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Abstract: Taxonomy of the genus Cinnamomum Schaeff. (Lauraceae) is difficult because of parallel
evolution of morphology. Recent phylogenomic and taxonomic studies have clarified the problem
and subdivided the Asian Cinnamomum into two genera, i.e., Camphora Fabr. and Cinnamomum
sensu stricto. Here we sequenced and characterized the plastome of a recently described species
Cinnamomum guizhouense C.Y. Deng, Zhi Yang et Y. Yang, performed a phylogenomic analysis, and
also conducted a comparative analysis. The plastome of Cinnamomum guizhouense is 152,739 bp long
and quadri-parted with a pair of inverted repeat regions (IR: 20,132 bp) divided by a small single
copy region (SSC: 18,852 bp) and a large single copy region (LSC: 93,623 bp). The plastome possesses
a total of 128 genes including 82 protein-coding genes, 36 tRNA genes, and eight rRNA genes, which
is similar to most published plastomes of the core Lauraceae group. The plastome of Cinnamomum
guizhouense displays higher similarity to Camphora than Cinnamomum. Our phylogenomic result
suggests that Cinnamomum guizhouense belongs to the Camphora clade. As a result, we propose a
new combination, i.e. Camphora guizhouensis (C.Y. Deng, Zhi Yang et Y. Yang) Zhi Yang et Y.Yang,
comb. nov.
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1. Introduction

The family Lauraceae, a mostly woody family of primitive angiosperms, contains over
3000 species and has a wide distribution range in the tropics with Tropical America and
Tropical Asia as the diversity centers [1]. Taxonomy of the family has been notorious for
its difficulty because of paucity of characters and parallel evolution of morphology [2–4].
Recent plastome phylogeny has provided high resolution for nine major clades in the
family including Hypodaphnideae, Cryptocaryeae, Cassytheae, Neocinnamomeae, Caryo-
daphnopsideae, the Mesilaurus clade, Perseae, Cinnamomeae, and Laureae [5,6]. However,
many generic complexes exist within these clades, e.g. the Beilschmiedia group in the Crypto-
caryeae [7], the Alseodaphne group in the Perseae [8–10], the Cinnamomum group in the Cin-
namomeae [4,11], and the Litsea group and the Ocotea group in the Laureae [12–15], how to
identify the generic clades and classify them in combination with morphological characters
remain problematic. Recent taxonomic studies have proposed new classifications of some
of the above-mentioned generic complexes based on phylogenetic studies [4,9,11,14,15].
Taxonomic problems remain due to inadequate species sampling. One way to resolve these
taxonomic problems is to include species in new phylogenetic trees and re-consider their
taxonomy within a phylogenetic context.

Cinnamomum Schaeff. belongs to the Cinnamomum-Ocotea clade or the tribe Cinnamo-
meae [5,6]. Plants of the genus are economically important and have been used for a long
time because of their timber, cinnamon and camphor [16]. However, the taxonomy of the
genus has been ambiguous for a long time.
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Traditional classification based on morphology treated the genus Cinnamomum in its
broad sense. Meissner [17] restricted the genus Cinnamomum to tropical and subtropical
Asia, and subdivided the genus into two sections, i.e., sect. Malabathrum (≡sect. Cinnamo-
mum) possessing non-perulate buds, opposite and tripliveined leaves lacking domatia in
the axils of lateral veins, and sect. Camphora Meisn. having perulate buds, alternate and
pinnately-veined leaves, and domatia in the axils of lateral veins. Kostermans [16] included
American species formerly treated as Phoebe Nees in the genus Cinnamomum s.l.; but he
accepted Meissner’s idea and classified the genus into two sections. Rohwer [1] and van
der Werff [18] followed the treatment of Kostermans; Rohwer [1] estimated that the genus
had up to 350 species including 60 American species.

Molecular phylogenetic studies revealed that the genus Cinnamomum s.l. is
polyphyletic and should be reclassified. Based on nrITS and a few plastid mark-
ers, Chanderbali et al. [19] conducted a phylogeny of the Lauraceae and suggested that the
genus Cinnamomum is polyphyletic though they sampled only eight species. This result was
confirmed and corroborated by Huang et al. [20] with a better species sampling strategy.
Rhode et al. [11] excluded the American species from Cinnamomum and transferred them
to Aiouea Aubl.. Zeng et al. [21] found that the upper leaf epidermal cells of Cinnamomum
include two types: leaf epidermal cells regular and periclinal walls non-reticulate (sect.
Camphora), leaf epidermal cells irregular and periclinal walls reticulate (sect. Cinnamomum)
with a few exceptions in the clade of sect. Cinnamomum. Using a combination of mor-
phology, anatomy and molecular phylogeny, Yang et al. [22] finally separated the Asian
Cinnamomum into two genera, i.e. Camphora Fabr. and Cinnamomum s.s.

Cinnamomum guizhouense C.Y. Deng, Zhi Yang et Y. Yang is a recently described endan-
gered species only represented by two mature trees in Guizhou, southwestern China [22],
established before the taxonomic treatment of Cinnamomum [4]. The species possesses pin-
nately veined and alternate leaves and perulate buds [22]. Considering parallel evolution
of morphological characters [4,22], it remains unclear whether Cinnamomum guizhouense
belongs to the genus Cinnamomum or not. Molecular phylogeny is an effective approach to
determine the systematic position of species [23], and plastomes have been widely used
to solve the phylogenetic and taxonomic problems of Lauraceae [10,13,24,25]. Here, we
sequenced the plastome of Cinnamomum guizhouense, conducted a phylogenomic study,
and made a taxonomic treatment of the species in combination with morphology and
phylogeny.

2. Materials and Methods
2.1. Plant Materials and Plastome Sequencing

Chloroplast genomes of two samples (C.Y. Deng et Q.M. Ban 2021001 and 2021002)
were newly sequenced from silica-gel dried leaf materials (Table 1); one of the samples C.Y.
Deng et Q.M. Ban 2021001 belongs to the type collection of Cinnamomum guizhouense. To
determine the systematic position of Cinnamomum guizhouense, plastomes of Cinnamomeae
and Laureae were chosen as ingroups, four plastomes of Perseeae were selected as the
outgroup. Totally, 31 plastomes were downloaded from NCBI (https://www.ncbi.nlm.nih.
gov/, accessed on 9 October 2022) with details listed in Table 2.

Total genomic DNA was extracted from the leaf using a DNA extraction kit (D115-100,
Gene Better, Beijing, China). Whole genome sequencing was conducted by Illumina Novo
Seq6000 (Novogene, Beijing, China). A total of ~2 Gb of 150 bp paired-end reads were
obtained from each sample.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Table 1. Vouchers of species used in this study.

Taxon Collection Locality Latitude Longitude Collection Date Herbarium

Cinnamomum guizhouense
C.Y. Deng et al.

C.Y. Deng and Q.M.
Ban 2021001

Guizhou:
Wangmo 25◦21′8” 106◦17′44” 20210220 NF

Cinnamomum guizhouense
C.Y. Deng et al.

C.Y. Deng and Q.M.
Ban 2021002

Guizhou:
Wangmo 25◦21′8” 106◦17′44” 20210220 NF

Table 2. Sequences obtained from GenBank.

Taxon Accession

Cinnamomeae
Camphora bodinieri (H. Lév.) Y. Yang et al. MH394418

Camphora glandulifera (Wall.) Nees OL943973
Camphora officinarum Nees MF421523

Camphora parthenoxylon (Jack) Nees MT621587
Cinnamomum aromaticum Nees NC_046019

Cinnamomum burmanni (Nees et T.Nees) Blume MT621613
Cinnamomum guizhouense C.Y. Deng et al. S2021001 OP818854
Cinnamomum guizhouense C.Y. Deng et al. S2021002 OP818855

Cinnamomum chekiangense Nakai MT621639
Cinnamomum pittosporoides Hand.-Mazz. NC_048978

Cinnamomum verum J. Presl NC_046019
Ocotea aciphylla (Nees et Mart.) Mez OM135246

Ocotea daphnifolia (Meisn.) Mez OM135247
Ocotea foetens (Aiton) Baill. OM135248

Sassafras tzumu (Hemsl.) Hemsl. NC_045268
Laureae

Actinodaphne obovata (Nees) Blume NC_50360
Actinodaphne trichocarpa C.K. Allen MF939342

Laurus azorica (Seub.) Franco MK041220
Lindera aggregata (Sims) Kosterm. NC_045252

Lindera communis Hemsl. NC_045255
Lindera glauca (Siebold et Zucc.) Blume NC_035953

Lindera robusta (C.K. Allen) H.B. Cui MH220738
Litsea coreana H. Lév. NC_045251

Litsea elongata (Nees) Hook. f. NC_050364
Litsea pungens Hemsl. NC_050368

Nectandra angustifolia (Schrad.) Nees et Mart. MF939340
Neolitsea pallens (D. Don) Momiy. et H. Hara NC_050370

Neolitsea sericea (Blume) Koidz. MF939341
Parasassafras confertiflorum (Meisn.) D.G. Long NC_042696

outgroup
Alseodaphne semecarpifolia Nees NC_37491

Machilus thunbergii Siebold et Zucc. NC_038204
Persea americana Mill. NC_031198

Phoebe sheareri (Hemsl.) Gamble NC_031191

2.2. Plastome Assembly and Annotation

Circle plastomes were assembled with GetOrganelle (Version 1.7.5.0, Kunming,
China) [26] using de novo strategy. Annotation was conducted with GeSeq (https://
chlorobox.mpimp-golm.mpg.de/geseq.html, accessed on 29 October 2022, Munich, Ger-
many) [27], then adjusted manually in Geneious Prime (Version 2020.0.5, Auckland, New
Zealand). All sequences downloaded from NCBI were re-annotated to avoid potential anno-
tation errors, and ambiguous genes were double-checked by CpGAVAS2 (http://47.96.249.172:
16019/analyzer/home, accessed on 29 October 2022, Beijing, China) [28]. The gene map of
the plastome was generated by CHLOROPLOT software (https://irscope.shinyapps.io/
Chloroplot/, accessed on 30 October 2022, Helsinki, Finland) [29].

https://chlorobox.mpimp-golm.mpg.de/geseq.html
https://chlorobox.mpimp-golm.mpg.de/geseq.html
http://47.96.249.172:16019/analyzer/home
http://47.96.249.172:16019/analyzer/home
https://irscope.shinyapps.io/Chloroplot/
https://irscope.shinyapps.io/Chloroplot/
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2.3. Repeats Analysis

We conducted repeat sequence analyses of the two plastomes with CpGAVAS2. Long
repeats (including direct and palindromic repeats) were detected by Vmatch (Version 2.2.1,
http://www.vmatch.de/, accessed on 29 October 2022, Hamburg, Germany). Totally,
hamming distance of three and repeats no less than 30 bp were searched. Long tandem
repeats (LTR, size of repeat unit ≥ 7) were identified with the Tandem Repeats Finder
(TRF, Version 3.01, https://tandem.bu.edu/trf/trf.html, accessed on 29 October 2022,
Boston, MA, USA) [30]. The weights for match, mismatch, indels were set at 2, 7and 7,
respectively. The detection parameters of match and indel was set at 80 and 10, respectively.
The minimum alignment score was set at 50. The maximum period size was limited to
500 bp. We identified simple sequence repeats (SSRs) with MIcroSAtellite identification
(MISA, Version 2.1, https://webblast.ipk-gatersleben.de/misa/, accessed on 29 October
2022, Seeland, Germany) [31] with a set of minimum repeat times of mononucleotides,
dinucleotides, trinucleotides, tetranucleotides, pentanucleotides and hexanucleotides set at
10, 6, 5, 5, 5, and 5, respectively.

2.4. Phylogenetic Analysis

Complete chloroplast sequences were used to infer the phylogenetic position of
Cinnamomum guizhouense. Sequences were aligned with MAFFT (Version 7.480, Tokyo,
Japan) [32], followed by a manual check using BioEdit (Version 7.5.5, Wooster, OH, USA) [33].
Gap sites of sequences were removed with Gblocks (Version 0.91b, Barcelona, Spain) [34].

For phylogeny, both Maximum likelihood (ML) and Bayesian inference (BI) were
conducted. ModelFinder [35] was used to determine the best-fit model according to the
best Bayesian Information Criterion (BIC) score. ML phylogeny was inferred by IQ-TREE
(Version 2.1.2, Vienna, Austria) [36] with 5,000 ultrafast bootstraps [37] under K3Pu+F+I+G4
model. BI phylogeny was conducted using MrBayes (Version 3.2.6, Stockholm, Sweden) [38]
with the following designations: GTR+F+I+G4 model, number of generations 1,000,000,
sampling frequency 1,000; the initial 25% of sampled data were discarded as burn-in.
Phylogenetic trees were browsed and adjusted with iTOL (Version 6.6, https://itol.embl.
de/, accessed on 30 October 2022, Heidelberg, Germany) [39].

2.5. Comparative Genome Analysis

The pairwise sequence similarity between Cinnamomum guizhouense and query se-
quences of Cinnamomum (Cinnamomum aromaticum, Cinnamomum burmanni, Cinnamomum
chekiangense, Cinnamomum pittosporoides and Cinnamomum verum) and Camphora (Camphora
bodinieri, Camphora glandulifera, Camphora parthenoxylon and Camphora officinarum) were
computed in R using the “simplot” function of “ggmsa” package [40]. The sequence differ-
ences between Cinnamomum guizhouense and sampled species of Camphora were detected
using “seqdiff” function. The sliding window and step size were set at 200 bp and 20 bp,
respectively. The similarity and sequence difference plots were illustrated by the “ggplot2”
package [41]. IR expansion and contraction plot of plastomes were drawn manually in
Adobe Illustrator (Version 2020, San Jose, California, CA, USA).

3. Results
3.1. General Characters of the Plastome

4,247,464 and 4,439,324 pair-end reads were used for de novo assembly of the two
plastomes of Cinnamomum guizhouense and the mean sequencing coverage of them was
320× and 142×, respectively. The two plastomes of Cinnamomum guizhouense were largely
congruent, showing no differences in length, gene organization, structure and repeats,
and possessing eight variable nucleotide sites. The plastome of Cinnamomum guizhouense
consists of a total of 128 genes including 82 protein-coding genes, 36 tRNA genes, and eight
rRNA genes (Figure 1). The plastome was 152,739 bp in length and consisted of a pair of
inverted repeat regions (IR: 20,132 bp), which were divided by a small single copy region
(SSC: 18,852 bp) and a large single copy region (LSC: 93,623 bp). The guanine-cytosine

http://www.vmatch.de/
https://tandem.bu.edu/trf/trf.html
https://webblast.ipk-gatersleben.de/misa/
https://itol.embl.de/
https://itol.embl.de/
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(G-C) content was differentiated in the complete plastome, LSC, SSC, and IRs, which were
39.1%, 37.9%, 33.8% and 44.4%, respectively.

Direct, palindromic and tandem repeats with lengths ranging from 9 bp to 72 bp
were detected in the plastome (Figure 2a). Totally, 74 repeats were found, which included
25 direct repeats, 23 palindromic repeats and 26 tandem repeats. Tandem repeats were
shorter than other two repeats with lengths almost less than 30 bp. The longest repeat with
a length of 72 bp belonged to a direct repeat and was distributed in LSC.
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Figure 1. Gene map of Cinnamomum guizhouense C.Y. Deng et al.

A total of 73 SSRs was detected in the plastome, 78.1% of which were found in
LSC (Figure 2b). Among SSRs, only mononucleotide and dinucleotide units were found.
The mononucleotide repeat was the most common SSR representing 93.2%, all of which
belonged to A or T monomers. Two AG/CT repeats were found in LSC, while two of three
AT/AT were found in LSC and one in SSC, separately.
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Figure 2. Repeats analysis of the plastome of Cinnamomum guizhouense C.Y. Deng et al. (a) Number
and length of repeats; (b) Number and distribution of SSRs.

3.2. Phylogenetic Position of Cinnamomum guizhouense

The topologies using ML and BI methods based on plastomes were congruent and
highly supported (Figure 3a). Camphora was sister to Sassafras (ML: 100%, BI: 1.00). The
genus Cinnamomum s.s. was sister to a clade including Camphora and Sassafras (ML: 100%,
BI: 1.00). Two samples of Cinnamomum guizhouense belonged to the Camphora clade. Cin-
namomum guizhouense was sister to Camphora bodinieri (ML: 71%, BI: 1.00), they formed a
small clade sister to Camphora officinarum (ML: 63%, BI: 0.99). Camphora glandulifera is sister
to Camphora parthenoxylon, they together formed a small clade (ML: 100%, BI: 1.00) which
was sister to the small clade including other sampled Camphora species (ML: 100%, BI: 1.00).
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Figure 3. Phylogenetic tree displaying the phylogenetic position of Cinnamomum guizhouense C.Y.
Deng et al. (a) Phylogenetic tree inferred from Bayesian inference and maximum likelihood analysis
based on complete plastomes. Ultrafast bootstrap support values (<100%) and Bayesian posterior
probabilities (<1) are shown below the branches; (b–e) Morphology of Cinnamomum guizhouense;
(b) Large perulate terminal buds; (c) Alternate leaves; (d) Pinnately-veined leaf; (e) Deep fruit cupule.



Forests 2023, 14, 310 7 of 11

3.3. Comparative Analysis of the Plastomes

Plastome differences between Cinnamomum guizhouense and the four species of Cam-
phora and the five species of Cinnamomum included in this study were displayed in Figure 4.
Generally, the plastome of Cinnamomum guizhouense showed a higher similarity to those
of Camphora than to those of Cinnamomum. Hotspot regions were discovered near IR
boundaries. IRs were more conserved than LSC and SSC, and non-coding regions were
more variable than coding regions. In a comparison between Cinnamomum guizhouense
and sampled species of Cinnamomum, nine highly variable regions with a similarity lower
than 90% were detected (Figure 4a), included seven non-coding regions (rps16_trnQ-UUG,
psbM_trnD-GUC, trnF-GAA_ndhJ, atpB_rbcL, petA_psbJ, trnN-GUU_ndhF, ndhF_rpl32) and
two coding genes (ndhF and ycf1). Only five highly variable regions with a similarity
lower than 90% were identified between Cinnamomum guizhouense and sampled species of
Camphora (Figures 4b and S1), included trnN-GUU_ndhF, ycf1 and ycf2× 3. At the locus ycf2
in the IR regions, Cinnamomum guizhouense showed no difference from Camphora species
excepting Camphora bodinieri (Figure S1).
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Figure 4. Similarity analysis of the plastome of Cinnamomum guizhouense C.Y. Deng et al. (a) The
similarity plot of the plastome of Cinnamomum guizhouense in comparison with the sampled species
of Cinnamomum Schaeff. (b) The similarity plot of the plastome of Cinnamomum guizhouense in
comparison with the sampled species of Camphora Fabr. Regions with similarity lower than 90% are
indicated.

The plastome of Cinnamomum guizhouense showed no obvious contraction and ex-
pansion of IRs in comparison with the four sampled plastomes of Camphora, only one
nucleotide less between ycf2 and trnL-CAA (Figure 5). Camphora officinarum was distinct
from other sampled Camphora species in missing 21 nucleotides between ycf1 and ndhF and
gaining eight nucleotides between ycf2 and trnH-GUG.
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4. Discussion
4.1. Phylogenomics and Its Systematic Significance

Yang et al. [4] divided the Asian Cinnamomum into two genera, i.e. Camphora and
Cinnamomum according to multi-disciplinary evidence including morphology, anatomy
and molecular phylogeny. Camphora and Cinnamomum were monophyletic in both nuclear
and plastome phylogenies. The genus Cinnamomum possesses irregular cell shape, sinuous
anticlinal walls, and reticulate periclinal walls of upper leaf epidermis, inconspicuous, non-
perulate, terminal buds and usually tripliveined leaves; there are exceptions in this clade,
Cinnamomum chago B.S. Sun & H.L. Zhao, Cinnamomum saxatile H.W. Li and Cinnamomum
longipetiolatum H.W. Li have pinnately-veined leaves. The genus Camphora possesses
regular cell shape, straight anticlinal walls, and non-reticulate periclinal walls of upper leaf
epidermis, prominent perulate terminal buds and pinnately-veined leaves [22].

In this study, both ML and BI trees based on plastomes show congruent topologies
with previous studies that Cinnamomum is sister to a clade consisting of Camphora and
Sassafras (Figure 3a) [5,10,22]. The two samples of Cinnamomum guizhouense constitute a
monophyletic group which falls within the Camphora clade with robust support and shows
a close relationship to Camphora bodinieri (Figure 3a). This result is also corroborated by
the macromorphology of the species. Cinnamomum guizhouense possesses large perulate
buds, pinnately-veined and alternate leaves and is similar to Camphora but markedly differ-
ent from Cinnamomum (Figure 1b–e) [22]. Considering both morphology and molecular
phylogeny, we transfer Cinnamommum guizhouense to Camphora.

4.2. Plastome Evolution

Plastome organization of Cinnamomum guizhouense shows similarity to the sampled
plastomes of the core Lauraceae group in lacking re-arrangement, gain and loss of genes
(Figure 2). Cinnamomum guizhouense shows higher plastome sequence similarity to Camphora
than to Cinnamomum (Figure 4), which supports the taxonomic transfer of Cinnamomum
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guizhouense to Camphora. The five sampled plastomes of Camphora showed rather low
variability and contained only 31 parsimony-informative characters among the entire
plastomes. The low divergence among the Camphora plastomes may have been caused by
recent diversification of the genus as suggested in the study of Xiao and Ge [10]. Further
studies with extensive species sampling of the genus are necessary to verify this hypothesis.

4.3. Taxonomic Treatment

Camphora guizhouensis (C.Y. Deng, Zhi Yang et Y. Yang) Zhi Yang et Y. Yang, comb.
nov.

Basionym. Cinnamomum guizhouense C.Y. Deng, Zhi Yang et Y. Yang, PhytoKeys 202:
37, figs. 1-3 (2022).

Holotype: CHINA. Guizhou, Wangmo Co., 25◦21’8"N, 106◦17’44"E, elev. 1081 m, 20
Feb 2021, C.Y. Deng & Q.M. Ban 2021001 (holotype: NF; isotypes: NF, NAS, XIN).

5. Conclusions

Here we sequenced and characterized the plastome of a recently reported species
of Lauraceae: Cinnamomum guizhouense. The plastome is similar to the plastomes of
the core Lauraceae group in gene number and organization, four-parted with a total of
128 genes including 82 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Our
phylogenomic result suggests that Cinnamomum guizhouense belongs to the Camphora clade,
as the plastome of the species has a greater similarity to Camphora than Cinnamomum. A
new combination is proposed: Camphora guizhouense (C.Y. Deng, Zhi Yang et Y. Yang) Zhi
Yang et Y. Yang, comb. nov.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14020310/s1, Figure S1: The sequence differences of the plastome
of Cinnamomum guizhouense C.Y. Deng et al. compared with four plastomes of Camphora Fabr., e.g.
(a) Camphora officinarum, (b) Camphora glandulifera, (c) Camphora parthenoxylon, (d) Camphora bodinieri.
The top panels are bar charts showing the number of variants over the whole sequence. The bottom
panel shows the gene organization of Cinnamomum guizhouense.
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