed, but even then species
may go undetected for decades as was the case with EAB in North America [51]. Reliable
methods such as LAMP, as demonstrated in our study, are therefore needed to rapidly detect
the species of concern, and reduce the time from incursion to detection and subsequent
mitigation efforts. As EAB continues to spread throughout Europe, the developed and
validated LAMP assay can play an important role to monitor for satellite populations or
delimit the expanding range in forests and urban settings. With the current location of
EAB in eastern Europe, now on the fringe of invading the rest of Europe, LAMP could
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provide a critical role for sampling to assist in containment efforts, since the Genie® II or III
instruments allow users to conduct on-site testing which can lead to more rapid decisions
for mitigation.

Targeted sampling methods for eDNA collection of woodboring insects such as EAB
are still needed for larval stages but some methods for collecting eDNA of adults already
exist for sampling foliage and bark from trees in forests (e.g., using a backpack sprayer or a
paint rolling pole) [31,34]. Overall, our results demonstrated, validated, and expanded the
usability of the EAB LAMP assay for European conditions, and is highly recommended
that the LAMP assay be adopted by plant protection organizations throughout Europe to
aid in the early detection of A. planipennis in surveillance efforts that ultimately aim to save
European ash from its demise.

4. Conclusions

In conclusion, our study determined that the emerald ash borer LAMP assay appears
specific to EAB with none of the non-target species DNA being amplified. The LAMP
assay has the capacity to detect A. planipennis in European and North American conditions.
Furthermore, the assay is quite sensitive, being able to detect low concentrations of DNA.
Future validation of this or other LAMP assays in the field is being developed and needs to
be implemented to demonstrate the capacity to obtain this technology for detection in both
forested and urban settings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14020436/s1, Figure S1: Gels of amplified PCR DNA of insects used
for specific testing of EAB LAMP primers. All primers used to confirm DNA were LCO1490-HCO2198
(A–E) in gel except the final gel (F) shows DNA amplified with 28S_D1D2.3.a_up-28S_D1D2.3.a_low
(Top) and rrnl mtDNA (16A)-rrnl mtDNA (16B) (Bottom). Species with plus mark (+) were considered
amplified. See Table 1 for the species codes.
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