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Abstract: This study utilizes forest inventory and climate attributes as the basis for estimating models
of wildfire risk and associated biomass loss (tree mortality) and then demonstrates how they can be
applied in calculating CO2 emissions related to the incidence of wildfires from U.S. forests. First,
we use the full set of over 150,000 FIA plots of national forest inventory and climatic parameters
to estimate models of the annual probability of wildfire occurrence and loss of live tree biomass.
Then, maps of the spatial allocation of both the model-derived probability of wildfire occurrences
and tree mortality are presented at the national level. The probability of wildfire occurrences
and tree mortality were defined by a complex non-linear association of climatic conditions and
forest ownerships, available aboveground biomass, and the age of the stand. Then, we provide
an example of how these models can estimate potential CO2 emissions from wildfires by using
FIA inventory data. We estimated 6.10, 16.65, 22.75, and 31.01 million metric tons of annual CO2

emissions with low, medium, high, and catastrophic combustion rates, respectively, from forests due
to wildfire in the continental U.S. The wildfire risk and biomass loss due to tree mortality maps can
be used by landowners, managers, public agencies, and other stakeholders in identifying high-risk
wildfire zones and the potential CO2 emissions. These equations can also help estimate fire risk and
associated CO2 emissions for future climate conditions to provide insight into climate change-related
wildfire occurrences.

Keywords: climate; carbon sequestration; forests; fuel loading; spatial autoregressive model; tree
mortality; wildfire risk

1. Introduction

Wildfire is an issue that impacts the ecology, economy, safety, and security of ecosys-
tems as well as human welfare. Every year, billions of dollars are spent suppressing and
controlling catastrophic wildfires. In 2017, the estimated U.S. economic loss due to wildfire
was USD 23 billion, an increase of 12% since 2008 [1]. In the same year, 3400 lives were
lost, and 14,670 people were injured by the U.S. wildfires [1]. After the ‘Big Blowup’ (a
devastating series of forest fires in 1910 that burned 3 million acres in Montana, Idaho,
and Washington), total fire suppression (including a halt of controlled burns) became a
major policy focus of the United States Forest Service (USFS). As a result, biomass fuel (i.e.,
standing and downed deadwood in addition to standing live biomass) accumulated and
increased the occurrence and ferocity of wildfires in a range of American wildlands [2,3]. As
a result, the number of large fires increased by seven per year and 355 km2/year between
1984 and 2011 in the west [4]. Figure 1 shows the area burned between 1985 and 2015 [3].
Though fires are an integral part of natural ecosystems, studies have suggested that human
influence, either directly through ignition source [5] or indirectly through management [6]
and climate change [7], have altered wildfire dynamics. Consequently, this suppression
policy may have altered wildfire behavior to a point where they are no longer a natural
process in the U.S. [8,9].
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sinks. Some forests, for example, in the northern Rocky Mountains, with old-growth and 
a lot of dead materials, have already flipped from being net carbon sinks to emitters [10]. 
Additionally, natural disturbances such as wildfires may have already reduced carbon 
sequestration rates in the more arid regions of the west [11]. Recent mortality events (e.g., 
bark beetle kill) related to high carbon density forests of the northwest have increased the 
fuel load leading to an increased risk of catastrophic forest fires and associated subsequent 
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variable from year to year [13]. The Intergovernmental Panel on Climate Change’s (IPCC) 
2006 guidelines for national GHG inventories thus recommends reporting fluxes accord-
ing to changes within (e.g., natural disturbances such as fire and insect kills) and conver-
sions between all land-use types [16]. Wildfires and related carbon implications cannot be 
neglected in forest management planning, GHG inventory reporting, and related policy 
decisions. Therefore, it is critical to developing procedures to estimate wildfire occurrence 
probabilities and related potential CO2 emissions from wildfires. 
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Figure 1. Historical trend of fire in the continental United States. Data from MTBS [3].

Suppression is not the only factor increasing the number of wildfires in the U.S. In a
review of the 17 National Forests management guided by the Northwest Forest Plan over
the past 25 years, Spies et al. (2019) noted that a narrow focus on biodiversity conservation
strategies could have unintended consequences. Of particular note there is the buildup of
biomass. The no or limited harvest application has led forests towards biological maturation
(i.e., mainly having older trees, which grow and sequester CO2 and store carbon at slower
rates than younger trees). Consequently, not all forests domestically are carbon sinks. Some
forests, for example, in the northern Rocky Mountains, with old-growth and a lot of dead
materials, have already flipped from being net carbon sinks to emitters [10]. Additionally,
natural disturbances such as wildfires may have already reduced carbon sequestration
rates in the more arid regions of the west [11]. Recent mortality events (e.g., bark beetle
kill) related to high carbon density forests of the northwest have increased the fuel load
leading to an increased risk of catastrophic forest fires and associated subsequent release
of stored carbon [10,12]. Carbon sequestration rates in the land use, land-use change,
and forestry sector decreased by approximately 11.5% between 1990 and 2017 [13]. This
decline was primarily a function of declining carbon accumulation in U.S. forests. The
historic forest carbon stock trends indicate a declining increase in carbon sequestration in
U.S. forests [13]. The United States Mid-Century Strategy, in compliance with the Paris
Agreement, identified wildfire reduction as one of the key areas for reducing future U.S.
CO2 emissions [14]. The 2010 Resource Planning Act Assessment report stated that its GHG
projections do not explicitly track CO2 emissions from forest fires but that the projected
forest carbon stock estimates account for the net effects of fire as a function of mortality [15].
However, changes in forest carbon stocks due to wildfires are highly variable from year
to year [13]. The Intergovernmental Panel on Climate Change’s (IPCC) 2006 guidelines
for national GHG inventories thus recommends reporting fluxes according to changes
within (e.g., natural disturbances such as fire and insect kills) and conversions between all
land-use types [16]. Wildfires and related carbon implications cannot be neglected in forest
management planning, GHG inventory reporting, and related policy decisions. Therefore,
it is critical to developing procedures to estimate wildfire occurrence probabilities and
related potential CO2 emissions from wildfires.

In estimating CO2 emissions from wildfires in U.S. forests, obtaining wildfire in-
formation and simulating fire occurrences and fire-related tree mortality is necessary.
Wildfire prediction is challenging without the ability to predict ignition and spread mecha-
nisms [17]. Several fire models have been developed, notably models by Preisler et al. [18],
Andrews et al. [19], Finney et al. [20], Kerr et al. [21], and Stenzel et al. [22]. Past modeling
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studies have focused on either a small area or a short time horizon using detailed site
characteristics and weather conditions to model fire behavior [19–21]. In some cases, earlier
modeling efforts looked more broadly across a region using generalized site characteristics
and climatic parameters [23–25]. The highly focused studies cannot be generalized outside
of the ecoregions, and the simplification of the generalized regional models may be subject
to spatial bias due to misspecification. Although most of the models claim that they can
be generalized across the nation, it is not appropriate to use a regional model at a national
scale due to varying forest attributes and climatic conditions across different ecoregions
in the U.S. Moreover, localized fire behavior models use various data inputs (such as
temperature and precipitation, wind speed and direction, soil moisture [26], air pressure,
vapor pressure, a surface fuel consumption class, and index of fine dead fuel moisture
content [27]), modeled estimates and assumptions (such as fuel strata gap or height to
live crown base [27], spread rate [20], combustion factors [22], dryness or Palmer Drought
Severity Index (PDSI) [26], and first snowmelt day [8]), and frameworks (ranging from
regression analysis [28], Monte Carlo simulations [27], IPCC guidelines [16], to machine
learning [29,30]) and may provide inconsistent estimates at the national scale across differ-
ent regions. Moreover, these fire behavior models estimate fire risk, intensity, and spread
based on a complex set of parameters such as wind speed and directions, vapor pressure,
fuel loading, moisture content, etc., that are hard to predict in the future. A compelling
motivation of this study is to produce a set of equations to estimate future wildfire risk
and associated tree mortality based on climate and forest conditions such that national risk
assessment and CO2 emissions due to wildfires over time can be simulated using forest
sector models. Therefore, we designed this study to build and validate wildfire risk and
associated tree mortality equations that can consistently estimate risk and mortality for
forestland of the continental U.S., which can be readily and efficiently used in the various
modeling approaches and risk assessments.

The objective of this study is to derive a climate-sensitive model that can be used to
generate consistent estimates of wildfire probability and fire-related tree mortality across the
continental U.S. We perform this through the development of two independent equations
using climatic parameters and forest attributes: ownership in the case of wildfire probability
and bring in fuel loading through aboveground biomass to determine subsequent tree
mortality. We then demonstrate how these equations can be used to generate estimates of
wildfire-caused U.S. forest carbon emissions or generate maps at the national scale. These
equations are then used to calculate area burned, live biomass lost due to wildfire, and CO2
emitted to cross-validate as well as to demonstrate the applicability of these equations at
the national scale.

2. Materials and Methods
2.1. Data

Forest inventory data were obtained from FIA DataMart of the USDA Forest Inventory
and Analysis (FIA) National Program [31]. FIA is a continuing endeavor mandated by
the Forest and Rangeland Renewable Resource Planning Act of 1974 and is in charge
of assessing the country’s forest resources, including condition, volume, growth, and
ownership changes, and has established a grid of permanent inventory plots across the
country [32,33]. The 1998 Farm Bill required FIA to collect data on plots annually within
each state. The enhanced FIA program consists of three phases. We used phase 2 data
information, consisting of one field sample site for every 6000 acres. Different attributes
such as forest type, site, tree species, tree size, and conditions of forest land are available.

The condition information of the plot’s location was recorded. Conditions are defined
by land use changes or vegetation changes that occur along more-or-less distinct boundaries.
USFS remeasures FIA plots at regular intervals, approximately five years in the southern
and seven to ten years in the northern United States. We combined tree-level information
such as diameter, height, volume, biomass, and species with plot or condition class-level
information on location, aspect, slope, elevation, ownership, and disturbances due to fires
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between 2000 and 2015. Finally, after identifying plots that experienced fires between 2000
and 2015 (Figure 2) and calculating wildfire probabilities, the data were compared and
overlaid with the Monitoring Trends in Burn Severity (MTBS) fire perimeters [3]. The
prescribed burns reported in MTBS allowed us to eliminate corresponding FIA plots from
our wildfire data set. Finally, an eco-province was assigned for each plot [34].
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On average, approximately 7% (SD = 25%) of the FIA forested plots experienced
wildfires between 2000 and 2015 (Table 1). When there was a wildfire in any plot, 23%
(SD = 36%) of the live tree biomass was lost (dead or burned). The average aboveground
biomass was 26,824 metric tons per hectare (SD = 30,800). On average, the stands were
65 years old (SD = 55.40), and 25% (SD = 44%) of these forested plots were federally owned.
The west experienced most of the wildfires compared with other regions, especially in the
inland of the Pacific Northwest (Washington and Oregon), California, Idaho, and Montana
between 2000 and 2015 (Figure 2). Prescribed burns were popular in the southeastern states
as a forest management tool and became a common treatment after 2000 (Figures 1 and 2).
There were prescribed burns in the west and other regions also, but the practice was not as
widespread as in the southeast.

The climate data were obtained from the Parameter-elevation Relationships on Inde-
pendent Slopes Model (PRISM) Climate Group [35,36]. Monthly averages of precipitation,
maximum temperature, and minimum temperatures were obtained for 30-year normal (an
average over a recent 30-year period, 1985–2015) for the U.S. from a raster of 0.16 square km
(800 m × 800 m) pixel size. Wildfires are seasonal phenomena, most often occurring in
the dry and hot climate typical of summer and early autumn. Therefore, we defined the
fire season as the period between July and October, and climate variables were averaged
over these four months. However, the climatic conditions in spring also affect the growth
of the trees, hence the fuel conditions (biomass) in the forest. A wet spring with a high
temperature corresponds with higher biomass [37], hence increasing the fuel load on the
landscape. Moreover, the water cycle and water availability in the fire season depend on
the climatic conditions during the spring season [38]. We defined the spring season as the
period between February and April, and climate variables were averaged over these three
months. During the fire season, the average precipitation was 82.00 mm, and the maximum
temperature was 25.09 ◦C for the continental U.S. (Table 1). During the spring season, the
average precipitation was 87.28 mm, and the average monthly maximum temperature was
12.08 ◦C. Monthly average evapotranspiration using 30-year normal was calculated using a
modified Hargreaves equation as specified in Equation (1) [39].

ET =

(
0.0135

Tempmax − Tempmin
2

+ 17.78
)

R

(
a

595.5− 0.55 Tempmax−Tempmin
2

)
(1)
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where ET is the potential daily evapotranspiration in millimeters per day, Tempmax is the
monthly maximum temperature in degrees Celsius, Tempmin is the monthly minimum
temperature in ◦C, R is the incident solar radiation calculated as a function of the slope,
aspect, and elevation of the plot, solar input (direct radiation hitting the ground), and trans-
mittance in MJ/m2/day, and a is a constant of 238.80 when R is expressed as MJ/m2/day.
The average evapotranspiration was 405 mm (SD = 69) during the fire season and 220 mm
(SD = 72) during the spring season.

Table 1. Description and descriptive statistics of the climate and forest attributes of FIA forest plots
in the continental United States.

Variable Description N 2 Mean SD 3 Median Min Max

FIRE 1
Number of plots experiencing wildfire and
unknown fires between 2000 and 2015.
1 if a fire was reported, 0 otherwise.

150,350 0.07 0.25 0 0 1.00

TREELOSS 4
Proportion of aboveground live biomass in dead
or missing trees in remeasurements after a wildfire
event in an FIA plot between 2000 and 2015.

4510 0.23 0.36 0.02 0 1.00

AGBIO Total aboveground live tree biomass in a plot
(1000 metric tons per hectare). 150,350 26.82 30.80 17.98 0 1049

AGE Age of the forest stand of the plot. 150,350 65.24 55.40 57 0 1028

OWN Ownership of the plot, 1 if federally owned,
0 otherwise. 150,350 0.25 0.44 0.00 0.00 1.00

Fire Season or Summer (July, August, September, and October)

PPT Average monthly precipitation in millimeters
(mm) for the plot between 1985 and 2015. 150,350 82.00 33.13 90.99 2.59 246.60

TEMP Average monthly maximum temperature for the
plot in degree Celsius between 1985 and 2015. 150,350 25.09 4.52 24.95 10.48 41.95

ET Average monthly evapotranspiration for the plot
in mm between 1985 and 2015. 150,350 405 69 412 250 687

Spring Season (February, March, and April)

PPTs Average monthly precipitation in millimeters
(mm) for the plot between 1985 and 2015. 150,350 87.28 50.41 85.21 5.24 594.57

TEMPs Average monthly maximum temperature for the
plot in degree Celsius between 1985 and 2015. 150,350 12.08 6.56 11.62 −2.00 27.98

ETs Average monthly evapotranspiration for the plot
in mm between 1985 and 2015. 150,350 220 72 217 95 492

1 Prescribed burn was not included; 2 total number of observations; 3 standard deviation; 4 only plots with fire
were used to estimate tree mortality.

The climate variables are correlated in space and time; therefore, we calculate the
Pearson Correlation Coefficient [40] using Equation (2) to understand the interrelation
between the variables used in this study.

ρx,y =
cov(x, y)

σx σy
(2)

where ρx,y is the Pearson correlation coefficient, cov is the covariance, σx is the standard
deviation of x- climate and other variables used in this study, σy is the standard deviation
of y- climate and other variables used in this study. Figure 3 shows the correlation between
different variables.
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Maximum temperature in summer is highly correlated with spring temperatures
(ρx,y = 0.95), summer evapotranspiration (ρ = 0.65), and moderately correlated with
summer precipitation (ρx,y = 0.31). Summer precipitation was moderately correlated with
spring temperatures

(
ρx,y = 0.34

)
and precipitation (ρx,y = 0.29). Summer evapotranspira-

tion was strongly correlated with spring temperatures (ρx,y = 0.69). Aboveground biomass
has a positive correlation with spring precipitation (ρx,y = 0.40) and a weak or no correla-
tion was observed with other climate variables. Stand age has a negative correlation with
summer temperature

(
ρx,y = −0.32

)
and precipitation

(
ρx,y = −0.30

)
, spring temperature(

ρx,y = 0.29
)

and positive correlation with aboveground biomass
(
ρx,y = 0.39

)
. Public

forest ownership is negatively correlated with spring temperature (ρx,y = −0.39), and
precipitation (ρx,y = −0.35), spring temperature (ρx,y = −0.30), and positively correlated
with the age of the stand (ρx,y = 0.33).

2.2. Variable Descriptions and Model Specification

To model wildfire risks and associated tree mortality, it is crucial to understand the
conditions or factors that help trigger wildfires [41]. Wildfire incidence is a combined effect
of human, climate, forest, and fuel-loading conditions on the landscape. Humans start
most wildfires. However, the propagation and ferocity depend on climatic conditions and
the fuel available in the landscape. Fuel for wildfire is biomass, both dead and alive, readily
available to ignite and keep the fire alive. Climate conditions serve as critical thresholds,
influencing wildfire size and spread at different spatial scales [42]. Historically, the U.S.
west has experienced large fires due in part to its dry climate [2,43]. Dryness, coupled with
higher volumes of fuel (biomass), can increase the intensity of fire across a landscape [44].
The interaction between temperature, moisture conditions, and the land’s topography
dictates the area’s dryness [45].

We used climate parameters (temperature and moisture conditions), forest biomass,
and forest conditions to estimate the annual probability of wildfire occurrences and live
tree mortality due to tree mortality. In Equation (2), FIRE is a binary variable, with a ‘1’
indicating a wildfire recorded on an FIA plot and a ‘0’ otherwise. Previous studies used
climate variables related to fuel conditions such as wind speed, precipitation, maximum
and minimum temperatures, soil moisture, and the Palmer Drought Severity Index (PDSI)
to model fire behavior [8,26,37,42,46–48]. Most studies concluded that high temperature
and low moisture conditions are hazardous and aid in wildfire risks. To keep the model
parsimonious and simple, after several iterations of regression of various climate variables
on our fire and mortality model, we decided to use maximum temperature, precipitation,
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and evapotranspiration as climate variables. Precipitation only accounts for the water
available but not its retention in the landscape; therefore, we included an average of the
monthly evapotranspiration to represent moisture-related impacts. Use of these variables
would allow us to use these models for wildfire and mortality predictions in the future,
using various climate models to project the impact of climate change in wildfire prob-
abilities. Since not all seasons have fire risks, we used the average maximum monthly
temperature, precipitation, and evapotranspiration for the fire season or summer (TEMP,
PPT, ET) and spring season (TEMPs, PPTs, ETs) to estimate wildfire occurrence and tree
mortality. Further, ownership (OWN) impacts the management regime of a forest, thus
affecting fuel buildup. Starrs et al. [47] built on numerous other studies and concluded
that ownership, firefighting, and reserve funds were significant in determining wildfire
probabilities, where federally owned forests were more likely to burn. Privately owned
forests are regularly thinned and prescribe-burned in many parts of the U.S., especially
in the south, to maintain forest health and increase yield. Public forests, mostly federally
owned, are typically managed less aggressively compared with private forests for different
reasons, including but not limited to habitat preservation and other non-market benefits
or low human or financial resources. We initially used slope, aspect, and elevation of FIA
plots in the model but decided to drop them since climate variables were highly correlated
with them [26]. Moreover, these variables were insignificant and increased RMSE and
decreased FI. The forest management practices affect fuel conditions, tree spacing, and
related fire hazards. Thus, the annual probability of wildfire occurrence in the ith plot (pi)
was estimated as a function of climate variables and forest ownership (Equation (3)).

FIRE(pi) = f (PPT, TEMP, ET, PPTs, TEMPs, ETs, OWN) (3)

Tree mortality in the event of a fire is highly dependent on the climatic and fuel
(biomass) conditions in the forests [49]. A plot with higher live tree biomass loses more
biomass compared with a plot with less biomass on it [50]. Moreover, including forest
age in quantifying spatial–temporal variation using empirical approaches is meaningful
and important [51]. Since young trees are more vulnerable to fire mortality and can act
as ladder fuel to ignite the crown, the proportion of live biomass loss is higher in young
stands in the event of fire [52]. Our analysis also showed aboveground biomass has a
positive correlation with spring precipitation (ρx,y = 0.40, Figure 3). We included both total
aboveground biomass in the plot (AGBIO) and stand age (AGE) together to separate the
effect of additional biomass due to increasing girth of trees due to age or increasing number
of smaller trees or understory growth. Next, TREELOSS was calculated as a proportion or
ratio of the biomass of dead and missing trees to the total aboveground standing biomass
in a plot. To calculate the biomass of dead and missing trees, we identified all FIA plots
with reported fires between 2000 and 2015. Then, we used condition class and indexing
in remeasurements performed at FIA plots to identify dead or missing trees between
remeasurements on these plots and estimated the biomass of those trees. Remeasurements
were only tracked on plots with reported fires to determine and identify missing, dead,
or alive trees. If there were more than two remeasurements in a plot, we used the recent
two measurements to estimate TREELOSS. Equation (4) is used to estimate the annual
probability of tree mortality (TREELOSS) in the event of wildfire to the total aboveground
biomass in trees in the ith plot (mi).

TREELOSS(mi) = f (PPT, TEMP, ET, PPTs, TEMPs, ETs, OWN, AGBIO, AGE) (4)

2.3. Model Fitting and Validation

For a start, equations to estimate the annual probability of wildfire occurrence (Equa-
tion (3)) and tree mortality (Equation (4)) were fitted using an ordinary least square (OLS)
regression, where FIRE and TREELOSS were a function of climatic and forest attributes
with quadratic and all interaction terms. Since the fire events in the FIA plots are highly
correlated in space with each other in proximity, a spatial autocorrelation test, as spec-
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ified in Equation (5) on regression residuals (error), was administered using Moran’s I
test [53]. Spatial autocorrelation is a measure of the degree of spatial dependence of FIRE
or TREELOSS between FIA forest plots at two different locations or points in space.

Moran′s I =
N
W

∑n
i=1 ∑n

j=1 wij (xi − x )
(
xj − x

)
∑n

i=1(xi − x )2 (5)

where N is the number of spatial units indexed, such as plots, W is the aggregate of all
the spatial weights, and wij is the spatial weight of the ith plot. We used the inverse of the
squared distance (1/d2) to calculate wij between plot i and j.

As expected, the OLS regression could not eliminate spatial correlations. Then, we
attempted logit regression following Preisler et al. [18], which did not work either. Moving
forward, we ran 37 different OLS and logit regressions to model Equations (3) and (4) for
37 U.S. eco provinces, individually and simultaneously following a similar approach to
Littell et al. [54]. None of these approaches were able to eliminate spatial autocorrelation.
After several other regressions, the spatial autocorrection regression (SAR) satisfied Gauss
Markov’s condition for unbiased and consistent estimators to eliminate spatial autocorrela-
tion. SAR is a non-linear regression that accounts for and corrects the autocorrelation due
to the spatial proximity using the spatial lags on all variables [55].

ys = α + ρys−1 + βi(Xi,s − ρXi,s−1) + δiZi + ε (6)

where ys is the dependent variable (FIRE or TREELOSS), α is the intercept (a constant), ρ is
the spatial autoregressive coefficient, Xi,s and Zi are the independent variables, Xi,s−1 is
a spatial lag of Xi,s, βi and δi represent parameter estimates, and ε is the SAR error. The
spatial lags, Xi,s−1, were calculated using spatial weights matrix estimated using inverse
squared distance function on the nearest neighbors, i.e., FIA forest plots (Xi,s/d2). d is the
average distance between the ith plot and all other plots within a radius of 660 km (3-degree
geo-coordinate radius) from Xi,s. Plots that are 660 km or further away are assumed to
exhibit no spatial autocorrelation on each other. The effect of spatial autocorrelation in
Xi,s is corrected by variable transformation as (Xi,s − ρ Xi,s−1). Backward elimination was
administered to eliminate interaction terms to achieve the lowest root mean squared error
(RMSE) and highest fit index (FT). We include the variables that were not significant in
the model but were included in the interaction if they improve the FT and reduce RMSE.
The fit index in non-linear regression is similar to the R-squared in OLS regressions and
measures how well-observed data fit the probability distribution of SAR regression.

The annual probability of wildfire occurrence (pi) data were aggregated at the county-
level ecoregions. To estimate the annual probability of tree mortality (mi), Gauss Markov’s
conditions eliminating spatial autocorrelation were satisfied at FIA forested plot data
without the data aggregation. The annual probability of wildfire occurrence (pi) for an FIA
forested plot could only eliminate the spatial autocorrelation when data were aggregated at
the county-level ecoregions (Moran’s I = 0.13, p-value = 0.19), but could not be achieved at
plot level (Moran’s I = 0.72, p-value = 0.0001). After exhausting the possibility of eliminating
spatial autocorrelation using an FIA plot as a unit of measurement, we decided to aggregate
data to a county-level ecoregion, assuming consistent climatic and forest conditions in
these smaller ecoregions of an eco-province divided by counties, combining the approaches
used by Littell et al. (2009) and Latta et al. [56]. We tried lessening the impact due
to data aggregation by avoiding data aggregation either only into counties recognizing
that a county is merely a political boundary or data aggregation into large eco-provinces
recognizing the sheer size of the ecoregions that does not accurately reflect underlying
climatic and ecological differences. This approach converted 150,350 FIA forested plots
into 3873 aggregate forest data points. For example, Latah County in Idaho has 51 FIA
plots across two ecoregions: Great Plains–Palouse Dry Steppe (Palouse) and Northern
Rocky Mountain Forest–Steppe–Coniferous Forest–Alpine Meadow (Mountain). Instead
of aggregating data into a single data point for Latah, 17 plots in the Palouse and 34 plots
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in the Mountain were averaged to obtain two data points that assume the same climatic
and ecological conditions. The overall FT improved to 56% compared with the SAR fitted
for plot-level data (30%). The annual probability of tree mortality due to wildfire for an
FIA forested plot was estimated using SAR in Equation (5) without an issue of spatial
autocorrelation (Moran’s I = 0.09, p = 0.84) with an FT of 57%.

The outcomes of SAR estimating the annual probability of wildfire occurrence and
tree mortality were validated using ArcGIS overlaying the estimated probabilities with
the perimeter and the point data of historic fires in the U.S. provided by MTBS [3] and
Esri [57]. This study’s areas with higher estimated wildfire probabilities corresponded with
the perimeters and points that historically had frequent and large fires.

Finally, we propose two statistical models fire risk and TreeBio-Loss equations, as
specified in Equations (7) and (8) to estimate the annual probability of wildfire occurrence
and tree mortality in an FIA forested plot in the event of a wildfire in the continental U.S.

Fire risk equation :
p̂ = α̂ + ρ FIRE s−1

+β̂1 (PPTs − ρ PPTs−1) + β̂2 (TEMPs − ρ TEMPs−1) + β̂3 (ETs − ρ ETs−1)
+β̂4 (PPTss − ρ PPTss−1) + β̂5 (TEMPss − ρ TEMPss−1) + β̂6 (ETss − ρ ETss−1)
+β̂7 (PPT2

s − ρ PPT2
s−1) + β̂8 (TEMP2

s − ρ TEMP2
s−1) + β̂9 (ET2

s − ρ ET2
s−1)

+β̂10 (PPTs2
s − ρ PPTs2

s−1) + β̂11 (TEMPs2
s − ρ TEMPs2

s−1) + β̂12 (ETs2
s − ρ ETs2

s−1)
+β̂13 ((PPT ∗ TEMP)s − ρ (PPT ∗ TEMP)s−1) + β̂14 ((PPT ∗ ET)s − ρ (PPT ∗ ET)s−1)
+β̂15((PPT ∗ PPTs)s − ρ (PPT ∗ PPTs)s−1) + β̂16 ((TEMP ∗ TEMPs)s − ρ (TEMP ∗ TEMPs)s−1)
+β̂17 ((TEMP ∗ ET)s − ρ (TEMP ∗ ET)s−1) + β̂18 ((ET ∗ ETs)s − ρ (ET ∗ ETs)s−1)
+δ̂1 OWN

(7)

TreeBio− Loss equation :
m̂ = α̂ + ρ BIOLOSS s−1

+β̂1 (PPTs − ρ PPTs−1) + β̂2 (TEMPs − ρ TEMPs−1) + β̂3 (ETs − ρ ETs−1)
+β̂4 (PPTss − ρ PPTss−1) + β̂5 (TEMPss − ρ TEMPss−1) + β̂6 (ETss − ρ ETss−1)
+β̂7 (PPT2

s − ρ PPT2
s−1) + β̂8 (TEMP2

s − ρ TEMP2
s−1) + β̂9 (ET2

s − ρ ET2
s−1)

+β̂10 (PPTs2
s − ρ PPTs2

s−1) + β̂11 (TEMPs2
s − ρ TEMPs2

s−1) + β̂12 (ETs2
s − ρ ETs2

s−1)
+β̂13 ((PPT ∗ TEMP)s − ρ (PPT ∗ TEMP)s−1) + β̂14 ((PPT ∗ ET)s − ρ (PPT ∗ ET)s−1)
+β̂17 ((TEMP ∗ ET)s − ρ (TEMP ∗ ET)s−1) + β̂18 ((ET ∗ ETs)s − ρ (ET ∗ ETs)s−1)
+β̂15((PPT ∗ PPTs)s − ρ (PPT ∗ PPTs)s−1) + β̂16 ((TEMP ∗ TEMPs)s − ρ (TEMP ∗ TEMPs)s−1)
+δ̂1 OWN + δ̂2 AGE + δ̂3 AGBIO

(8)

2.4. Combustion Emissions Due to the Wildfires in the United States

Using the estimated annual probability of wildfire occurrences from the fire risk
equation, the total area burned (A) in the continental U.S. can be calculated as specified in
Equation (9).

A = ∑(a pi) (9)

where a is the area of a plot and pi is the annual probability of wildfire occurrence from
fire risk equation on ith plot or cth ecoregion within a county. The total aboveground
biomass (B) in dead trees due to wildfires in the continental U.S. is calculated as specified
in Equation (10).

B = ∑(a pi mi Bb + a pi mi Bo) (10)

where mi is the annual probability of aboveground tree mortality on ith plot estimated
from the TreeBio-Loss equation, Bb and Bo are the total bole and stump biomass and tops,
branches, and sapling biomass, respectively, in the plot. Finally, the total carbon dioxide
emission (C) is calculated using Equation (11).

C = 0.5 M ∑(a pi mi Bb fb + a pi mi Bo fo) (11)
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where 0.5 corresponds with the assumption that 50% of the dry biomass in a tree is carbon,
M is the molecular weight of the carbon dioxide, fb and fo are the combustion emission
conversion factors that represents the proportion of bole and stump biomass and biomass
and tops, branches, and sapling biomass, respectively, in the event of wildfire at a plot.
The combustion conversion of biomass into CO2 emissions depends on the intensity of
the fire. Stenzel et al. [22] argued the model predictions on CO2 emissions from wildfire
combustion is overestimated. His study of two wildfires in California resulted in a decrease
in estimated emissions from 87% to as low as 10%. Stenzel et al. [22] and Loehman et al. [58]
used combustion conversion factors between 5% and 80% of bole biomass and 40%–100% of
other tree biomass with low, medium, and high intensity of fires. Similar biomass–carbon
conversion is widely used in forest sector modeling [56,59–62]. With the lack of burn
intensity data in the FIA, it was impossible to assign combustion factors to each plot or
fire event; therefore, we modeled different emission scenarios with varying combustion
conversion rates for the bole and other structures of the trees.

We present 12 scenarios with four combustion conversion rates and three different
methods of estimating the annual probability of wildfire occurrences and tree mortality in
Table 2. The first part of the scenario name indicates the methods employed in estimating
probabilities of wildfire and tree mortality, and the second part represents the combustion
conversion rates. For example, scenario AVG_low estimates CO2 emissions using average
fire event (pi = p) and average tree mortality over the past ten years (mi = m ) and low
combustion conversion rates ( fb = 0.05, fo = 0.5 ). Scenario names starting with AVG
estimate CO2 emissions using average fire event (pi = p) and average tree mortality of the
past ten years (2005–2015, mi = m ) A county-level annual wildfire probability was used
since fire events are not the same across the U.S., and previous modeling studies [60,62,63]
have also used county averages. Scenario names starting with ECP and PLT estimate
CO2 emissions using this study’s annual probabilities of wildfire risk and tree mortality
equations. Both scenarios used plot-level probability estimates for TreeBio-Loss (mi = m̂i)
but different probability estimates for wildfire risk. Scenario names starting with ECP
used aggregated estimate of wildfire risk at an ecoregion in a county (pi = p̂c) whereas
scenario names starting with PLT used annual probabilities estimates of wildfire risk for
each FIA plot (pi = p̂i). The second part or the suffixes on the AVG, ECP, and PLT scenarios
reflect biomass to carbon conversions rates. We used four different combustion conversion
factors based on Stenzel et al. [22] and Loehman et al. [58] to estimate the potential biomass
conversion to CO2 emissions. A scenario with the suffix ‘_low’ represents low combustion
conversions ( fb = 0.05, fo = 0.5 ) with only about 5% conversion of bole and stump
biomass and 50% conversion of tops, branches, and sapling biomass. Stenzel et al. [22]
reported that at least 5% of biomass is converted to CO2 emissions in any fire event and
reported that on the lower end of moderate-severity fires, models use a 30% combustion
conversion of bole and stump biomass and 80% conversion of tops, branches, and sapling
biomass. A scenario with the suffix ‘_med’ represents moderate combustion conversions
( fb = 0.3, fo = 0.8). On the upper range for similar fire intensity, combustion conversion
can be 46% on bole and stump biomass and 92% conversion on tops, branches, and
sapling biomass. Scenario with suffix ‘_high’ represents the high combustion conversions
( fb = 0.42, fo = 0.92). Combustion conversions in various models range 30%–80% on bole
and 80%–100% on branches and foliage in high-severity fires. Recent studies have [58,64]
indicated increasing combustion conversions; therefore, we modelled emission form high
with suffix ‘_cats’ representing catastrophic combustion conversions ( fb = 0.8, fo = 1)
with 80% conversion on the bole and stump biomass and 100% on tops, branches, and
sapling biomass where most of the carbon sequestered in a plot is released.
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Table 2. Different scenarios to estimate CO2 emissions under different conversion rates and probabil-
ity estimation methods in the continental United States.

Scenarios Estimate of Wildfire Probability
(pi)

Estimate of Wildfire
Probability

(mi)

Rate of Conversion or Consumption

Bole and Stump Biomass
Combustion Rate

(fb)

Tops, Branches, and
Sapling Biomass
Combustion Rate

(fo)

AVG_low p is the average (2005–2015)
annual probability of wildfire

occurrence for a county.

m is the average (2005–2015)
annual probability of tree

mortality for a county.

5% 50%
AVG_med 30% 80%
AVG_high 46% 92%
AVG_cats 80% 100%

ECP_low p̂c is the annual probability of
wildfire occurrence on cth

ecoregion within a county from the
fire risk model.

m̂i is the annual probability of
tree mortality on ith plot from

the TreeBio-Loss model.

5% 50%
ECP_med 30% 80%
ECP_high 46% 92%
ECP_cats 80% 100%

PLT_low
p̂i is the annual probability of

wildfire occurrence on ith plot with
the fire risk model.

m̂i is the annual probability of
tree mortality on ith plot with

the TreeBio-Loss model.

5% 50%
PLT_med 30% 80%
PLT_high 46% 92%
PLT_cats 80% 100%

3. Results
3.1. Annual Probabilities of Wildfire Occurrence from Fire Risk Equation

The annual wildfire probability of wildfire was positively associated with forest land
ownership, where federal lands were more likely to have wildfires than private and state
forest lands. The annual wildfire probability for fire risk was negatively associated with
the summer precipitation and evapotranspiration, and spring temperature (p < 0.01) and
positively associated with summer temperature (p < 0.01) (Table 3). Spring precipitation and
evapotranspiration were not significant in explaining wildfire probabilities. The negative
impact of precipitation and evapotranspiration indicates higher wildfire risk in the areas
with lower precipitation and evapotranspiration during the fire season, indicating that dry
areas or areas with lower moisture content are more prone to wildfires. As expected, there
was a positive effect of summer temperature on wildfire probabilities, indicating hotter
summers increase the risk of wildfires. The negative coefficient of spring temperature
indicates that hotter springs have a lower probability of wildfires in the summer.

All quadratic relationships were significant (p < 0.01) in the model, indicating that the
marginal effect of climatic variables was non-linear, where the marginal effect increased
with increasing summer precipitation and spring temperature while it decreased with
increasing summer temperature and evapotranspiration. Hence, the wildfire probabili-
ties increased with higher summer temperatures but at a decreasing rate. The wildfire
probabilities decreased with higher precipitation but at an increasing rate.

Although spring precipitation and evapotranspiration were not directly associated
with wildfire probability (p > 0.10), the model’s interaction terms between spring pre-
cipitation, temperature, and evapotranspiration with summer climate conditions were
significant. These findings suggest and reinforce the complicated relationship between
climate conditions in summer and spring in determining wildfire probabilities.

Figure 4 shows the annual probabilities of wildfire occurrences in the FIA forest plots
using the fire risk model for the continental U.S. As expected and observed, our equation
estimated higher wildfire probabilities in the west, especially in the California valleys,
inner mountain regions between Cascade and the Rocky Mountains, and southwestern
arid regions in California and Arizona. In the eastern U.S., some areas (mostly public
forests) in Kentucky and Florida were more likely to burn. The dry regions of western
Texas and Oklahoma were also more likely to burn than the eastern part of these states.
Moreover, in the conterminous 48 States, our equation calibration showed that federally
owned forests were more likely to burn than private forests. Fire suppression efforts in the
past and reduced harvest in federal lands have played an important role in accumulating
fuels for decades in the landscape escalating the wildfire risks [4].
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Table 3. Fire risk model coefficients to estimate the wildfire probability in an ecoregion of a county of
the continental United States.

Variables (n = 3854) Coefficient Standard Error p-Value

Intercept α̂ −0.17030 0.07410 0.022
PPT β̂1 −0.00738 0.00070 0.000

TEMP β̂2 0.07472 0.02325 0.001
ET β̂3 −0.26480 0.07533 0.000

PPTs β̂4 −0.00011 0.00013 0.401
TEMPs β̂5 −0.08526 0.01618 0.000

ETs β̂6 4.74 × 10−7 4.07 × 10−7 0.244
PPT2 β̂7 0.00001 2.25 × 10−6 0.000

TEMP2 β̂8 −0.00556 0.00069 0.000
ET2 β̂9 −0.05155 0.01604 0.001

PPTs2 β̂10 −0.00304 0.00046 0.000
TEMPs2 β̂11 2.47 × 10−6 7.33 × 10−7 0.001

ETs2 β̂12 2.80 × 10−12 9.47 × 10−13 0.003
PPT * TEMP β̂13 −0.00004 0.00005 0.413

PPT * ET β̂14 0.00160 0.00031 0.000
PPT * PPTs β̂15 −0.00001 2.02 × 10−6 0.000

TEMP * TEMPs β̂16 0.00644 0.00107 0.000
TEMP * ET β̂17 0.02710 0.00363 0.000

ET * ETs β̂18 −2.65 × 10−7 8.39 × 10−8 0.002
OWN δ̂1 0.01358 0.00292 0.000

Spatial autocorrelation ς 1.33100 0.00934 0.000

Root mean squared error (RMSE) * 0.077
Fit index (FI) ** 0.56

* Root mean squared error is the standard deviation of the residuals (prediction errors). ** Fit index, similar to
r-squared in linear regressions, tell how well-observed data fit a particular probability distribution.
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3.2. Annual Probabilities of Biomass Loss Due to Tree Mortality from TreeBio-Loss Equation

The annual probability of tree mortality due to wildfire was negatively associated with
summer precipitation and evapotranspiration and spring temperature (p < 0.05), indicating
higher mortality in the areas with lower precipitation and evapotranspiration during the
fire season and with lower temperatures in the spring season (Table 4). The maximum
summer temperature had no impact on tree mortality and was dictated mainly by moisture
conditions. Spring precipitation and evapotranspiration also had no association with tree
mortality, indicating moisture conditions in spring do not impact tree mortality due to
wildfires.All quadratic relationships were significant (p < 0.1), whereas the summer and
spring temperatures were insignificant at 5%. This indicates that the marginal effect de-
creased with increasing summer precipitation, evapotranspiration, and spring temperature.
However, the interaction between precipitation, temperature, and evapotranspiration in
the fire and spring seasons were significant in the model, indicating a complex association
between climatic conditions and tree mortality, making it difficult to establish a direct
connection between one climatic parameter with the mortality.

Table 4. TreeBio-Loss model to estimate biomass loss due to tree mortality in the forested FIA plots
of the continental United States.

Variables (n = 4510) Coefficient Standard Error p-Value

Intercept α̂ 2.26700 0.44450 0.000
PPT β̂1 −0.00513 0.00213 0.016

TEMP β̂2 0.10640 0.07137 0.136
ET β̂3 −2.51700 0.60840 0.000

PPTs β̂4 0.00038 0.00038 0.315
TEMPs β̂5 −0.12660 0.05568 0.023

ETs β̂6 1.00300 0.62190 0.107
PPT2 β̂7 0.00001 0.00000 0.003

TEMP2 β̂8 −0.00418 0.00214 0.050
ET2 β̂9 0.54960 0.13870 0.000

PPTs2 β̂10 3.85 × 10−6 1.13 × 10−6 0.001
TEMPs2 β̂11 −0.00295 0.00163 0.070

ETs2 β̂12 0.36410 0.15080 0.015
PPT * TEMP β̂13 −0.00032 0.00009 0.001

PPT * ET β̂14 0.00267 0.00077 0.001
PPT * PPTs β̂15 −0.00002 4.00 × 10−6 0.000

TEMP * TEMPs β̂16 0.00778 0.00347 0.025
TEMP * ET β̂17 0.00128 0.00806 0.874

ET * ETs β̂18 −0.76150 0.26940 0.005
OWN δ̂1 0.05385 0.00843 0.000
AGE δ̂2 −0.00245 0.00007 0.000

AGBIO δ̂3 3.49 × 10−7 9.74 × 10−8 0.000
Spatial autocorrelation ρ 0.42470 0.02871 0.000

Root mean squared error (RMSE) * 0.237
Fit index (FI) ** 0.57

* Root mean squared error is the standard deviation of the residuals (prediction errors). ** Fit index, similar to
r-squared in linear regressions, tell how well-observed data fit a particular probability distribution.

Figure 5 shows the tree mortality estimates in the FIA forest plots using the TreeBio-
Loss equation for the continental U.S. As expected, tree mortality was higher in the western
U.S., where the wildfire probabilities were higher. The forests in the inner mountain region
(Montana, Idaho, and Nevada) and inner California had a higher likelihood of tree mortality
in the event of fire compared with other states. Tree mortality due to wildfire was very low
in the southeast, likely because of the well-established practice of private ownership using
monoculture and prescribed burns. In addition to climate variables, tree mortality was
significantly lower in private forests and stand class with a higher age class. As expected,
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tree mortality was significantly higher in public forests compared with private forests
because of less or no management as well as low firefighter presence and fire control efforts
unless those lands are adjacent to the human settlements leading to higher burn severity
and loss of biomass [24]. Moreover, tree mortality increased with the increase in available
aboveground biomass. Old-growth forests have better chances of surviving because of
their maturity and taller crowns and have fewer intermediate fuels to carry the surface fire
to the crown [50]. The crown fire can be very intense and catastrophic.
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Figure 5. Proportion of live tree mortality in FIA forest plots predicted using TreeBio-Loss equation
across the continental United States. (Raster map download link: https://www.canr.msu.edu/
socioeconomics/econ/data, accessed on 13 November 2022).

3.3. Carbon Dioxide Emissions Due to the Wildfires in the United States

Results showed about 0.78 million hectares (ha) in AVG, 0.96 million hectares in ECP,
and 1.43 million hectares of forests in the PLT scenario burned annually in the United
States (Table 5). Compared with historical area burns (1.45 million hectares) from MTBS
between 1985 and 2015 [3], the PLT scenarios produced the most accurate estimates with
approximately 1% variability. Observing the historic wildfire-related tree mortality using
FIA data, we estimate that stands affected by wildfires lose 23%of live trees annually
across the continental U.S. due to wildfires. The CO2 emission estimates in AVG scenarios
are low compared with the PLT scenarios, indicating that the current methods used for
fire-related emissions in most forest sector models are underestimating the wildfire-related
estimates. Our estimates using the fire risk and tree mortality equations at FIA plots
estimated annual CO2 emissions of 6.10 million tons for PLT_low, 16.65 million tons for
PLT_med, 22.75 million tons for PLT_high and 31.013 million tons for PLT_cats scenarios
(Table 5). This clearly indicates that the increasing intensity of wildfires would significantly

https://www.canr.msu.edu/socioeconomics/econ/data
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increase CO2 emissions. Lowering the intensity of fires can significantly lower the CO2
emissions from forests in the event of wildfire.

Table 5. Annual estimates of forest area burned, live biomass lost, and the CO2 emissions under
different combustion rates and various scenarios due to wildfires in the continental United States.

Scenarios Scenario
Description

Wildfire Burn
Area (1000 ha)

A

Total AG Biomass
in the Burn Area

(MMt)

Live Tree Biomass
Loss with Mortality

(MMt)
B

CO2 Emissions
(MMt/year)

C

AVG_low pi = p, mi = m
fb = 0.05, fo= 0.5 775.18 55.43 2.04 3.73

AVG_med pi = p, mi = m
fb = 0.3, fo= 0.8 775.18 55.43 5.37 9.84

AVG_high pi = p, mi = m
fb = 0.46, fo= 0.92 775.18 55.43 7.28 13.35

AVG_cats pi = p, mi = m
fb = 0.8, fo= 1 775.18 55.43 10.79 19.79

ECP_low pi = p̂c, mi = m̂i
fb = 0.05, fo= 0.5 964.61 77.44 2.53 4.63

ECP_med pi = p̂c, mi = m̂i
fb = 0.3, fo= 0.8 964.61 77.44 7.13 13.07

ECP_high pi = p̂c, mi = m̂i
fb = 0.46, fo= 0.92 964.61 77.44 9.81 17.99

ECP_cats pi = p̂c, mi = m
fb = 0.8, fo= 1 964.61 77.44 4.88 27.28

PLT_low pi = p̂i, mi = m̂i
fb = 0.05, fo= 0.5 1426.11 115.61 3.33 6.10

PLT_med pi = p̂i, mi = m̂i
fb = 0.3, fo= 0.8 1426.11 115.61 9.08 16.65

PLT_high pi = p̂i, mi = m̂i
fb = 0.46, fo= 0.92 1426.11 115.61 12.41 22.75

PLT_cats pi = p̂i, mi = m
fb = 0.8, fo= 1 1426.11 115.61 18.61 34.13

p is the average annual probability of wildfire occurrence for fire events between 2005 and 2015 for each county.
p̂i is the annual probability of wildfire occurrence on ith plot with the fire risk model. p̂c is the annual probability
of wildfire occurrence on cth ecoregion within a county with the fire risk model. m is the 10-year average tree
mortality for the U.S. m̂i is the annual probability of tree mortality on ith plot with the TreeBio-Loss model. fb is
the rate of combustion or consumption of bole and stump biomass by wildfire to convert it into CO2. fo is the rate
of combustion or consumption of tops, branches, and sapling biomass by wildfire to convert it into CO2.

4. Discussion

The results show that maximum temperature and moisture conditions (precipitation
and evapotranspiration) during the fire season and temperatures during spring influ-
enced wildfire occurrences. A hot and dry summer coupled with a relatively cold spring
aids in a higher probability of wildfires. Previous studies corroborate our findings in
summer temperatures and moisture deficit significantly impacting the wildfire probabil-
ities [8,21,26,37,65–67]. Westering et al. [8] concluded western fires result from warmer
temperatures and longer dry fire seasons. Kerr et al. [21] concluded that the high-risk
fire episodes are mainly related to the region’s temperature and precipitation, where pre-
cipitation’s role is smaller than temperatures, similar to our findings. Drever et al. [46]
also concluded that lower precipitation increased fire occurrences and burned area. Siegel
et al. [26] also concluded that fall (overlapping with our fire season) precipitation and
temperatures were significant variables in estimating wildfire probabilities, including wind
speed variables and PDSI. We did not include wind speed and PDSI in our model due to the
lack of these data at FIA plots and to keep the model simple and parsimonious to use GCM
climate data for future predictions on wildfire risk changes. However, we can argue that
precipitation and evapotranspiration can proxy PDSI as both imply the moisture conditions
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at the plot, an important variable in wildfire risk estimation. Riley and Loehman [68] also
concluded that increased burn probability was associated with lower fuel moisture and
increased ignitions in hot and dry weather.

The relationship between spring climate on wildfire has not been directly assessed
previously. Our study found a negative relationship between average spring maximum
temperature and wildfire occurrences. Spring moisture conditions were not significant pre-
dictors of wildfire occurrences. However, Westerling et al. [8] found that earlier snowmelt
dates correspond to increased wildfire frequency, increasing drought in summer. Starrs
et al. [47] concluded that climate variables had little effect on vegetation type compared
with ownership. This may be due to the extent of the study (geographic region), season
selection (we use spring, not winter), and use of the non-linear model with interactions.
Higher winter temperature helps to lose snow or moisture sooner; therefore, dry conditions
in summer, whereas warmer springs (not the same as earlier snowmelt dates) help trees
and shrubs to sprout earlier, hence more biomass or fuel loading for fire season. Coupled
with dry fire season, this situation can significantly increase the occurrence and intensity
of fires.

Tree mortality was associated with summer precipitation and evapotranspiration and
weakly associated with spring temperatures, indicating mortality as a factor of moisture
content. Tree mortality was not impacted by summer temperature and spring precipitation
and temperatures. As expected, increased summer precipitation and evapotranspiration
decreased tree mortality. Climate variables are generally used to predict fire intensity,
which predicts tree mortality. This study estimates biomass loss due to tree mortality using
climate variables and forest conditions with an FI of 57%, well in the acceptable range for
such econometric analyses. As expected, plots with higher biomass but lower age stand
experienced higher tree mortality.

On the other hand, significant quadratic relationships of climate variables with wild-
fire occurrences and tree mortality indicated a non-linear effect of climate on wildfires. The
moisture conditions rather than the temperatures in the plots mostly dictated mortality.
Although a direct impact of spring precipitation and evapotranspiration was not observed
with wildfire occurrences and tree mortality, the interactions between precipitation, temper-
ature, and evapotranspiration in the fire and spring seasons were significant in the model,
indicating a complex association between climatic conditions and wildfire occurrences and
tree mortality.

Landownerships were significant in determining wildfire probabilities and tree mor-
talities, with federal lands estimated to be more likely to have wildfires than private and
state forest lands. The previous literature also showed the same relation [26,45,48,68].
Siegel et al. [26] concluded that federal forests were 1.52 times more likely to burn in 2016,
compared with 2.67 times in 1989, indicating decreasing yet significant differences in wild-
fire risk in federal and other lands. Starrs et al. [47] concluded that ownership, firefighting,
and reserve statutes were detrimental to fire probabilities in California. In general, wildfires
are not tackled until they reach Wildland Urban Interface (WUI). All previous studies
concluded that fire risk is higher in the federally owned forest compared with others. Lim-
ited to no harvest as a management option in the federal lands has accumulated fuel. As
expected, federally owned forests have a higher probability of wildfire and tree mortality
than private and state lands. This result is correlated with firefighting practices and fuel
management in federally owned forests where the fire is allowed to progress until it reaches
WUI and, a minimal management is performed in federal forests allowing surface and
ladder fuel development resulting in crown fires [27,47]. In addition, most of the federally
owned forests are in the dry western part of the country.

We also present potential CO2 emissions due to wildfires at different scenarios of
combustion factors. This study indicated other studies may have yielded lower estimations
and projections of CO2 emissions due to wildfire using some traditional approaches, which
generally use averages or county-level estimates of fire probabilities and tree mortality. Fire
risk and tree mortality are estimated for a small geographical extent with a complex set
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of variables that could not be used for future projections. The approach developed in this
study estimates the wildfire probabilities and biomass loss due to tree mortality at FIA
plots with higher FI and lower RMSE compared with earlier statistical techniques, hence
providing a finer resolution of these estimates at a national scale model.

This study has limitations. Notable limitations are the lack of fine-scale data to develop
and run fire-related econometric models. After a fire, salvage harvest is possible and is not
recorded in FIA, leading to an assumption that it was lost during the fire. This can increase
the estimated biomass loss due to wildfire. FIA data are limited to fire-related variables
to the presence or absence of fire between two measurements. FIA data do not report fire
intensities, a key element in predicting mortality. The combustion conversion factor is not
constant across the country but varies with fire intensity and severity at each plot. Since
such data are lacking in FIA, we chose to use a constant combustion factor in this study.
Further study should consider predicting fire intensities and combustion conversion factors
at various intensities for a more precise estimation of wildfire risks.

5. Conclusions

This study developed fire risk and TreeBio-Loss equations for estimating wildfire
probabilities and associated tree mortality using climate data for the U.S. and produced
national maps for wildfire risk and fire-related tree mortality. These equations are a
non-linear spatial autoregressive function of climatic conditions and forest attributes that
provide a basis for estimating wildfire probability and associated tree mortality in FIA
plots. Our study concludes that the fire season temperature and moisture conditions in an
area significantly impact the wildfire probabilities, where the temperature had a positive
effect and precipitation and evapotranspiration had a negative effect. Moreover, higher
spring temperatures negatively affect wildfire probability by providing ideal conditions
supporting biomass growth. On the other hand, tree mortality was mainly a function of
moisture conditions in the fire season, with higher levels of moisture leading to lower tree
mortality. Moreover, as found in many prior studies, federal lands were more likely to have
wildfires than private and state forest lands.

Further, we use our estimates of national wildfire probabilities and tree mortality to
evaluate how CO2 emissions from live trees vary in wildfires across a range of combustion
scenarios. We also find that wildfire-related emissions are underestimated using previ-
ous methods under all combustion scenarios. For example, a technique using ten-year
averages on fire and tree mortality would estimate 9.84 million tons of CO2 emissions,
while our estimates using plot-level data showed a substantially higher emission level
of 16.65 million tons of CO2. Future studies should incorporate these models of fire risk
and tree mortality for better estimates of wildfire probability and biomass converted to
CO2. We aim to apply these estimates in spatial equilibrium models of the forest sector,
called the Land Use and Resource Allocation (LURA) model [47], to evaluate the efficacy of
fuel reduction strategies. This would allow for the endogeneity of both future climate and
biomass retention allowing a more robust suite of potential policy and climate scenarios
informing the U.S. climate mitigation efforts.
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