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Abstract: This paper adopts the super-efficient DEA (data envelopment analysis) model to measure
the forestry eco-efficiency (FECO) of 30 Chinese provinces and cities from 2008 to 2021, and then
introduces the Tobit model to explore the influencing factors of FECO to better understand the
sustainable development level of forestry. It draws the following conclusions: (1) The average value
of FECO in China is 0.504, which is still at a low level, and the FECO of each region has significant
regional heterogeneity; the provinces with higher FECO are mainly concentrated in the eastern
region, while the FECO of the central and western regions is lower; (2) In terms of the main factors
affecting FECO in China, the regression coefficients of market-based environmental regulations are
significantly positive in the national, eastern and central regions, while they are significantly negative
in the western region. The coefficient of impact of scientific research funding investment on forestry
industry eco-efficiency is negative and shows a significant promotion effect in the eastern region, but
the elasticity coefficient in the central and western regions is negative but not significant. Economic
development has a positive but insignificant effect on FECO, with the eastern region showing a
positive correlation, while the central and western regions are insignificant. Industrial structure has
a significant negative effect on FECO in the national, eastern and central regions, but the effect of
industrial structure on FECO in the western region is not significant. The effect of foreign direct
investment on FECO was negative for the national, central and western regions, but the central region
did not pass the significance test, while the eastern region reflected a significant promotion effect.

Keywords: forestry; eco-efficiency; sustainable development; forestry resources

1. Introduction

From a worldwide perspective, energy, resource and ecological emergencies have be-
come serious challenges. Economist Daly [1] pointed out that man-made capital has become
relatively abundant and the constraints to human development have been transformed
into scarce natural capital. Zeb et al. [2] argued that the depletion of natural resources
and the adverse effects of environmental degradation, including desertification, drought,
land degradation, lack of freshwater resources and loss of biodiversity are increasing and
worsening the various challenges facing humanity. Forestry has multiple benefits and can
provide practical solutions to address these issues. The green development of forestry
and the improvement of forestry eco-efficiency have become the focus of attention of the
international community [3,4].

As an important basic industry of the national economy, forestry plays a pivotal role
in human societal development. For a long time, China’s forestry economic growth mode
has been characterized by a large number of factor inputs; this is a crude economic growth
mode relying on the massive consumption of resources to promote [5] it. Under the current
conditions of resource scarcity in China, this type of crude forestry economic growth will
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encounter a “limit”; when growth approaches its “limit” or people are aware of this “limit”,
economic growth needs to improve the use efficiency of input factors of production to
break through this “limit”, that is, to increase the share of the total factor productivity
contribution to forestry economic growth. According to relevant economic theories, the
growth of output can depend on factor inputs as well as technological progress [6,7].
The development of China’s forestry industry is so rapid that it is obvious to measure it
numerically, but the question remains: what is the real quality of this forestry development?
In today’s increasingly prominent resource and environmental problems, ensuring rapid
economic development while reducing environmental pollution and resource waste is not
only a sizable challenge for social development, but also one of the urgent tasks facing
the future development of forestry. Therefore, a scientific and objective discussion of the
quality of forestry development is conducive to a better understanding of what will be the
sustainable development level of forestry in the future [8–10]. Schaltegger and Sturm [11]
proposed an eco-efficiency concept, which has been widely recognized by scholars in
various fields. Specifically in the field of forestry, eco-efficiency is a measure of the level of
sustainable development of forestry, and its objective is to measure whether forestry can
minimize environmental pollution and resource consumption while achieving multifaceted
value in a comprehensive manner, with the premise of ensuring the quality of forest
products [12]. Focusing on FECO improvement is conducive to advocating for modern
forestry development through the concept of coordinated and sustainable development of
society, economy and ecology [13,14].

The following are this paper’s main contributions: (1) Existing studies mainly study
productivity and explore its efficiency from the perspective of production, while the issue
of forest efficiency from an ecological perspective has rarely been addressed; this paper
considers the inputs and undesired outputs and measures regional forest eco-efficiency in
China, which is a useful supplement to the existing studies; (2) Existing studies mainly
focus on specific regions and lack comparative studies between regions; this paper provides
theoretical support by comparing the east, central and west regions; (3) Exploring forest
eco-efficiency in the context of sustainable development and proposing corresponding
policies can provide a reference for regional green development. Therefore, this paper
adopts the super-efficient DEA model to measure the forestry eco-efficiency of 30 Chinese
provinces and cities (except Hong Kong, Macao, Taiwan and Tibet) for 14 years from 2008
to 2021, and then introduces the Tobit model to analyze the influencing factors for forestry
eco-efficiency in order to better understand the sustainable development level of forestry
and provide some theoretical support for the sustainable development of modern forestry
in the future.

2. Literature Review
2.1. Connotation of Eco-Efficiency in Forestry

Eco-efficiency is the ratio of the value of economic and social development (GDP)
to the physical amount of resource and environmental consumption, which creatively
connects three indicators: resources, economy and environment. It emphasizes the unity of
environmental and economic benefits, establishes a connection between the best economic
and environmental goals and provides a link between regions; it provides an important
evaluation tool for the sustainable development of regions and industries, and becomes
an important reference for policy makers [15,16]. This concept is generally accepted and
widely used in the evaluation and research of the forest industry by domestic and foreign
scholars, such as Wu and Zhang [17]. They considered that the eco-efficiency of the
forest industry refers to the direct impact on the forest’s ecological environment caused
by the inputs of technological improvement and environmental management, such as
air quality improvement and wastewater treatment, in order to ameliorate the ecological
impact brought by the forestry industry, i.e., industrial efficiency in the forestry industry.
According to Chen et al. [18], FECO is a measure of the sustainable development of forestry,
and its objective is to measure whether forestry can minimize environmental pollution
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and resource consumption while ensuring the quantity and quality of forest products and
achieving its multifaceted value in a comprehensive manner. Hong et al. [19] pointed out
that for forestry to be sustainable, coordination between input and output factors should
be ensured. Zheng and Yin [20] argued that FECO facilitates a win-win input and output
relationship between economic and social benefits.

2.2. Measurement of FECO

Academics have analyzed FECO from different perspectives, and the differences are
mainly reflected in the research methods and regional selection. In the process of measuring
FECO, the stochastic frontier approach (SFA), the ratio method and the DEA evaluation
model are mainly used in China. For example, Can et al. [21] used the SFA method to
measure the ecological efficiency of plain forestry and analyzed the degree of ecological
contribution of farmland forest networks and small forests to total agricultural output value,
plantation output value and livestock output value. Weerawat et al. [22] used the ratio
method to analyze several rubber plantation areas in Thailand and made recommendations.
Most studies using the DEA evaluation, such as Li et al. [23], measured the forestry input-
output efficiency using the DEA model, but the output indicators they selected did not
reflect the social benefits of forestry; in addition, the only reflected the situation in 2006.
Tian and Xu [24] measured the forestry input-output efficiency from 1993 to 2010 in China.
At the local level, Lai and Zhang [25] used the super-efficient DEA model to measure
the forestry input-output efficiency of 21 cities in Guangdong province and ranked and
classified them; Zang et al. [26] measured the technical efficiency of forestry production and
its influencing factors from the perspective of forestry production in Chongqing. Zhang
and Kang [27] selected the super-efficient DEA-Tobit model to measure forestry production
efficiency in 30 Chinese provinces from 2000 to 2014, and pointed out that its efficiency
is lower, with significant spatial divergence. Luo et al. [28] also used the DEA model to
measure the forestry efficiency of each province and further analyzed the spatial differences
using the Gini coefficient and Moran index and concluded that forestry efficiency increased
year by year but was still low in general. Tian et al. [29] used the C2R-DEA model (DEA
model without considering returns to scale) and the SE-DEA model to measure forestry
production efficiency in China. In 2012, Tian et al. [29] analyzed and measured the input-
output efficiency of forestry using the super-efficient DEA model.

2.3. Influencing Factors of FECO

In recent years, many scholars have used DEA measurements to evaluate regional
FECO and constructed an index system to study the key factors affecting FECO in the
region. For example, Zheng et al. [30] examined the impact of industrial agglomeration on
FECO through an econometric model and found that the level of industrial agglomeration
and eco-efficiency in provinces with high levels of forestry industry development in China
showed different degrees of increase during the study period. Chen and Geng [31] pointed
out that the economy of scale efficiency of the forestry industry would be affected by
property rights factors, local government intervention behavior, market concentration,
market entry barriers and externalities. Jiang et al. [32] argued that the industrialization
of forestry is an objective requirement, an inevitable result of the market economy and
an effective way to improve efficiency in modern forestry. Hou [33] believed that the
economic productivity or environmental productivity of forestry can be improved through
the division of labor and specialization. Li and Tang [34] considered that the rationalization
of the industrial structure is an effective means to improve the efficiency of forestry. Tian
and Xu [24] measured the input-output efficiency of forestry in China from 1993 to 2010
and analyzed its influencing factors in depth. Zang et al. [26] measured the technical
efficiency of forestry production and its influencing factors from the perspective of forestry
production of Chongqing foresters. Zhang and Xiong [35] concluded that forestry ecological
construction and protection, forest ecological compensation and forestry prevention and
control inputs have negative and significant effects on the comprehensive FECO.
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The studies that have been conducted lack an analysis of forestry eco-efficiency, and
in the field of forestry in China, a unified definition of forestry eco-efficiency has not been
clearly established. This is mainly because, although the development of forestry has the
dual attributes of economic value and ecological value, there are problems such as long
investment recovery cycles and economic externalities, which, together with the emergence
of natural and man-made disasters, do not guarantee that forestry development can meet
people’s expectations. In the process of pursuing the economic value of forestry, people
gradually ignore the ecological benefits. Therefore, this paper measures the forestry eco-
efficiency of 30 provinces in China from the provincial panel data of 30 provinces from
2008–2021 (due to limited data sources, Hong Kong, Macao, Taiwan and Tibetan areas are
not considered for the time being), and further explores the regional differences and spatial
and temporal characteristics of forestry eco-efficiency. On this basis, the factors affecting
forestry eco-efficiency are explored to better protect the diversity of forestry ecosystems.
While the forestry ecological economy is developing continuously, we should also pay
attention to the protection of forestry ecology, so as to realize people’s expectations for a
better ecological environment in the near future.

3. Methods

The main methods currently used for eco-efficiency evaluation are the single ratio
method, the indicator system method and the model analysis (DEA) method. Although
the single ratio method is relatively simple, it cannot distinguish the impact of different
environments, give the optimal set of ratios or give decision makers flexibility in their
choices. The indicator system method can reflect the level of development and coordination
of social, economic and natural subsystems, but it requires artificial weighting, so there is
often subjective interference. The use of the model analysis method can better compensate
for the above shortcomings, so the data envelopment analysis method is widely used in the
empirical study of eco-efficiency.

3.1. FECO Measurement Method
3.1.1. Super-Efficient DEA

Data envelopment analysis is a typical class of nonparametric analysis, referred to as
DEA analysis, which was proposed by Charnes et al. [36]. They studied the optimization of
resource allocation in the production process by evaluating the relative efficiency ratio of in-
puts and outputs within each decision unit. In the production process, the ratio between the
input quantity of resource consumption and the output quantity of the product determines
the production efficiency value within the decision unit, and the weighting of the input and
output values can be used to analyze multiple input and output problems. For the study of
green issues, in the process of constructing the DEA model, pollution factor indicators and
negative ecological indicators can be classified as non-desired outputs, and the DEA model
will be based on the “asymmetric” curve measurement of each type of output to accurately
estimate the eco-economic efficiency value. The DEA model will accurately estimate the
eco-economic efficiency values based on “asymmetric” curve measures for each type of
output, and through projection analysis, ensure sufficient output and appropriate inputs
while strictly controlling the amount of undesired output [37]. The estimation of desired
and undesired outputs in the production process is achieved by means of the radial measure
of the curve and the inverse of the curve measure, respectively. The DEA is the curve radial
measure, without function expressions and without hypothesis testing [38].

1. Introduction of CCR-DEA model

The CCR-DEA model was proposed by Charnes et al. [39]; it is an input-oriented DEA
model. The CCR model is the most basic DEA model with n DMU (i = 1, 2, . . . , n), which
satisfies the assumption of homogeneity and are all comparable. Each DMU has the same t
inputs, and the input vector is:

xi = (x1i, x2i, . . . , xti)
T , i = 1, 2, . . . , n . (1)
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Each DMU has the same s outputs, then there is an output vector of

yi = (y1i, y2i, . . . , ysi)
T , i = 1, 2, . . . , n, (2)

i.e., each DMU has the same t inputs and s output types. Where xji denotes the input
quantity of the i-th DMU to the j-th DMU, and yji denotes the output quantity of the i-th
DMU to the j-th DMU. In order to integrate all the DMUs in a uniform way, each input and
output needs to be assigned a value, so that the weight vectors of the input and output are

v =
(
v1, v2, . . . , vj

)T , (3)

u = (u1, u2, . . . , ur)
T , (4)

where vj denotes the j-th type of input weight and ur denotes the rth type of output weight.
At this point, the combined value of the i-th decision unit input is ∑t

j=1 vjxji, and the
combined value of the output is ∑s

r=1 uryri, so the efficiency evaluation index of each DMUi
is defined as

hi =
∑s

r=1 uryri

∑t
j=1 vjxji

, (5)



maxhi0 = ∑s
r=1 uryri0

∑t
j=1 vjxji0

∑s
r=1 uryri

∑t
j=1 vjxji

≤ 1, i = 1, 2, . . . , n

v =
(
v1, v2, . . . , vj

)T ≥ 0
u = (u1, u2, . . . , ur)

T ≥ 0

. (6)

2. Introduction to the BCC-DEA model

The CCR-DEA model based on the premise of constant returns to scale is slightly
different from reality; the returns to scale are not constant in actual economic production
activities, so Banker et al. [39] proposed an extension of the DEA analysis with the variable
returns to scale model, namely the BBC-DEA model analysis method.

The assumptions in the BBC-DEA model are variable payoffs of scale, and also a de-
composition of technical efficiency into two components. The BBC-DEA model incorporates
convexity constraints, and its input-oriented model is:

max
(
uTy0 + µ0

)
s.t.ωTxi − µTyi ≥ 0

ωTx0 = 0

ω ≥ 0, µ ≥ 0, i = 1, 2, . . . n

, (7)

where µ0 denotes the payoff of scale; ω is the portfolio ratio of effective decision units

3. Introduction of the super-efficient DEA analysis method

In the analysis results of the traditional DEA model, there will be multiple effective
decision units at the same time, i.e., there are multiple efficiency values of 1, and thus
the individual decision units cannot be ranked according to their high efficiency values.
For this situation, then some scholars proposed Super-efficient DEA [40,41]. The Super-
Efficiency DEA analysis method allows the simultaneous efficient decision units to be
further analyzed and all DMUs reordered. With variable payoffs to scale, the super-efficient
DEA is as follows: 

min
[
θ − ε

(
êTS− + eTS+

)]
s.t. ∑n

i=1 λixi + S− = θx0

∑n
i=1 λiyi + S+ = y0

S− ≥ 0, S+ ≥ 0, λi ≥ 0, i = 1, 2, . . . n

, (8)
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where λ represents the slack variable, and the next step introduces the slack variable S+

and the residual variable S−; θ is the efficiency value required in the paper.

3.1.2. Variable Selection and Data Sources

1. Input variables

One of the most critical aspects of the super-efficient DEA evaluation model is the
selection of input-output indicators and samples because they have a great impact on
the final evaluation results. According to Pedraja—Chaparro and Salinas-Jimenez [42],
for ensuring the credibility of the model’s results, the inputs and outputs must be highly
correlated. Forestry inputs should be the various factors of production that are invested to
promote forestry development. In this paper, we study the ecological efficiency of forestry,
therefore, the eco-forestry input and output index system should not only include the
resource consumption factor component, but also the environmental pollution factor.

Forestry labor input: Labor input is the first influencing factor. As in other means of
production, human capital is also a of means of production and plays an important role in
production activities. In his study of economics, Quaker pointed out that people are the
primary factor in the process of wealth creation. Labor input affects technical efficiency
through both quantity and quality. In this paper, labor input refers only to the quantity of
labor input, using the year-end number of forestry system employees to measure forestry
labor input.

Forestry capital input: This paper uses the amount of forestry fixed asset investment
in the current year as the capital input variable. Investment in forestry fixed assets refers to
the monetary sum of man-hours or costs required for the construction and acquisition of
forestry fixed assets in forestry production. Technical efficiency improvement of forestry
production by forestry fixed assets is continuous and long-term and has an important role
in forestry production. The impact of forestry fixed investment on eco-efficiency is not only
expressed in the scale of investment, but also in the stability and continuity of the sources
of forestry investment which will also improve FECO. For this reason, forestry fixed asset
investment can well reflect funds and the smoothness of funding channels impact on FECO.

Forestry ecological input: It is expressed by the forestry ecological construction input.
Forestry livelihood inputs: It is expressed by the forestry infrastructure inputs.

2. Output variables

Desired output: This is the total output value of the forestry industry in each province,
converted to constant prices in 2008 according to the CPI index, in order to exclude the
influence of price changes

Non-desired output: Considering that it is difficult to characterize the environmental
pressure by a single indicator, this paper uses “three waste” emissions from each region to
represent pollution emissions: wastewater emissions from the secondary forestry industry
in each province for wastewater, gas emissions from the secondary forestry industry in
each province for gas emissions, and solid waste emissions from the secondary forestry
industry in each province for solid waste. Specific variables and descriptive statistics are
shown as follows in Table 1.

3.2. FECO Impact Factor Analysis Method
3.2.1. DEA Two-Stage Method and Tobit Model

The DEA two-stage method is an advanced model derived to further explore the
influencing factors and their degree of influence on efficiency values. In the first stage, the
efficiency value of each DMU is calculated using the DEA method; in the second stage,
the efficiency value calculated in the first stage is used as the dependent variable, and the
factors influencing efficiency are used as the independent variables for regression analysis.
The efficiency values measured by the DEA model are between 0 and 1, and the direct use
of ordinary least squares (OLS) would cause bias and inconsistency problems. Therefore,
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the Tobit model is used in this paper and the maximum likelihood estimation method is
applied for regression analysis [43].

Table 1. Results of input-output indicator selection and descriptive statistics.

Indicators Category Indicator Measure Unit Mean Standard Deviation

Input Indicators

Forestry Labor Input Number of employees in forestry system at the
end of the year people 125,626.98 143,349.54

Forestry Capital Inputs Forestry fixed asset investment million yuan 67,432.332 74,093.23
Forestry Livelihood Inputs Forestry infrastructure investment million yuan 19,225.982 21,923.442
Forestry Ecological Inputs Forestry ecological construction investment million yuan 11,228.453 12,664.021

Output Indicators

Desired Output Total output value of forestry industry
by province million yuan 48,958.332 51,027.816

Non-desired Output

Forestry secondary industry
wastewater emissions million tons 44.985 29.384

Forestry secondary industry solid
waste emissions million tons 499,683.331 987,350.119

Forestry secondary industry waste gas emissions million tons 998.672 884.013

The sample data used for the analysis are obtained from the China Forestry Statistical Yearbook and the provincial
Statistical Yearbooks from 2008–2021.

The Tobit model is suitable for regressions where the dependent variable is restricted.
The standard form of Tobit model is:

Yi =

{
β0 + ∑n

t=1 βtxt + µt, i f β0 + ∑n
t=1 βtxt + µt > 0

0, i f β0 + ∑n
t=1 βtxt + µt ≤ 0

, (9)

where Yi denotes the actual dependent variable, i.e., the efficiency value of the ith DMU; xt
denotes the independent variable; β0 denotes the constant term; βt denotes the regression
coefficient of the independent variable; µt denotes the independent error disturbance term
and obeys a normal distribution of N

(
0, σ2).

3.2.2. Variable Selection and Data Sources

1. Explained variables

FECO. In this paper, the forestry eco-efficiency values of different regions in China will
be selected as the explanatory variables, the statistical data of 30 provincial administrative
regions in China will be selected as the support, and the values measured using super-
efficiency DEA will be analyzed from the national sample and different regions, respectively.

2. Explanatory variables

Industrial structure (IS). With the total ban on commercial logging in state-owned
forest areas, forest areas that once had tree harvesting and wood product processing as
their main economic development model must adjust their industrial structure in order to
steadily develop their economy while ensuring sustainable forest development. At present,
different forestry bureaus in forest areas have different dominant industries, and therefore
their main mode of operation is not the same. The primary forestry industry’s main
mode of operation is the above-mentioned planting and breeding of forest products; the
secondary forestry industry’s main mode of operation is the processing of wood products;
and the tertiary forestry industry’s main mode of operation is the vigorous development
of forest tourism and the service industry in the process. In the process of development
and operation of these industries, there is bound to be spatial spillover and spatial benefit
of forestry economic development, therefore the industrial structure is also one of the
influencing factors of FECO. To make this study dynamic, this paper uses the proportion of
forest industry output value to total forestry output value to express [44].

Economic development (PGDP). This paper uses GDP per capita to reflect the sum
of the value of products in a country or region in that year, which to a certain extent
shows the degree of economic development of a region. Economic growth can promote
scientific and technological progress, and a high level of economic development will lead to
a higher demand for technology by the inhabitants of that place, which will lead to a higher
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eco-efficiency of local production through a demand-induced effect [45]. In economically
developed areas, urbanization is bound to develop rapidly, which leads to the rapid
development of the real estate and decoration markets, which provide good opportunities
for the development of the forest products market. Meanwhile, people’s demand for a
good ecological environment is increasing. Urban gardening, greening, forest tourism,
tourism forestry and other industries will develop rapidly. In summary, a good economic
environment can promote forestry industry development as well as the optimization and
upgrading of the forestry structure.

Foreign direct investment (FDI). Based on the analysis of FDI technology spillover
channels, from the perspective of the competition effect, foreign enterprises usually enter
China’s forestry field by virtue of their capital, technology, scale and other advantages. On
the one hand, they will introduce advanced technology, which is conducive to improving
forest enterprises’ ability to introduce, absorb and apply new technologies and promote
technological progress; these can be understood as improvements brought by competition,
which are positive spillover effects. On the other hand, forestry FDI generally does not
choose to invest in greenfield sites, but is more involved in competition for existing forestry
resources and markets, leading to a reduction in the market share of local enterprises, and
coupled with China’s preferential policies for foreign investors, it is easy to squeeze out
domestic capital, thus inhibiting the improvement of TFP, which is a negative spillover
effect. Whether the positive or negative effect is larger or smaller has not been determined,
but to some extent, it can explain the negative effect of FDI on total factor productivity in
Chinese forestry [46]. In this paper, the ratio of forestry FDI to total forestry output is used
to measure FDI intensity.

Investment in scientific research (TI). Forestry is one of the most special industries in
the national economic system, with very strong benefit spillovers. In addition to providing
a large number of products and services for people’s lives and social production, there are
also generally sizable ecological benefits. In addition, forestry has an important role in
ensuring the basic livelihood of forest farmers in forest areas and in rural revitalization. The
most prominent feature of forestry is the long cycle, which determines a longer scientific
research cycle, so the adequacy and stability of scientific research funding is particularly
important [47]. In the paper, the ratio of research funding to GDP is chosen to represent the
intensity of research funding.

Market-based environmental regulation (ER). Environmental regulation includes
command-and-control and market-based. The former mainly includes setting environ-
mental standards, pollutant emission standards and technical standards; the latter mainly
includes establishing an emission charging or taxation system and an emission rights
trading system [48]. In this paper, we use the proportion of the total emission fee levied by
the forestry industry to the total regional forestry output value.

Due to the constraints of the eco-efficiency index calculation formula, the eco-efficiency
values measured by the DEA method range between 0 and 2. In this case, if the traditional
ordinary least squares (OLS) method is used to analyze the actual effect of each influencing
factor on eco-efficiency, the results will be biased and inconsistent. In order to avoid the
bias, the Tobit model was selected to analyze the factors influencing forestry eco-efficiency.
Based on the above variable selection, the Tobit model was constructed as follows:

FECOit = c + β1 ISit + β2PGDPit + β3FDIit + β4TIit + β5ERit + εit, (10)

where β is the elasticity coefficient of variables; FECOit is the explanatory variable of FECO;
ISit, PGDPit, FDIit, TIit and ERit are the industrial structure, economic development,
foreign direct investment, investment in scientific research and environmental regulation,
respectively. The data are mainly obtained from the statistical yearbooks of each province.
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4. Results
4.1. Results of Regional FECO Measurement in China

This paper is based on the input-output panel data from 2008 to 2021 (Tibet is not
included in the analysis because of incomplete data), and the FECO of each province is
measured based on EMS software. Considering the existence of regional heterogeneity, this
paper divides the 30 provinces (regions and municipalities) into three major regions: east,
central and west, with 11 provinces (municipalities) in the east, 8 provinces in the central
and 11 provinces in the west. The measurement results are shown in Table 2.

Table 2. Results of forestry eco-efficiency by province in China from 2008 to 2021.

Region 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Mean

Eastern

Beijing 0.546 0.557 0.588 0.589 0.593 0.603 0.611 0.614 0.628 0.637 0.655 0.672 0.679 0.699 0.619

Tianjin 0.446 0.458 0.468 0.473 0.487 0.499 0.513 0.522 0.546 0.578 0.611 0.624 0.633 0.664 0.537

Hebei 0.412 0.435 0.458 0.478 0.495 0.513 0.543 0.577 0.593 0.623 0.658 0.711 0.733 0.766 0.571

Liaoning 0.233 0.245 0.257 0.267 0.278 0.288 0.291 0.294 0.301 0.311 0.323 0.326 0.335 0.345 0.292

Shanghai 0.712 0.733 0.756 0.788 0.804 0.825 0.866 0.889 0.934 1.114 1.246 1.289 1.355 1.467 0.984

Jiangsu 0.678 0.698 0.716 0.775 0.812 0.866 0.894 0.911 0.928 0.945 0.968 0.977 1.112 1.213 0.892

Zhejiang 0.544 0.576 0.593 0.627 0.655 0.689 0.705 0.727 0.756 0.789 0.822 0.856 0.894 0.912 0.725

Fujian 0.711 0.722 0.746 0.768 0.789 0.844 0.868 0.898 0.843 0.889 0.945 0.978 1.117 1.232 0.882

Shandong 0.678 0.698 0.735 0.787 0.856 0.893 0.944 0.969 1.014 1.115 1.213 1.236 1.278 1.301 0.980

Guangdong 0.588 0.598 0.611 0.624 0.645 0.698 0.723 0.759 0.798 0.834 0.876 0.912 0.944 0.976 0.756

Hainan 0.445 0.457 0.466 0.483 0.496 0.523 0.546 0.569 0.597 0.611 0.635 0.657 0.689 0.788 0.569

Central

Shanxi 0.344 0.367 0.379 0.389 0.428 0.458 0.481 0.544 0.566 0.589 0.595 0.604 0.621 0.677 0.503

Jilin 0.214 0.223 0.236 0.247 0.255 0.267 0.273 0.288 0.301 0.311 0.314 0.318 0.334 0.358 0.281

Heilongjiang 0.211 0.215 0.226 0.236 0.245 0.266 0.274 0.279 0.286 0.293 0.301 0.311 0.315 0.325 0.270

Anhui 0.364 0.375 0.398 0.423 0.447 0.459 0.476 0.498 0.533 0.576 0.589 0.627 0.655 0.725 0.510

Jiangxi 0.675 0.688 0.698 0.734 0.779 0.823 0.839 0.856 0.873 0.895 0.988 1.118 1.128 1.216 0.879

Henan 0.445 0.457 0.476 0.489 0.511 0.537 0.566 0.599 0.613 0.633 0.644 0.658 0.687 0.712 0.573

Hubei 0.388 0.398 0.421 0.433 0.445 0.476 0.498 0.511 0.533 0.556 0.588 0.615 0.633 0.697 0.514

Hunan 0.387 0.391 0.398 0.412 0.425 0.452 0.487 0.513 0.539 0.546 0.568 0.59 0.644 0.662 0.501

Western

Neimenggu 0.113 0.116 0.145 0.152 0.167 0.183 0.196 0.207 0.218 0.234 0.258 0.276 0.283 0.311 0.204

Guangxi 0.168 0.178 0.199 0.216 0.236 0.256 0.289 0.318 0.334 0.357 0.387 0.399 0.416 0.498 0.304

Chongqing 0.435 0.447 0.457 0.487 0.498 0.512 0.523 0.535 0.546 0.567 0.572 0.583 0.591 0.657 0.529

Sichuan 0.301 0.311 0.319 0.326 0.334 0.347 0.358 0.366 0.378 0.399 0.411 0.417 0.424 0.446 0.367

Guizhou 0.244 0.259 0.266 0.279 0.299 0.311 0.326 0.338 0.348 0.362 0.379 0.398 0.411 0.423 0.332

Yunnan 0.211 0.223 0.236 0.247 0.268 0.287 0.295 0.311 0.325 0.346 0.357 0.377 0.398 0.443 0.309

Shanxi 0.339 0.347 0.354 0.367 0.377 0.379 0.382 0.393 0.402 0.411 0.422 0.431 0.438 0.447 0.392

Gansu 0.099 0.102 0.116 0.136 0.142 0.148 0.152 0.166 0.173 0.179 0.188 0.193 0.225 0.258 0.163

Qinghai 0.111 0.114 0.121 0.125 0.132 0.137 0.144 0.165 0.179 0.189 0.193 0.216 0.226 0.268 0.166

Ningxia 0.278 0.299 0.311 0.314 0.325 0.329 0.334 0.356 0.366 0.371 0.374 0.388 0.389 0.394 0.345

Xinjiang 0.087 0.094 0.104 0.113 0.124 0.135 0.147 0.159 0.172 0.188 0.197 0.214 0.223 0.257 0.158

National mean 0.380 0.393 0.408 0.426 0.445 0.467 0.485 0.504 0.521 0.548 0.576 0.599 0.627 0.671 0.504

From the above table, it can be seen that from 2008–2021, the integrated efficiency
of Shandong and Shanghai exceeds or approaches 1.0, and the integrated efficiency of
Jiangsu, Jiangxi and Fujian approaches 0.9. Shandong, Shanghai and Jiangsu show an
upward trend, indicating that the above regions have been effective in adjusting the balance
between forestry production output and environmental pollution. The comprehensive
efficiency of provinces such as Inner Mongolia, Heilongjiang, Jilin and Liaoning is below
0.3. Although the forestry resource stock and forestry output values of these provinces
are high, the input consumption in forestry production is too large, which makes their
comprehensive efficiency hover at a low level. The low ecological overall efficiency of
forestry in Beijing and Tianjin is due to the innate condition of their limited forestry resource
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stocks. The comprehensive ecological efficiency of forestry in western provinces such as
Xinjiang, Gansu and Qinghai is less than 0.2. These regions are constrained by topography,
resources and other factors that do not release the scale benefit; the desertification of land
is serious, which affects forestry production and leads to low comprehensive efficiency.

The average FECO values of the three major economic regions in the country in the
14-year period are, in descending order, the eastern, central and western regions. The mean
value FECO in the eastern region is significantly higher than the national average and the
rest of the provinces and cities, except Hebei, have relatively high efficiency. Hebei province
is a special case and in the preferred position to undertake the transfer of high pollution
industries from Beijing and Tianjin, resulting in its low FECO. Beijing, because of its special
location and position as a political and economic center, has a low level of FECO due to its
inherent condition of limited forestry resource stock; generally speaking, the forestry input
and output of the eastern provinces and cities are more reasonable. The FECO in the central
region is basically above 0.5, except for Jilin and Heilongjiang. Shanxi Province, with a
forest cover of 20.5% in 2016, has relatively few forestry resources and mainly focuses
on coal energy production, and pays less attention to the development and utilization of
forestry resources, resulting in a backward production technology level; this leads to a low
FECO. Hunan Province, with abundant forestry resources, has a low FECO level in the early
stage due to the model of exchanging resources for economic development, and then in the
process of undertaking industrial transformation, actively adjusts the strategic structure
for industry. In the process of undertaking industrial transformation, Hunan Province
actively adjusted its strategic structure for industrial upgrading and transformation, and
FECO reached above 0.5 after 2015. The overall FECO value in the western region is
low, but Chongqing’s FECO is much higher than other western regions due to its special
geographical location and economic level in the west.

4.2. Analysis of Factors Influencing FECO
4.2.1. Multicollinearity Test

Before establishing the model, it is necessary to judge whether there is multicollinearity
among variables. If there is multicollinearity, the partial least squares model is the best
choice, hence it is necessary to conduct the diagnosis of covariance. The higher the variance
inflation factor is, the more serious the multicollinearity is, and there is a positive correlation
between them. Usually, the largest variance inflation factor among all independent variables
is used as an indicator of multicollinearity. If the value is greater than 10, it means that
the corresponding independent variables are approximately linearly combined with other
variables in the linear regression analysis. This will affect the least squares estimation and
the accuracy and reliability of the linear regression analysis cannot be guaranteed, i.e., the
multicollinearity is serious and not suitable for linear regression analysis. Based on this,
SPSS was used to verify the results, and the results can be seen in Table 3.

Table 3. Results of multicollinearity test.

Method IS PGDP ER TI FDI

VIF 3.44 4.56 1.47 3.55 2.47

1/VIF 0.291 0.219 0.680 0.282 0.405

Analyzing the multicollinearity among the influencing factors of FECO, the variance
inflation factor among the independent variables has a maximum of 4.56, thus it can be
determined that there is no significant correlation among the respective variables; hence,
there is no multicollinearity problem. If the problem is serious, the least squares model
cannot be chosen, and the construction of the Tobit model is a better choice.
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4.2.2. Unit Root Test

Panel data may have variable data that are not smooth, thus affecting the authenticity
and credibility of the final estimation results and creating the problem of pseudo-regression.
In order to obtain more robust regression results, the unit root test is conducted on the
panel data before parameter estimation. The more commonly used testing methods are the
Im-Pesaran-Shin (IPS) test, the Augmented Dickey-Fuller (ADF) test and the Levin-Lin-Chu
(LLC) test, whose original hypothesis is the existence of a unit root. To avoid the problem
of inaccurate test results brought by a single test method, this paper integrates the above
three test methods to verify whether there is a unit root in the panel data. If the above three
methods are passed, this indicates that there is no unit root in the sample data. The results
are shown in Table 4.

Table 4. Unit root test results.

Variables LLC Test IPS Test ADF Test Unit Root

IS −94.1390 *** 0.9986 11.4808 *** exist
PGDP −4.2216 *** 3.1436 2.7853 *** exist

ER −5.4437 *** −1.2346 5.7784 *** exist
TI 18.2231 8.5521 −0.7622 exist

FDI 6.3242 9.0053 0.9843 exist
D.IS −66.1453 *** −2.3348 *** 9.0622 *** not exist

D.PGDP −33.4571 *** −4.6782 *** 7.7768 *** not exist
D.ER −39.8953 *** −5.12398 *** 7.0954 *** not exist
D.TI −9.6473 *** −4.3346 *** 3.5562 **** not exist

D.FDI 3.3456 *** 3.4516 *** 1.5674 *** not exist
Note: ***, **** means p < 0.05 and p < 0.01, respectively.

As can be seen from Table 4, all variables fail to reject the original hypothesis, indicating
the existence of a unit root for each variable, while the first-order difference terms of each
variable can reject the original hypothesis at the 1% significance level. This indicates that
there is no unit root in the first-order difference series of each variable, which in turn
indicates that the panel data are first-order single integer and can be subjected to the next
step of regression analysis.

4.2.3. Model Selection Test

There are two methods for model regression, i.e., the fixed-effects model and the
random-effects model; Hausman’s test is required to determine the choice of model. The
original hypothesis model was selected as the random effects model, and the Hausman test
results (in Table 5) were obtained through Eview 6.0.

Table 5. Hausman test results.

Test Summary Chi-Sq.Statistic Chi-Sq.d.f Prob.

Cross-section random 77.1389 6 0.0000

From the analysis results, the p value is 0, so the original hypothesis is rejected, i.e., the
original random effects model hypothesis is rejected, and the fixed effects model is adopted

4.2.4. Model Regression Results

According to the regression model and test method, the regressions were conducted
in China as a whole, and the east, central and west to explore the effects of the same
influencing factors on different regions; this is because regions face various differences in
their development environment, their geography and their development level which are
heterogeneous. The results can be seen in Table 6.
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Table 6. Regression results.

Explanatory Variables National East Centra West

IS −0.1499 ** −0.1543 *** −0.0998 *** −0.1987
PGDP 0.2102 0.1125 *** 0.0761 0.1024

ER 0.0495 ** 0.1203 *** 0.0833 * −0.0293 ***
TI −0.0428 *** 0.0908 *** −0.0765 −0.1239

FDI −0.0765 *** 0.0345 *** −0.1235 *** −0.1897 ***
Note: *, **, *** means p < 0.1, p < 0.05 and p < 0.01, respectively.

The regression coefficients of market-based environmental regulation are significantly
positive in the country, in the eastern and central regions and significantly negative in
the west. Due to the significant differences in the marketization process between regions,
some developed provinces in the east and central regions, most of which have entered the
post-industrialization period, have more sound market mechanisms and a higher degree of
marketization; they rely mainly on market incentives to solve environmental problems. The
western region has relatively low environmental costs, and in order to promote regional
economic development, it takes over some of the low-end forestry industries transferred
from home and abroad. Some forestry enterprises take the payment of sewage charges
as an excuse to continue polluting, and the expenditure on pollution control follows the
marginal decreasing cost: the sewage charges paid are far from enough to cover the costs
of environmental treatment and ecological restoration.

As a whole, investment in scientific research will promote FECO, but from the empiri-
cal perspective, the current impact coefficient of research funding input intensity on the
eco-efficiency of the forestry industry in China is negative and the correlation is significant.
This indicates that current investment in scientific research in China fails to meet the needs
of the forestry industry to improve eco-efficiency. To a certain extent this hinders the
development of forestry eco-safety, as well as the subsequent need to further improve the
technological content and technological level of the forestry industry to make the devel-
opment of modern forestry go in the direction of the circular economy and eco-efficiency
improvement. The intensity of scientific research investment in the eastern region shows
a significant promotion effect, which indicates that forestry industry development in the
eastern region tends to be intensive; the eastern economy is developed, and sufficient
investment in scientific research can meet the needs of regional forestry development, thus
showing a promotion effect. Forestry industry development in the central and western
regions is still based on the scale of rough growth, rather than high-tech orientation, which
in the long run is important for forestry industry development and the improvement of
FECO. However, the elasticity coefficient of central and western China is negative but not
significant, indicating that the negative impact is not significant.

Economic development has a positive but insignificant effect on FECO. Forestry
plantations and the forest industry itself are a more complete industrial chain. The higher
the level of economic development, the more likely it is to make use of industrial policies,
extend the industrial chain, acquire advanced resources such as technology and increase
productivity. Forestry cannot be separated from forests, which have long regeneration
cycles and extremely uneven distribution, and are also constrained by specific factors such
as land. The higher the level of economic development, the stronger the demand for the
multifunctional use of forests, i.e., the more wood, carbon sink and tourism use. The
more prominent the multifunctional problems are, the more obvious the problem of wood
resource supply constraints faced by forestry development. Therefore, even though the
degree of economic development is high, it is difficult to obtain an effective allocation of
capital and technology in the case of shortage of timber resources, which in turn restricts
the improvement of total factor productivity. However, there are large differences among
regions: the eastern region shows a positive correlation, indicating that the eastern region
is more mature in the allocation of resources and technology and is qualitatively better than
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the central and western regions; hence, in the east it is significant to enhance eco-efficiency,
while it is not significant in the central and western regions.

The industrial structure inhibits FECO. This means that the FECO of the regions with
a high proportion of secondary forestry industry in China is relatively low at present, i.e.,
the ecological and environmental costs of increased output value in the forestry industry
are large. Specifically, the negative effect of the eastern region is more significant, which
may be due to the fact that the paper industry, as the main component of the forest industry,
is mostly concentrated in the eastern region. The central region is the main concentration of
China’s wood processing industry, probably because it is a lightly polluting industry, so the
impact of the industrial structure is less than in the east; the impact of industrial structure
on FECO in the western region is not significant. However, with further optimization of
the three industrial structures, it is expected that FECO will be gradually improved in the
future as the proportion of tertiary industries in forestry increases.

The impact of external openness on regional FECOs varies greatly among regions. The
elasticity coefficients of foreign direct investment in the eastern, central and western regions
were 0.0345, −0.1235 and −0.1897, respectively, and all regions passed the significance level
test except for the central region, which did not pass the significance test. It can be seen
that the environmental access threshold of the forestry industry in the eastern region is
higher than other regions, and the quality requirements of foreign businessmen are higher,
thus reflecting a positive effect. Foreign enterprises have a “pollution transfer effect” on the
forestry industry in the central and western regions, i.e., the pollution-intensive forestry
industry undertaken by these regions aggravates the regional environmental pollution
problem. However, the negative correlation at the national level indicates that foreign
direct investment is still dominated by the pollution transfer effect, but it does not pass the
significance test, indicating that this negative effect is tending to be insignificant, and that
FECO can be improved by improving the quality of foreign investment introduced.

4.3. Discussion

This paper adopts the super-efficient DEA model to measure the forestry eco-efficiency
of 30 Chinese provinces and cities (except Hong Kong, Macao, Taiwan and Tibet) for
14 years from 2008 to 2021, and then introduces the Tobit model to analyze the influencing
factors of forestry eco-efficiency in order to better understand the sustainable development
level of forestry. Existing studies mainly focus on studying forestry production efficiency.
For example, Xu et al. [49], Wei [50] and Tan et al. [51] all measured the regional forestry
production efficiency in China based on the Malmquist-DEA model without considering the
impact of forestry industry development on the environment, thus this paper incorporates
environmental factors to study forestry eco-efficiency; this is complementary to existing
studies. Different regions showed significant heterogeneity with large regional differences
in this study, which is consistent with the conclusions reached by most scholars. For
example, Zheng and Yin [20] concluded that the eastern region has significantly higher
eco-efficiency values than other regions and has been at a high efficiency level of about
0.9, while the western and central regions have slowly increased eco-efficiency values to
approximately the 0.6 level. Wu and Zhang [52] also found the same trend for forestry
eco-efficiency.

However, there are some scholars who came to different conclusions. Chen et al. [18]
and Hong et al. [19] concluded that the western region is higher than the central region,
and the opposite conclusion exists with this paper. This is probably because the above
scholars used the traditional DEA model in evaluating eco-efficiency and came to the result
that the maximum is one, and the ones greater than the data are all one. This paper uses
the super-efficient DEA model to break through the efficiency boundary of one and can be
greater than one, which more accurately reflects the actual value of the results and provides
a more accurate depiction of the problem. Meanwhile, this paper uses the Tobit model to
verify the influence of some economic variables on forestry eco-efficiency; it analyzes the
influence on forestry eco-efficiency from environmental regulation, marketization, research
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funding, industrial structure and openness to the outside world, respectively, which are
more variables than previous scholars had considered. The data used are also up-to-date,
which can more accurately illustrate the influence relationship between variables. However,
compared with other scholars, the research in this paper is dominated by linear relationship
research, and does not explore the nonlinear relationship between variables; for example,
Jiang et al. [53] verified the study of the threshold effect of environmental regulation on
forestry eco-efficiency, which is the direction of future research for this paper, i.e., exploring
nonlinear relationships between variables.

5. Conclusions and Implications
5.1. Conclusions

In this study, the super-efficient DEA model is used to measure the FECO of 30 provinces
from 2008 to 2021, and then the Tobit model is introduced to explore the influencing factors
of FECO. The conclusions are as follows.

1. The average value of FECO in the three major economic regions of the country over
14 years is 0.5586, which is still at a low level; this may be related to the rough
development model of Chinese forestry. There is still more room for improvement
when compared with developed countries. The FECO of each region has significant
regional heterogeneity, and the provinces with higher FECO are mainly concentrated
in the eastern region, while the FECO in the central and western regions is lower.
However, FECO in the central region is higher than that in the western region.

2. From the viewpoint of the main factors affecting FECO in China, the regression
coefficients of market-based environmental regulations are significantly positive in
the national, eastern and central regions, while they are significantly negative in
the western region mainly because the environmental costs in the western region
are relatively low. There is no environmental regulation system in place in order to
promote regional economic development and undertake the transfer of some low-end
forestry industries at home and abroad; the intensity of environmental regulations is
low, which means that the ecological efficiency of forestry in this type of regions has a
negative impact. The impact coefficient of scientific research funding investment on
forestry industry eco-efficiency is negative and shows a significant promotion effect
in the eastern region; the elasticity coefficient in the central and western regions is
negative but not significant, indicating that the negative impact is not significant.
The level of economic development has a positive but insignificant effect on the
eco-efficiency of China’s forestry industry. However, it varies significantly across
regions, with the eastern region showing a positive correlation, while the central and
western regions are not significant. Industrial structure has a significant negative
effect on forestry industry eco-efficiency in the national, eastern and central regions,
but the effect of industrial structure on FECO in the western region is not significant.
Foreign direct investment has a negative effect on FECO in the national, central and
western regions, but the central region does not pass the significance test because the
environmental access threshold of the forestry industry in the eastern region is higher
than other regions, and the quality requirements of foreign investors are higher, thus
reflecting a positive effect.

5.2. Recommendations

Rational utilization of foreign investment means taking advantage of forest areas. The
use of foreign capital in forestry significantly affects regional ecological efficiency, and
foreign capital is a major thrust for forestry industry development in terms of capital. The
reasonable and effective use of foreign capital is conducive to improving regional forestry
ecological efficiency. To this end, we should continue to develop the advantages of regional
and forest resources and make reasonable use of foreign capital. Specific suggestions are as
follows: (1) Broaden the channels of attracting foreign capital and diversify the sources of
foreign capital; (2) Rationalize the use and distribution of foreign capital and optimize the
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utilization structure of foreign capital; (3) Create and establish local forestry characteristic
brands, study and learn from foreign advanced forestry experience, and strengthen interna-
tional exchange and cooperation in forestry; (4) Develop and implement realistic industrial
environmental protection standards and guide enterprises in technological innovation;
(5) Increase the research, development and application of industrial environmental protec-
tion technologies; (6) Promote advanced and mature production technologies to improve
resource utilization efficiency.

Local governments should focus on the construction and improvement of environmen-
tal protection infrastructure and increase investment in the development of environmental
protection technologies; in addition, they should strengthen environmental supervision and
regulate the awareness and behavior of forestry enterprises in environmental protection
with legal systems to promote FECO. At the same time, the ecological audit system should
be implemented in the internal management process of forestry enterprises to incorporate
ecological and environmental management into the daily production process of enterprises
and to realize the supervision and evaluation of forestry production processes. A reduction
in production costs and environmental pollution, and ultimately the enhancement of the
comprehensive competitiveness of forest products in domestic and international markets,
can be achieved through continuous technological innovation and management innovation
of enterprises to improve the quality and grade of forest products.

There must be rational use of forestry resources and a change of forestry production
methods. Whether between regions or provinces, the quantity of forestry resources invested,
and the level of eco-efficiency are not absolutely the same. The average value of FECO
is east > central > west. The rational use of resources and appropriate transformation of
forestry production methods to enhance FECO are beneficial. Sending also fully illustrates
the importance of rational use of resources and development of forestry according to local
conditions. The economically-developed eastern major forestry provinces such as the
provinces of Laoning and Fujian can vigorously develop the local forestry economy. The
central provinces such as Jiangxi and Anhui, which are rich in forestry resources and have a
low level of economic development, can make full use of their abundant forestry resources
to vigorously develop low-carbon industries such as ecological forestry. The provinces
and cities with scattered and low-scale forestry production methods in each region should
change their active forestry development methods. Only in this way can the FECO be
improved and forestry be placed on the road of sustainable development.

Each region should design differentiated environmental regulation tools for the
forestry industry according to its ecological carrying capacity and the current situation
of the FECO. With the aim of improving the FECO, targeted regulatory objectives and
policy measures should be formulated according to the actual situation of the region. For
most of the central and western regions with low FECO and backward development levels,
more attention should be paid to the strength and manner of environmental regulation in
future development, especially to prevent the ecological destruction and environmental
damage caused by the westward migration of polluting industries from the developed
eastern regions. The developed eastern regions with strong economic, financial and techno-
logical strength can consider further increasing the intensity of environmental regulations
to stimulate enterprises to strengthen the research, development and application of new
technologies in the field of ecology and environment. When formulating environmental
regulation policies and measures, all regions should consider including the requirement to
improve the eco-efficiency of forestry in their environmental policies.

There are several guidelines for reducing the “pollution paradise” effect. The “pollu-
tion paradise” effect has caused affected forestry enterprises in provinces and municipalities
that have reformed their sewage charges to move their production lines to provinces and
municipalities that have not reformed their sewage charges and to “export” their pollution
to other provinces. This makes the effectiveness of the policy implementation greatly
reduced and further places the pollution pressure on the forestry industry in the provinces
that have not been reformed. Therefore, in order to reduce the “pollution paradise” effect,
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the relevant departments should introduce relevant policies to guide the expectations of
local governments, so that the provinces that have not reformed the sewage levy standards
will not give unconditional acceptance to high-pollution high-emission industries in eco-
nomic development considerations. This will also enable the levy standard to be improved
comprehensively, and the decline of eco-efficiency will be mitigated to a certain extent as
the transfer of high-pollution and high-emission industries receives restrictions. On the
other hand, the relevant departments should also guide the expectations of enterprises in
the provinces where the reform is carried out so that they will not take any chances and
transfer high-pollution and high-emission enterprises out of the country recklessly; this
would make the implementation of the reform of the emission levy standard achieve the
reduction in relevant pollutant emissions in the provinces where it is carried out.

5.3. Limitations and Prospects

1. There is no uniform definition in existing research for forestry eco-efficiency; hence,
this paper provides a definition based on previous scholarly research and the actual
situation of China’s forestry development. This may be subjective and needs to be
improved in the future;

2. The study of forestry eco-efficiency is relatively new and the literature of related
studies is relatively small; thus, in terms of the selection of influencing variables, they
can only be selected exploratively in combination with previous scholars’ studies.
Verifying the influence of more variables on forestry eco-efficiency in future studies is
worthwhile;

3. Economic variables have spatial correlation, for example, forestry eco-efficiency im-
provement in this region may have an impact on forestry eco-efficiency in neighboring
regions, but this paper does not consider spatial effects which may lead to bias in the
research results; thus; the spatial effects of variables can be further explored in future
studies.
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