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Abstract: The accurate assessment and prediction of forest ecosystem quality is an important basis for
evaluating the effectiveness of regional ecological protection and restoration, establishing a positive
feedback mechanism for forest quality improvement and restoration policies, and promoting the con-
struction of an ecological civilization in China. Based on the existing studies at home and abroad, this
paper mainly analyzes and summarizes the connotation of forest ecosystem quality, assessment index
systems, assessment and prediction methods, and outlooks on the existing problems of imperfect for-
est ecological quality assessment index systems, preliminary assessment and prediction capabilities,
and unknown dynamic responses of forest ecological quality to climate change, etc. Efforts should
be made to develop a scientific and standardized assessment index system, produce high-quality
forest ecological data products, develop localization of assessment model parameters, and explore
forest quality–climate change response mechanisms to provide references for in-depth research to
realize the transformation of forest ecosystem quality assessments from historical and status quo
assessments to future predictions, and to support the construction of a national ecological civilization.

Keywords: forest ecological quality; assessment index system; assessment and prediction methods

1. Introduction

Forest ecosystems, as an essential part of green water and green mountains, provide
critical ecosystem services [1–3], especially through the roles of a “green water reservoir”
for water conservation functions [4,5], a “green carbon pool” for carbon fixation and
oxygen release functions [6–8], a “green oxygen bar library” for atmospheric purification
functions [9–11], and a “green gene pool” for biodiversity conservation functions [12,13],
which are closely related to human welfare. In recent years, to mitigate the severe climate
change caused mainly by human activities, the “Kyoto Protocol” has expanded to include
forests as an essential initiative to solve the problems of saving energy and emission
reduction and to cope with climate change. To this end, many forestry ecological projects
have been implemented around the world, such as the “Roosevelt Project” in the United
States, the “Great Plan for Transforming Nature” in Russia, the “Three-North Shelterbelt
Project,” the “Natural Forest Protection and Restoration Project,” and the “Gain for Green
Project” in China. The implementation of these forestry ecological projects has increased
global forest cover to some extent [14–16] but has failed to curb the loss, fragmentation, and
degradation of forests caused by human activities [17,18]. Furthermore, a large proportion
of natural forests has been replaced by plantations, causing a generally homogeneous
forest composition and age structure, low biodiversity, weakened ecological services, and
significantly reduced resilience [19]. These are clear indications that the quality of forest
ecosystems needs to be urgently improved [3–5]. Therefore, the issue of forest ecological
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quality has attracted much attention in the current context, and the assessment of its long-
term status and future prediction has become a hot topic of research in the fields of forestry
and ecology [20–23].

Long-term assessments of forest ecosystem quality are a critical way to understand the
dynamic changes of patterns in forest ecosystem quality, which is conducive to quantifying
and grasping the spatial and temporal distribution patterns, carbon source/sink charac-
teristics, resistance, and resilience mechanisms of forest ecosystem quality. Furthermore,
they can provide support for accurately formulating ecological restoration and regulatory
measures, scientifically assessing the effectiveness of ecological engineering protection,
efficiently accomplishing the “double carbon target,” and responding to climate change.
Currently, a series of theoretical and methodological studies on forest ecosystem quality
assessments have been carried out at home and abroad [24–26]. Still, the data sources,
assessment index systems, and assessment and prediction methods differ due to the dif-
ferences in research regions, research scales, and research focuses. Based on the existing
studies at home and abroad, this paper mainly analyzes and summarizes the connotations
of forest ecosystem quality, assessment index systems, assessment and prediction methods,
and prospects for the problems of imperfect forest ecological quality assessment index
systems, preliminary assessment and prediction capabilities, and unknown dynamic re-
sponses of forest ecological quality to climate change. It aims to provide a reference for
in-depth research to realize the transformation of forest ecosystem quality assessments
from historical and status quo assessments to future predictions and to support the con-
struction of a national ecocivilization which is a new concept and trend in China’s era of
high-quality development and transcendence of industrial civilization. This requires the
synergistic promotion of ecological–economic civilization, ecological–social civilization,
and ecological–environmental civilization.

2. Connotation of Forest Ecosystem Quality

Forest ecosystems are integrated ecosystems in which biotic communities (including
plants, animals, microorganisms, etc.), mainly trees, interact with the abiotic environment
(light, heat, water, air, soil, etc.) and undergo energy conversion and material circulation.
A forest ecosystem is rich in species, complex in structure, well-functioning, can improve
and maintain the ecological environment, and can provide welfare for human beings [27].
Specifically, forest ecosystems perform ecological functions and services that regulate and
sustain ecological security, of which, ecological services refer to the natural environmental
conditions and utility that forest ecosystems and ecological processes create and maintain
for human survival and development [1,28,29]. The ability of forest ecosystems to perform
ecological functions, such as water harvesting, carbon sequestration and oxygen release,
biodiversity conservation, and providing ecological services, is an important factor affecting
their quality level [30].

In 1992, the term “forest quality” was first introduced by Stolton and was subsequently
used in the World Wide Fund for Nature (WWF) report, with Dudley defining its concept
at the landscape scale as “the sum of all the functions and values of forests in terms of
ecological, social and economic benefits” [31], thus calling attention to the quality of the
environment and forests. The term “forest quality” is highly general and abstract and has
broad connotations. Scholars at different levels and from different research backgrounds
have conducted many exploratory studies on forest subjects at different scales [21,23,32,33].
Still, there is yet to be a widely accepted concept or definition in the academic community.
In terms of research subjects and contents, it is both different from and related to topics
such as “forest sustainability” and “forest health”. “Forest sustainability” emphasizes forest
management, i.e., a forest management system that ensures and promotes the sustainable
and coordinated development of society, economy, resources, and the environment through
the protection, management, and development of forest ecosystems to maintain the health
and vitality of forest ecosystems and to meet the demand for forest products and ecological
services in the process of socio-economic development.
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“Forest health” is derived from “ecosystem health” [34], which is a concept proposed
by western countries in response to the problems of single-structure planted forests, a
weak ability to control forest pests and diseases, soil and water conservation, etc. Its ideas
and concepts were first developed in the United States [35]. It is generally accepted that a
healthy forest is one in which the effects of biotic and abiotic factors (e.g., pests, fire, air
pollution, invasive alien species, forestry practices, timber harvesting, etc.) on the forest
do not threaten the objectives of present or future forest resource management (timber
production, forest recreation, wildlife conservation, timber resources, water conservation,
etc.) [36,37]. Pathways to understanding forest health include the goal-oriented pathway
of the utilitarian view, the ecosystem-oriented pathway of the ecosystem view [38], and
an integrated pathway that balances the two [39,40]. “Forest quality” emphasizes the
ability of forests to meet the growing ecological, economic, and social needs of humankind
as a critically important ecosystem and an irreplaceable development resource; related
concepts include “forest resource quality” and “forest ecological quality”. The quality of
forest resources refers to the sum of the effectiveness of all services provided by forests as a
natural resource in a certain area, both in maintaining their own stability and providing
social activities such as production and spiritual life to human beings. This depends not
only on their own forest characteristics but also on a series of tangible and intangible
benefits, such as the ecological environment and social economy brought about by the
characteristics of the forest resources and trees. Thus, the connotations of forest ecosystem
quality mainly cover three aspects: biological quality, socioeconomic quality, and ecological
quality [41]. Forest ecological quality is a comprehensive measure of the ecological services,
growth, and self-regulatory functions of forest ecosystems, reflecting the ability of forests
to improve the ecological environment and maintain ecological balance [27,30,41]. Due
to the abstract nature of the concept, the connotations of forest ecological quality vary
for different research objectives, and no unified understanding has been reached yet.
Synthesizing existing studies, this paper defines forest ecosystem quality as the quality
of the overall or of some components of forest ecosystems on a specific temporal and
spatial scale, specifically in terms of their productive service capacity, self-sustainability,
resistance to external disturbances, impact on human survival, and sustainable socioeconomic
development [42–44]. Constructing an index system that can reflect the ecological quality
of forest ecosystems and carrying out forest ecosystem quality assessments are effective
ways to grasp the status and development trend of forest ecosystem quality, which help to
improve the quality and stability of forest ecosystems.

3. Methods of Forest Ecosystem Quality Assessment
3.1. Assessment Index System

Constructing an assessment index system is the first and key step in a quantitative
assessment of forest ecosystem quality, and the selection of the assessment index system
is mainly influenced by both the spatial scale of assessment and the ease of obtaining
indicators. The current spatial scale involved in forest ecosystem quality assessments
includes multiple levels of forest stands and landscapes at regional, national, and global
levels, and the corresponding main characterization indicators of forest ecosystem quality
mainly include spatial structure, ecological function, green vigor, stability, and health status
(Table 1). The means of acquiring assessment index data mainly include traditional ground
surveys and multi-source remote sensing image inversion. The former acquires more
accurate data, but it requires a lot of time as well as human and material resources and
cannot achieve large regional and continuous time-scale inventories [21,23,45–47]. The
development of the latter makes up for the shortcomings of traditional estimation methods
and can achieve rapid, continuous, and nondestructive estimations of forest ecological
parameters at local, regional, and even global scales, which can meet the needs of forest
surveys and biophysical parameter detection and provide data sets with different spatial
and temporal resolutions for ecological quality assessment and prediction.
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Currently, remote sensing images are combined with ground monitoring data to
invert key parameters of regional forest ecosystem quality (leaf area index, vegetation cover,
productivity, etc.) to achieve spatial gridding of forest quality assessment parameters [48–51],
thus realizing long-term, dynamic, and accurate spatial observations of forest ecosystem
quality in the study area.

Table 1. Forest ecosystem quality assessment indicators.

Dimensions Involved Indicator Factors Applications

Forest structure Stand origin, community structure, stand age, canopy structure,
stand density, tree species composition, depression [21,23,26,27,46,52]

Ecological function
Water conservation, soil conservation, carbon sequestration and

oxygen release, air purification, biodiversity conservation,
nutrient sequestration, forest recreation, etc.

[53,54]

Green Vitality
Normalized difference vegetation index (NDVI), stand volume,

leaf area index, biomass, forest growth per unit area,
litter thickness

[32,55]

Stability Net primary productivity (NPP) stability, NDVI stability [54,56]

Site conditions Elevation, slope direction, slope, slope position, soil thickness,
soil fertility, soil erosion degree, etc. [23,27,57,58]

3.2. Determining the Weight of Indicators

Based on the constructed suitable indicator system, different forest ecosystem qual-
ity assessment methods can be used to achieve forest ecosystem quality assessments at
different spatial and temporal scales. Since the contribution of each type of indicator
characterizing forest ecosystem quality differs, they are given different weights in the
assessment process [30]. The correctness and scientificity of indicator weighting determine
the reasonableness of forest ecosystem quality assessment results, which is the critical
link in the process of forest ecosystem quality assessments. The two main methods of
determining indicator weights are subjective weighting methods and objective weighting
methods. The former is simple to operate and highly practical, but more subjective due to
a heavy reliance on the personal experience of decision-makers, such as analytic hierarchy
processes (AHP) [27,45,59,60]. The latter is more objective and avoids the bias brought
about by human factors. Still, it will have problems in cases with insufficient sample sizes
and does not take into account the variability among evaluation indicators, which may
result in inconsistencies between the determined weights and the importance of indica-
tors. Commonly used are the mean-variance integrated analysis [61], principal component
analysis [53,59,62], factor analysis [26,63], and the entropy weighting method [54,64,65]. In
addition, with the rapid development of artificial intelligence in the fields of data prediction,
optimization, evaluation, and classification, machine learning algorithms such as decision
trees, support vector machines, regression trees, and neural networks [55] have been ap-
plied to the determination of indicator weights. Machine learning algorithms usually have
strong self-learning and adaptive capabilities, which can automatically extract rules be-
tween input and output data through learning and determine network weights adaptively,
greatly reducing the negative impact of subjective weights on assessment results [66].

3.3. Assessment Methods

The selection of suitable forest ecosystem quality assessment methods is the guarantee
of scientific and accurate assessment results. In a comprehensive manner, the commonly
used methods for forest ecosystem quality assessment at home and abroad mainly in-
clude the comprehensive evaluation method, remote sensing assessment method, process
modeling method, and machine learning method (Table 2).
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Table 2. Comparison of forest ecosystem quality assessment methods.

Methods Main Features Input Data Advantages Disadvantages

Comprehensive
evaluation method

Combination of
qualitative and
quantitative

Ground
monitoring data

Simple method; intuitive
evaluation results with high
accuracy; high information
utilization

The evaluation results may be biased by
obscuring some factors that have a
greater impact

Remote sensing
assessment
method

High assessment
efficiency; suitable
for large-scale
forest quality
assessment

Ground
monitoring data;
multi-source
remote sensing
data

Saves human and material
resources; fast evaluation; high
evaluation efficiency

Remote sensing images are often affected by
satellite type, weather, cloudiness, etc.
Remote sensing inversion of forest
quality-related indicators needs to be
verified by ground monitoring data

Process modeling
method

Lateral reflection
of forest quality
through
assessment of
forest ecological
functions

Ground
monitoring data;
multi-source
remote sensing
data

Expression formulas are clear,
can capture the intrinsic
linkages of ecosystem services,
and are highly interpretable

Limitations in input data, model structure,
and model parameters make simulation
results subject to large uncertainties

Machine learning
method

Adept at handling
high-dimensional
data and
non-linear
ecological
relationships

Ground
monitoring data;
model simulation
data; multi-source
remote sensing
data

It is self-learning and
self-adaptive, greatly reducing
the influence of subjective
weights on evaluation results; it
can couple ecological big data,
process models, and use
artificial intelligence to invert
key parameters or optimize
model parameters, thus
improving evaluation accuracy

Its data demand is large, over-fitting or
under-fitting problems may occur, and the
interpretability of simulation results needs
to be improved.

3.3.1. Comprehensive Evaluation Method

The comprehensive evaluation method characterizes the quality of forest ecosystems
by constructing different indices to reflect their different aspects. It is a combination of
qualitative and quantitative analysis and assessment methods, that are widely used in
forest ecosystem quality assessment, including the comprehensive index method [67], fuzzy
comprehensive evaluation method [68], cluster analysis method [45,62], matter element
analysis [27,60,69], and set pair analysis method [27,70], which have different advantages
and disadvantages [30]. In the actual assessment process, multiple methods are often
combined to avoid the drawbacks of using a single method and to solve the problem in
a reasonable way. For example, Xuan Feng et al. (2012) effectively combined the analytic
hierarchy process and the fuzzy evaluation method to comprehensively and systematically
evaluate and analyze the ecological quality status of Shanxi Province [71]. Feng et al. (2016)
assessed the dynamics of provincial forest resource quality in China based on hierarchical
analysis and cluster analysis, and the results showed that the implementation of ecological
projects such as the Natural Forest Protection and Restoration Project and the Gain for
Green Project significantly improved the quality of forest ecosystems at provincial and
national levels [45]. Zhang Bo et al. (2022) used a combination of hierarchical analysis and
matter element analysis to evaluate the quality of forest resources in Yanchuan County [60].

3.3.2. Remote Sensing Assessment Method

With the development of satellite remote sensing and the advantages of rapid extrac-
tion of vegetation information, low cost, and easy estimation based on remote sensing
images, remote sensing assessment methods began and are now widely used for forest
ecosystem quality change simulations and assessments [43,72–75]. The principle relates to
the fact that different substances interact with electromagnetic waves and form spectral
absorption and reflection features that reflect information on substance composition and
structure at some specific wavelength positions. Such characteristics of matter in response
to different wavelength spectra are called spectral characteristics. The spectral character-
istics of forest vegetation are an important basis for obtaining their material composition
and morphological structure parameters based on remote sensing methods. The spectral
characteristics of forest vegetation vary at different growth stages, and, based on this spec-
tral information, key indicators such as aboveground biomass [76], leaf area index [77,78],
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photosynthetic active radiation [79], net primary productivity [80,81], vegetation index [26],
and texture structure index can be inferred. Deep mining of key indicator datasets can
obtain forest structure, productivity, ecological function, and stability characteristics and
thus assess forest ecosystem quality. For example, Chen Qiang et al. (2015) used MODIS
remote sensing data products and basic geographic data, combined with an integrated
remote sensing evaluation model of ecosystem quality, to evaluate the quality of ecosystems
(forests, grasslands, wetlands, farmlands, and towns) around Dongting Lake in 2001, 2005,
and 2010 in terms of productivity, stability, and carrying capacity [44]. In general, remote
sensing-based forest ecosystem quality assessment methods greatly save human resources
and improve assessment efficiency, but they also have certain limitations. On the one hand,
because remote sensing images are often affected by satellite type, weather, cloudiness, etc.,
and on the other hand, remote sensing inversion of forest quality-related indicators needs
to be verified through ground monitoring data. Therefore, most of the current studies
integrate multi-source remote sensing and ground monitoring data to obtain the regional
forest ecosystem quality.

3.3.3. Process Model Method

Ecological processes are the basis of forest ecological services [82,83]. To date, many
ecological process models have been developed to simulate ecosystem carbon and water cy-
cles, and representative models include CLM [84], LPJ [85], CENTURY [86], Biome-BG [87],
CEVSA [88,89], InVEST model [90–94], etc. Process models combine explicit expressions
of biogeochemistry and biophysics to capture the intrinsic linkages of ecosystem services
and can simulate energy exchange and coupled nitrogen–carbon–water cycles between the
vegetation, soil, and atmosphere at better spatial and temporal scales. Using the above, the
ecological process models can usually quantify the ecological service functions of forest
ecosystems [89,95–97], which in turn reflect forest ecosystem quality. However, ecological
process models are obtained by simplifying the real world based on certain conditions, and
the incompleteness of the attributed data, the limitations of the models themselves, and the
lack of knowledge about the processes and control mechanisms of complex ecosystems lead
to large uncertainties in different simulation results [98,99]. There are three main sources of
uncertainty: the input data, the model structure, and the model parameters [100]. Among
them, most of the input data are environmental variables, which depend on observation
means and observation errors are difficult to control. The model structure is a simplification
of the real physical process, but it is difficult to quantify accurately because the intrinsic
mechanism of the ecosystem is very complex. Most of the model parameters follow the
initial empirical values, and if the same set of parameters is followed for simulation under
different substrates, it will cause large errors [101,102]. Thus, the process model-based
assessment of forest ecosystem service functions also needs to utilize more data for model
initialization and validation [103,104] and use parameter sensitivity analysis, parameter es-
timation, and data assimilation to investigate effective model parameters and reduce model
simulation errors [105–110]. Remote sensing observations are a good tool for large-scale for-
est ecosystem monitoring and can provide input and assimilated data for ecosystem model
simulations, while process models can help assess forest ecological processes that cannot
be directly monitored via remote sensing and can diagnose and predict the effects of envi-
ronmental changes to overcome the shortcomings of remote sensing technology. Therefore,
integrating remote sensing data and process models can help with real-time monitoring
and rapid assessment of forest ecosystem quality. The complementarity of remote sensing
and process models in studying forest ecosystems has been demonstrated, but effective
methods for linking forest ecosystem quality with process models are lacking [111,112] and
further research is still needed to explore them.
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3.3.4. Machine Learning Method

In recent years, artificial intelligence (AI) has been rapidly developed in the fields of
data prediction, optimization, evaluation, and classification. Among various AI techniques,
machine learning algorithms have become a valuable tool for processing and analyzing
big data. Machine learning has a greater advantage in dealing with nonlinear ecological
relationships and can better explain the relationship between biophysical parameters and
model parameters, which is a potentially effective method for conducting forest ecosystem
quality assessment. Machine learning can be divided into three main types: supervised
learning, unsupervised learning, and reinforcement learning [113,114]. The common
algorithms mainly include: k-nearest neighbor (KNN), artificial neural network (ANN),
random forest (RF), support vector machine (SVM), etc. (Table 3). The advantage of
assessing forest ecological quality based on machine learning algorithms lies in two aspects:
one is the determination of the weights of each index, and the other is the improvement in
assessment accuracy. Machine learning algorithms usually have strong self-learning and
self-adaptive capabilities and can automatically extract rules between input and output
data through learning and adaptively determine the work weights, which greatly reduces
the influence of subjective weights on the evaluation results. For example, Yang Hong
et al. (2012) evaluated the ecological quality of the outer Yangtze River estuary by using an
artificial neural network method with a seawater quality index, a phytoplankton diversity
index, and chlorophyll concentration as evaluation indicators. Li et al. (2021) constructed
a back propagation artificial neural network model optimized using a genetic algorithm
(GA-BPANN) to evaluate the ecological health of forests in Yunnan Province, which used an
artificial neural network to self-correct the weights until the error in the output was reduced
to an acceptable level, avoiding the influence of competent factors and performing well in
practical applications of regional ecosystem health assessments [55]. The improvement in
the accuracy of forest ecosystem quality assessment based on machine learning is due to
the advancement of simulation accuracy on the one hand, and on the other hand, mainly
lies in coupling big ecological data, process models, and artificial intelligence to carry
out inversions of critical parameters or localizations of model parameters to reduce the
uncertainty of parameters, which in turn improves the science and accuracy of forest quality.
For instance, Zhang et al. (2010) used the Markov chain Monte Carlo (MCMC) method to
invert the critical parameters of carbon retention time and carbon retention time based on
biometric and vorticity-related data [115]. Richardson et al. (2010) estimated the parameters
of the data assimilation linked ecosystem carbon (DALEC) model using vorticity-related
flux data, soil respiration, leaf area index, litterfall, and biomass data. They found that the
inclusion of soil respiration and biomass data helped parameter estimation and reduced
uncertainty in model predictions [116]. Ge et al. (2019) developed a new model data
fusion framework using five carbon pools, including litterfall data, leaf area index, net
ecosystem productivity, and soil respiration, revealing that the traditional equilibrium state
assumption significantly underestimates ecosystem carbon turnover time and carbon sink
capacities [117]. Niu et al. (2019) found that greening and warming led to substantially
higher transpiration and evapotranspiration in terrestrial ecosystems in China based on
surface observations of transpiration and evapotranspiration data and model data fusion
methods [118]. In addition, deep learning (DL), as an important branch of machine learning,
has significant advantages in solving high-dimensional data [119,120]. Remote sensing
image recognition methods based on DL for forest resources have been applied to forest
resource surveys, forest vegetation cover statistics, forest pest and disease monitoring,
and other fields. Although there is still a gap between remote sensing image analysis
based on DL and manual recognition at this stage, with the continuous optimization of DL
algorithms, the efficiency of forest ecological quality evaluation can be effectively improved
in the future [121].
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Table 3. Comparison of standard machine learning algorithms for forest ecosystem quality assessment.

Machine Learning
Algorithms Characteristic Applications

K-nearest neighbor (KNN)
No parameter estimation; simple and easy to implement;
increases the workload and overfitting problem when the

sample size is large.
[122,123]

Artificial neural networks
(ANN)

Suitable for dealing with multi-factor influence and ambiguous
information, no assumptions are required about the data, which

can effectively deal with non-linearity, non-normality, and
covariance in the data; overfitting can occur.

[26,55,124,125]

Random forest (RF)

It can handle complex, nonlinear ecological relationships and
has the advantages of efficient processing of massive data, less
human interference, strong resistance to noise, and less likely to

produce overfitting; however, it is sensitive to the
interrelationship between input variables and will produce bias
in the prediction tree, so the importance of variables needs to

be measured.

[26,123,126–128]

Support vector machine
(SVM)

It can be used in classification and regression analysis to
produce higher classification or more accurate estimates in

solving small, non-linear, and high-dimensional pattern
recognition problems.

[26,123,128]

Deep learning (DL) Ideal for classifying audio, text, and image data but requires
large amounts of data for training. [127,129]

4. Forest Ecosystem Quality Prediction

To date, many research results have been achieved in forest ecosystem quality assess-
ment, but there are few studies on forest ecological quality prediction. There are three main
reasons for this: firstly, forest ecological quality itself is a comprehensive assessment value
rather than a measurement value, so it is statistically difficult to define the dependent and
independent variables; secondly, the selection of methods and evaluation index systems
for calculating forest ecological quality and its evaluation will directly affect the success
or failure of prediction models; thirdly, there are many factors affecting forest ecosystem
quality, and the calculation volume is often huge.

Most of the current research is on the prediction of forest ecosystem service func-
tions [130] and key parameters of forest quality [127,128,131], with prediction methods
including machine learning, neural network methods, Markov prediction methods, and
system dynamics simulation. For example, Wang et al. (2022) used two machine learning
algorithms, deep learning and random forest, to explore how annual diameter growth
varies with forest stand and climate variables [127]. Based on system dynamics theory,
Shi et al. (2018) applied Vensim simulation software to evaluate the value of forest ecosys-
tem services provided by the Jilin Forestry Group from 2008 to 2020 under different new
afforestation areas and harvesting volumes and to predict the long-term effects under
different scenarios, which is very important for the forestry development and strategy
formulation of the Jilin Forestry Group [132]. Liu et al. (2019) used a gray prediction model
and wavelet neural network to predict the forest area and average annual precipitation
in Yunnan Province, and further constructed a comprehensive value model of water and
soil ecological service function and water footprint carrying capacity equation to estimate
the number of forest water ecological carrying capacity in Yunnan Province, reflecting the
degree of influence of forest water and soil ecological service function in Yunnan Province
to compensate for local water scarcity [133].

5. Problems and Research Prospects
5.1. Existing Problems

With the rapid development of long-term positioning observation and research net-
works of forest ecological stations and remote sensing monitoring technology, we have
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now entered the era of ecological big data. Fully exploiting the implicit information of
air–sky–ground integrated forest ecosystem observation data and carrying out regional
or national forest ecosystem quality assessments and predictions is an important basis for
evaluating the effectiveness of regional ecological protection and restoration, accurately
improving the quality and stability of forest ecosystems, and promoting the major strategic
needs of ecological civilization construction. At present, the knowledge of forest ecosystem
quality and its changes on a national scale is still relatively lacking and insufficient to
meet the needs of national forest ecosystem management; moreover, there are still some
problems in the assessment and prediction of forest ecosystem quality.

5.1.1. Inadequate Assessment Index System

Forest ecological quality assessment involves scales at the forestry center, county, city,
regional, national, global, and other research levels, and their assessment index systems
are different for different research scales; moreover, there are problems with insufficient
considerations of validity and representativeness of evaluation indexes, resulting in poor
comparability of assessment results in different research regions or the same region. In
addition, existing assessments of forest ecosystem quality tend to focus on realistic values
of indicators characterizing the condition of forest ecosystems, and the magnitude of
their values is largely dominated by differences in climatic factors (e.g., precipitation,
temperature, total radiation) and geographic background conditions, resulting in low
comparability of evaluation results across regions [30,42]. The existence of the above-
mentioned problems makes the research results poorly referable and hinders the exchange
of scientific and academic activities.

5.1.2. Inadequate Capacity of Forest Ecological Quality Assessment and Prediction

The process of assessing forest ecological quality based on remote sensing technology,
process models, and machine learning requires a large amount of accurate and representa-
tive ground measurement data for algorithm training and parameter validation, while the
current lack of high-quality ground monitoring data sets reduces the inversion accuracy. In
addition, forest ecosystem processes are complex, some process mechanisms are not yet
clear, and most of the forest ecosystem quality assessment models are introduced from
abroad with low model localization, resulting in low accuracy and high uncertainty in
forest ecosystem quality assessment and prediction.

5.1.3. Dynamic Response of Forest Ecological Quality to Climate Change Is Unknown

Climate change has become a hot issue of concern in the world today [134], and
forest ecosystems play an irreplaceable role in mitigating climate change and restoring
the ecological environment [135,136]. Climate change may drive complex changes in the
species composition, spatial structure, ecological processes, and functional services of forest
ecosystems [137–140], which in turn affect forest ecological quality. The dynamic responses
and mechanisms of forest ecosystem quality to climate change need to be further clarified.

5.2. Research Perspectives

In order to effectively solve the problems in forest ecosystem quality assessments,
improve the ability of forest ecosystem quality assessments and predictions, and realize the
transformation of forest ecological quality assessments from historical and current situation
assessments to future predictions, the following discussion on its development prospects is
given, mainly including the following three aspects:

1. Develop a scientific and standardized evaluation index system. Therefore, in order
to effectively promote the pace of ecological civilization construction in the new era
and improve the effectiveness of ecosystem quality management, it is necessary to
overcome the above-mentioned problems and to improve the existing ecosystem
quality assessment system using screening evaluation indicators and clarifying the
assessment criteria of each parameter based on the principles of scientificity, operabil-
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ity, comparability, accuracy, and quick sensitivity, so as to reveal the current situation,
changes, and restoration potential of its quality in a more realistic way.

2. Produce high-quality forest ecological data products and realize the localization of
assessment model parameters. High-quality, ground-based, long-term observation
data are the basis of scientific research on forest ecosystems, so we should strengthen
long-term, ground-based observation of forests, constantly update and improve the
basic data, and obtain real-time and effective sample data. Then, use data assimilation
and other methods to integrate multi-source heterogeneous data (ground-based,
long-term observation data, remote sensing monitoring data, and model simulation
data) to produce high-quality forest ecological data products, realize the localization
of assessment model parameters, and improve the accuracy of forest ecosystem
quality assessments.

3. Exploring forest quality–climate change response mechanisms. As one of the most
important components of the carbon pool of terrestrial ecosystems, forests play an
important role in the carbon balance of terrestrial ecosystems and the carbon cycle
of surface systems. It is important to understand the response mechanism of forest
ecosystem quality to climate change, simulate and predict forest ecosystem qual-
ity under future climate change scenarios, and clarify the heterogeneous response
of forest ecosystem quality to climate change in advance so as to formulate forest
management measures to cope with global climate change and achieve the goal of
“carbon neutrality”.
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