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Abstract: Climate change will alter the site conditions for European vegetation. This is likely to shift
the potential distribution of species and habitats outside its current boundaries. To enable future
projections on shifts in vegetation potentials, we fitted a multiclass model to the current potential
natural vegetation (PNV) of Europe using climatic predictors. The model was then applied to climate
data of the time slice 2061–2080 with the Representative Concentration Pathways (RCPs) 4.5 and RCP
8.5. With an accuracy of 0.78, simulations well represented the site-equivalent vegetation types of the
current PNV across Europe. Projections show drastic shifts in vegetation potentials in all parts of
Europe. Boreal forests could lose up to 75% of their current potential, while Mediterranean Quercus
forests and steppes would double their potential area. Deserts are projected to be on the rice, and
the potential of currently widespread vegetation such as Fagus forests would be translocated. These
estimated alterations of European vegetation potentials could have great effects on the stability of
current forests, affecting nature conservation strategies and forest management.

Keywords: climate change; random forest classification; vegetation model

1. Introduction

Within the coming decades, climate change will strongly affect the site conditions for
European vegetation. These changing conditions will likely shift the potential distribution
of species and habitats outside their current boundaries. To be able to implement measures
capable of keeping pace with human-induced climate change, modeling of the magnitude
and direction of expected vegetation and habitat changes is an essential first step [1].

A concept to describe the natural vegetation that would most likely occur in a certain
area without human intervention is potential natural vegetation (PNV). PNV is a hypo-
thetical concept assuming the absence of direct human impacts, such as mowing, plowing,
planting and fertilizing and is especially helpful to evaluate areas without virgin vegeta-
tion. It supposes a hypothetical natural reference status of vegetation without degradation
and/or unusual ecological disturbance [2,3]. Within this concept, the potential natural
vegetation is the most suited species composition that will dominate in a location, given
a particular set of environmental constraints. Comparing PNV to actual vegetation is a
suitable tool to estimate land degradation and show vegetation potentials [2]. In its original
definition, the PNV concept is static, and therefore, it does not take climate change into
account [4].

PNV is used in European-managed forests as a general principle to implement the
close-to-nature practice [5]. Even though flaws of the static definition are under discussion,
PNV is still commonly used to assess the naturalness of existing forests [6,7]. Furthermore,
PNV is applied in conservation management and land restoration to define the desired
vegetation [8]. A study observing 17 habitats with different stages of succession over
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25 years showed that the species composition tended to develop toward the corresponding
potential natural vegetation [9], indicating a certain degree of coherence in this case.

For over two decades, a multinational group of European national experts created a
map of the natural vegetation of Europe [10]. This is the first and to date only map of the
potential natural vegetation for all of Europe. In a study based on this map, Hickler and
Vohland et al. (2012) [11] used a generalized dynamic vegetation model to estimate the
potential impact of climate change on twelve main vegetation types. Their simulations
showed considerable shifts in the vegetation potentials in most areas of Europe. Using
two different general circulation models (GCMs), the model projected a change in their
respective potential vegetation by the year 2085 on 31%–80% of the total land area of Europe.
In another simulation with an altering climate, the vegetation classes were predicted to shift
their potential distribution northeast, either extending or shrinking [12]. A study modeling
the vulnerability of ecosystems to vegetation shifts on a global scale found temperate
mixed forest, boreal conifer and tundra and alpine biomes as the most vulnerable [13].
Substantial changes are thus expected for both current and potential vegetation as a function
of global change.

In our study, we use current climatic parameters to fit a multiclass habitat suitability
model (HSM). With 29 vegetation classes, the simulations have enough detailed explanatory
power to be evaluated at a national or even regional level. The model was then used for
simulations with future climate projections. We hypothesize that most of Europe’s land
surface area would be estimated to change in vegetation potentials due to altering climate.
This would marginalize the meaning of today’s PNV as a guideline for future-oriented
ecosystem development aiming at naturalness. Our objective is to create updated climate
change reference maps to help the development of climate-adapted close-to-nature forests.
We focused on the demonstration of the shift in vegetation potentials in Europe.

2. Materials and Methods

The map of the natural vegetation of Europe consists of mosaics of homogeneous
growth areas [10]. In the first two hierarchies of the map, these growth areas are differenti-
ated by climatic site factors. Edaphic conditions are used to differentiate classes in the lower
hierarchies. The vegetation class for each growth area was determined by experts by means
of bioindicators, edaphic and climatic conditions. The PNV classes are therefore based on
climatic factors, but the class boundaries are not defined as parametric values. To estimate
potential changes in the site-equivalent vegetation types of the current PNV of Europe for
different climate change scenarios, we established the concept of climate-adapted potential
vegetation (CaPV). CaPV is the vegetation that would have the greatest potential to develop
in an area under certain climatic conditions. To do so, we applied habitat suitability model-
ing (HSM) to relate hypothetical species’ field observations (PNV) data to environmental
predictor variables. Current climatic parameters from the time slice 1979–2013 were used to
fit a multiclass HSM to 29 zonal PNV classes. To examine the effect of varying atmospheric
CO2 concentrations for the time slice 2061–2080, we applied two different Representative
Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, to project the CaPV classes. All
scientific nomenclature of plant taxa was used according to Simpson (2019) [14]. The PNV
classes with the exact wording as used by Bohn and Gollub et al. (2000) [10] are accessible
in the appendix for comparison (Appendix A).

2.1. Data and Data Preparation

ArcMap version 10.8.1. was used for the processing of all geographical data. We
converted the PNV map of Europe [10] into a point grid with horizontal resolution of
4000 m for all of Europe containing the PNV classes. The data set for the model fit
consisted of 550,049 points. In the vegetation map of Europe [10], the highest hierarchical
level corresponds to a physiognomic–ecological classification similar to that of Ellenberg
(1967) [15] containing both climatically (zonal) or edaphically-based (azonal) primary
formations. At the next level, the vegetation is subdivided into broad vegetation types with
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dominant species or specific species combinations in the main layer (mostly a tree layer).
These class-characterizing species are the most dominant vegetation in that area. For the
multiclass modeling approach, we used 29 zonal classes of the second hierarchy from the
vegetation map of Europe. Zonal vegetation is determined by climatic factors, while azonal
vegetation is characterized by local edaphic and topographic conditions that overrule the
larger-scale effects of climate. Because of their primary association with a specific landscape
type (such as coast, swamp, etc.) largely insensitive to factors of climatic change, azonal
vegetation classes were excluded from the model as non-informative. For practicality, we
had to aggregate some of the PNV classes with very low prevalence into one broader class
(Table 1). Two other vegetation classes (E classes and N classes) were excluded from the
data, because they depended on regional conditions that are not transferable. Atlantic
dwarf shrub heaths (E classes) occur only when very strong coastal winds are present.
Oroxerophytic vegetation (N classes) is only present on shallow soils well removed from
groundwater. These classes were not considered in the simulations although listed as
zonal. The emphasis in our approach lies in modeling the potential distributions of the
dominant species in each vegetation class. By taking competition into account the PNV
map shows the potential realized niche of these class-characterizing species or genera.
Other species accompanying these dominant species may occur in different PNV classes
or only in small parts of a class and can therefore not be considered in our simulations.
Their distribution might underlie partly different conditions as the dominant species. CaPV
does not have the explanatory scope of the PNV when it comes to species composition.
CaPV represents the site-equivalent vegetation types of the current PNV of Europe for the
class-dominating species.

Table 1. Vegetation class specification (Vegetation), class designation (CaPV class), the number of
observations of the class in the dataset (n) and the model performance measures calculated using test
data (Sensitivity), (Specificity) and (Balanced Accuracy).

Vegetation CaPV Class n Sensitivity Specificity Balanced Accuracy

Polar deserts, subnival-nival
vegetation of high mountains
and glaciers

A 3192 0.69 1 0.85

Arctic tundras B1 19,280 0.91 1 0.95
Alpine vegetation B2 11,194 0.67 0.99 0.83
Eastern boreal open woodlands C1 4396 0.59 1 0.79
Western boreal and
nemoral-montane Betula forests C2 8350 0.58 0.99 0.79

Subalpine and
oro-Mediterranean vegetation C3 4769 0.46 1 0.73

Western boreal Picea forests D1 68,887 0.86 0.98 0.92
Eastern boreal Pinus-Picea and
Abies-Picea forests D2 14,678 0.82 1 0.91

Hemiboreal Picea and
Abies-Picea forests D3 35,219 0.83 0.99 0.91

Montane to altimontane, partly
submontane Abies and
Picea forests

D4 5051 0.44 0.99 0.71

Boreal and hemiboreal Pinus
forests (D5) + Montane to
altimontane (subalpine) Pinus
forests (D6)

D5 61,311 0.65 0.96 0.81

Species-poor acidophilous
Quercus and mixed
Quercus forests

F1 27,788 0.67 0.98 0.82

Mixed Quercus-Fraxinus forests F2 7953 0.85 1 0.92
Mixed Quercus-Carpinus forests F3 35,102 0.71 0.98 0.85
Tilia-Q.robur forests F4 17,559 0.68 0.99 0.84
Fagus and mixed Fagus forests
(F5) + Fagus orientalis forests
and Carpinus-Fagus orientalis
forests (F6)

F5 60,531 0.85 0.98 0.91
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Table 1. Cont.

Vegetation CaPV Class n Sensitivity Specificity Balanced Accuracy

Caucasian mixed
Carpinus-Quercus forests F7 4444 0.69 1 0.85

Subcontinental thermophilous
(mixed) Q. robur L. and Q.
petraea Liebl. forests

G1 3931 0.6 1 0.8

Sub-Mediterranean-
subcontinental thermophilous
Q. cerris L. and Q. frainetto
Ten. forests

G2 14,453 0.75 0.99 0.87

Sub-Mediterranean and
meso-supra-Mediterranean
Q. pubescens Willd. forests

G3 13,386 0.63 0.99 0.81

Iberian supra- and
meso-Mediterranean
Q. pyrenaica Willd., Q. faginea
Lam., Q. faginea subsp. broteroi
Cout. and Q. canariensis
Willd. forests

G4 5068 0.68 1 0.84

Meso- and supra-Mediterranean,
as well as relict sclerophyllous
forests

J1 25,968 0.89 0.99 0.94

Thermo-Mediterranean
sclerophyllous forests and
xerophytic scrub

J2 6579 0.82 1 0.91

Subcontinental meadow steppes
and steppe-like dry grassland
alternating with Q. robur forests

L1 23,214 0.74 0.99 0.87

Sub-Mediterranean-
subcontinental herb-grass
steppes, partly meadow steppes
alternating with oak forests

L2 3094 0.79 1 0.89

True steppes M1 45,652 0.94 0.99 0.97
Desert steppes M2 9106 0.92 1 0.96
Northern lowland dwarf
semishrub deserts O1 7596 0.98 1 0.99

Southern lowland-colline dwarf
semishrub deserts with
ephemeroids

O2 2298 0.94 1 0.97

All classes Mean 18,967 0.75 0.99 0.87

As a source for the current and projected climate, the dataset “climatologies at high
resolution for the earth’s land surface areas” (CHELSA) [16] was used. CHELSA provides
a global climate data set in a resolution of ~1 km for various time periods and variables,
including current times (time slice 1979–2013) and several future scenarios. For the pre-
dictions of the fitted model, we selected the time slice 2061–2080 (2070) for the two RCP
scenarios 4.5 and 8.5. RCP 4.5 anticipates a midrange mitigation emissions scenario with a
peak of emissions around 2040. RCP 8.5 is consistent with a high emissions scenario, where
greenhouse gas emissions continue to rise throughout the 21st century [17]. The future
climate data were derived from four general circulation models (GCMs: HadGEM2-CC,
GISS-E2-R, IPSL-CM5A-LR and MPI-ESM-LR) that were selected out of 38 possible GCMs
in the CHELSA data pool. Model projections highly depend on the choice of the global
circulation model used. Despite the great improvements in these models, the uncertainty of
the future climate remains large [18]. To balance the uncertainties of the projections a sys-
tematic selection of global circulation models by the exclusion of the least realistic is needed
to create an ensemble model. Therefore, we used the advanced envelope approach [19]
to select the four GCMs for the ensemble means. As climatic predictors, a selection of the
so-called bioclimatic variables (Bioclim) was used (Table 2).
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Table 2. Specification and descriptive statistics of the current (1979–2013) climatic parameters used
in the multiclass CaPV model. Min = minimum value, Max = maximum value, Mean = weighted
arithmetic mean and SD = standard deviation.

Parameter Specification Min Max Mean SD

Bioclim 01 Annual Mean Temperature (◦C) −13.3 19.6 6.5 4.9

Bioclim 04 Temperature Seasonality
(SD (monthly means)) 2.6 13.1 8.4 2.1

Bioclim 12 Annual Precipitation (mm/year) 142 3773 667.6 273.1

Bioclim 15 Precipitation Seasonality
(coefficient of variation) 5 104 29.8 10.3

Bioclim 18 Precipitation of Warmest Quarter
(mm/quarter) 0 866 193.3 79.2

The Bioclim variables are supposed to be more biologically relevant than the original
monthly climate layers, from which the Bioclim variables are derived [20]. In Figure 1,
we provide boxplots to illustrate the relationships between the climatic variables and the
PNV classes. Because of the chance that regional, annual precipitation patterns shift with
ongoing climate change [21], we refrained from using Bioclims in the model that refer to
the “wettest” or “driest” quarter. All climatic parameters, present and future, originate
from the CHELSA dataset and were resampled to match the spatial resolution of 4 km of
the response variables layer. Further specifications and values of the parameters used in
the model can be viewed in Table 2.
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Figure 1. Boxplots of the climatic range of the CaPV classes within the parameters. Bioclim 01
= annual mean temperature (◦C); Bioclim 04 = temperature seasonality (Std (monthly means));
Bioclim 12 = annual precipitation (mm/year); Bioclim 15 = precipitation seasonality (CV); Bioclim
18 = precipitation of warmest quarter (mm/quarter). Specifications of the CaPV classes are given in
Table 1.
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2.2. Modeling

Data preparation and modeling were performed with RStudio version 1.3.959 [22].
The randomForests 4.7-1 package [23] was applied to fit a multiclass model for the 29 CaPV
classes. Random forest combines several randomized decision trees, where randomness is
introduced by training each decision tree on a randomly sampled subset of the training
data. Random forests have been shown to efficiently handle large training datasets with
many nominal classes [24]. Further advantages of this algorithm are a very high classifi-
cation accuracy, its ability to model complex interactions among predictor variables, to
model nonlinear and nonmonotonic relationships, to maximize information content in
incomplete datasets, the capability to determine variable importance and its robustness to
overfitting [25,26]. In comparison with other multiclass model approaches, random forests
show a solid predicting performance, usually ranking among the top classifiers [2,27–29].
Random forests can cope with complex interactions and even highly correlated predictor
variables [30]. To still avoid collinearity and keep the model as simple as possible to avoid
overfitting, we selected the variables using the variance inflation factor (VIF) analysis [31].
We dismissed variables until there was no evidence of collinearity (VIF) < 5. The model
was fitted with the variables Bioclims 1, 4, 12, 15 and 18. For details of the parameters see
Table 2. The random forest algorithm “spreads” the variable importance across all variables.
The importance of the variables (Figure 1) is explained as the mean decrease in Gini and
indicates how each variable contributes to the homogeneity of the nodes and leaves in
the resulting random forest. It describes the total decrease in node impurity from using
a variable on the binary splits in the nodes, averaged over all trees [32,33]. If the variable
is useful, it tends to split mixed-labeled nodes into pure single class nodes. With random
forests, it is possible to visualize the effect of each variable for each vegetation class and
make the partial dependence visible in plots. This opens up the possibility to compare the
modeled effects of the variables on each class with findings in vegetation science.

The random forest model was fit for the whole extent of the vegetation map of Europe
with the current (time slice 1979–2013) climatic variables. The projections were made with
RCP 4.5 and RCP 8.5 for the same extent with a grid resolution of 4 km. To evaluate
model performance, we used the classification accuracy value (ACC), which compares
the correctly classified cases with the total. The sensitivity (true-positive rate), specificity
(true-negative rate) and balanced accuracy (sensitivity/2 + specificity/2) were used to show
the predictive performance of each class (Table 1 and Appendix B). Cohen’s Kappa can also
cope with random correct classification and is therefore a “chance corrected coefficient of
agreement” [34]. All of these performance indices score the performance of a model on a
scale from 0.00 to 1.00, where 1.00 stands for the perfect model. In our random forest model,
the optimal number of variables randomly sampled as candidates at each split (mtry) was
three. Our model consisted of 400 trees having between 53,800 and 55,000 nodes each.
In the 29 different classes, observations ranged from 2298 to 68,887 raster cells (Table 1)
depending on their prevalence in Europe. Random forests use a different bootstrap sample
for each tree. Thus, it is easy to tune without requiring an independent validation data
set [32]. To still have more validation possibilities, like the calculation of Cohen’s Kappa,
30% of the data (220,020 data points) were randomly left out as test data.

3. Results
3.1. Model-Based Representation of the Current PNV Map

The random forest model had an out-of-bag (OOB) error rate of 21% (see confusion
matrix in Appendix B). When calculated with the test data, the model showed an overall
accuracy (ACC) of 0.78, a mean balanced accuracy of 0.87 (ranging from 0.71 to 0.99) and
a Cohen’s Kappa value of 0.77. When comparing the original data (Figure 2A) to the
corresponding model-based representation in a map (Figure 2B), very few differences can
be found. Prediction errors mostly occurred as single pixels that were misclassified for a
spatially neighboring class.
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Figure 2. Vegetation potentials of Europe: (A) Original data (zonal vegetation of map of Europe
(Bohn et al. 2000)), (B) corresponding model-based representation of this map for current climate
data (averaged for 1979–2013), (C) projection for RCP 4.5 and (D) projection for RCP 8.5 for time slice
2061–2080 (2070). Class abbreviations are given in Table 1.

In the model, a low sensitivity occurred mostly in infrequent classes with a large
climatic range. Classes with exceptionally low-performance measures were montane to
altimontane, partly submontane Abies and Picea forests (D4), with a sensitivity of 0.44, and
subalpine and oro-Mediterranean vegetation (C3), with a sensitivity of 0.46. In contrast,
the predictions for arctic tundras (B1), steppes (M1 and M2) and deserts (O1 and O2)
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showed outstanding performance with sensitivities above 0.9. See Table 1 for more model
evaluation metrics for every vegetation class.

3.2. Variable Importance

Temperature Seasonality (Bioclim 04) was the most important single predictor, fol-
lowed by the annual mean temperature (Bioclim 01). The precipitation of the warmest
quarter (Bioclim 18) had the best predictive power among the precipitation parameters,
followed by annual precipitation (Bioclim 12). The precipitation seasonality (Bioclim 15)
had the least predictive importance for the model (Figure 3).
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vegetation classes.

3.3. Model Projections of the Climate-Adapted Potential Vegetation (CaPV)
3.3.1. Vegetation Shifts

Until 2070, our model projects drastic shifts in the potentials of European vegetation for
both RCP scenarios. When comparing the two scenarios, in RCP 4.5, the vegetation poten-
tials only partly shift outside of their current ranges, while the projections for RCP 8.5 show
practically a complete spatial reorganization of the vegetation potentials (Figure 2C,D).

In northern Europe, the potential for arctic deserts (A classes) and arctic tundra (B
classes) could recede, while potentials for boreal open woodlands (C) and the different types
of boreal forests (D classes) would take their place (Figure 2C). In southern Scandinavia,
the potentials of mixed Quercus-Carpinus forests (F3) and Fagus and mixed Fagus forests
(F5) could replace the potential of the currently most prevalent boreal conifer forests. When
using RCP 8.5 data for the prediction of the potentials of western boreal Picea forests (D1),
eastern boreal Pinus-Picea and Abies-Picea forests (D2), hemiboreal Picea and Abies-Picea
forests (D3) and boreal and hemiboreal Pinus forests (D5) would decline by 60%–80% until
2070 (Figure 2D).

In western Central Europe, the potentials for montane to altimontane, partly sub-
montane Abies and Picea forests (D4), subalpine vegetation (C3) and alpine vegetation (B2)
would successively ascend into higher elevations or disappear if ascent is not possible.
In large parts of Central Europe, areas of Fagus and mixed Fagus forests (F5), would shift
their potential toward Mediterranean Q. pubescens forests (G3). In eastern Central Europe,
the potentials of the species-poor acidophilous Quercus and mixed Quercus forests (F1) and
the mixed Quercus-Carpinus forests (F3) would shift their areas of potential northward.
The sub-Mediterranean-subcontinental thermophilous Q. cerris and Q. frainetto forests (G2)
would gradually expand their area of potential from Bulgaria and Romania to Poland,
Ukraine, Belarus and Russia.

In the south and southwest of Europe, the potentials of sclerophyllous forests and xero-
phytic scrub (J1 and J2) would expand from its current range in manly central and southern
Spain, Portugal, Sicilia, Corsica, Greece, southern France to western France, and most of
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Italy, and in RCP 8.5 even to parts of Belgium, the Netherlands, northern Germany and
Denmark (Figure 2D). These classes would displace mainly the potentials of Mediterranean
Q. pubescens forests (G3), Fagus and mixed Fagus forests (F5) and species-poor acidophilous
Quercus and mixed Quercus forests (F1). In the central Iberian Peninsula, climatic changes
could force the transition of the potential of meso- and supra-Mediterranean, as well as
relict sclerophyllous forests (J1) toward southern lowland-colline dwarf semishrub deserts
with ephemeroids (O2).

The vegetation potentials in the central east of Europe are currently mainly steppes
(M1 and M2) and deserts (O1 and O2). With ongoing climate change, both steppe classes
could expand their potential drastically north- and westward and double their potential
area by 2070 under scenario RCP 8.5.

The biggest loss on a percentage basis in both RCP projections can be seen eastern
boreal open woodlands (C1), which would lose 76%–99% of its current potential, followed
by polar deserts, subnival-nival vegetation of high mountains and glaciers (A), with a
projected loss of 75%–97%. Even some of the very widespread classes could drastically
lose potential. Western boreal Picea forests (D1) could lose 40%–79%, and boreal and
hemiboreal Pinus forests + montane to altimontane (subalpine) Pinus forests (D5) could
lose 29%–64%. Expansions are expected for Caucasian mixed Carpinus-Quercus forests (F7),
Sub-Mediterranean-subcontinental thermophilous Q. cerris and Q. frainetto forests (G2) and
sub-Mediterranean and meso-supra-Mediterranean Q. pubescens forests (G3), all possibly
doubling their potential area. The southern lowland-colline dwarf semishrub deserts with
ephemeroids (O2) could also extend their potential areas substantially. Our projections
show a change in the potentials of zonal vegetation on 66% of the European land surface
for RCP 4.5. and 82% for RCP 8.5. The area changes in all vegetation classes for the two
RCP scenarios are visualized in absolute area values in Figure 4.
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3.3.2. Focus Maps

In order to illustrate the analyzability of the random forest model, we present the
modeled potentials of six of the most prevalent vegetation classes of Europe in detail. We
selected these six vegetation classes because of their current and future relevance for Europe.
The focus maps (Figure 5) illustrate two prevalent boreal vegetation classes (D1 and D5)
losing most of their potential to the Fagus and mixed Fagus forests (F5) and true steppes
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(M1) with ongoing climate change. Furthermore, the potential for sub-Mediterranean
Quercus forests (G2 and G3) could replace the potential for mixed Quercus-Carpinus forests
(F3) and the Fagus and mixed Fagus forests (F5) as the dominant CaPV classes in Central
Europe. The true steppes (M1) will extend their potential throughout eastern Europe into
currently boreal and temperate areas.
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Figure 5. Shift in vegetation potentials of prevalent CaPV classes: Western boreal Picea forests
(D1) ‘petrol areas’; boreal and hemiboreal Pinus forests (D5) ‘dark-blue areas’; mixed Quercus-
Carpinus forests (F3) ‘dark-green areas’; Fagus and mixed Fagus forests (F5) ‘bright-green areas’; sub-
Mediterranean-subcontinental thermophilous Q. cerris and Q. frainetto forests (G2) ‘light-brown areas’;
sub-Mediterranean and meso-supra-Mediterranean Q. pubescens forests (G3) ‘yellow areas’ and true
steppes (M1) ‘dark-red areas’; (A) Original data (zonal vegetation of map of Europe (Bohn et al. 2000));
(B) projection for RCP 4.5 and (C) projection for RCP 8.5 for the time slice 2061–2080 (2070).

3.3.3. Partial Dependence Plots

Partial dependence plots show the response curve of the class along a given predictor
variable. They can be used to compare the influence of the predictors on the different vege-
tation classes in the model (Figure 6). Within the effect curves, the temperature seasonality
(Bioclim 04) shows a high predictive power across all depicted classes. In this parameter, the
curves of the classes show a high fluctuation across the full spectrum. Sub-Mediterranean
and meso-supra-Mediterranean Q. pubescens forests (G3) and Fagus and mixed Fagus forests
(F5) have a high occurrence probability (frequency) when the temperature seasonality is
low. The frequency of true steppes (M1) and boreal and hemiboreal Pinus forests (D5)
increases with the rising temperature seasonality. Instead, western boreal Picea forests (D1),
mixed Quercus-Carpinus forests (F3) and sub-Mediterranean-subcontinental thermophilous
Q. cerris and Q. frainetto forests (G2) occur mainly with moderate temperature seasonality.
The annual mean temperature (Bioclim 01) is also applicable to distinguish between the
CaPV classes across the whole spectrum. The two boreal classes (western boreal Picea
forests (D1) and boreal and hemiboreal Pinus forests (D5)) mainly occur in temperatures
between 3 ◦C and 8 ◦C. The occurrence possibility of the Fagus and mixed Fagus forests (F5)
peaks from 6◦C to 16◦C, while mixed Quercus-Carpinus forests (F3) show a more distinct
peak at 8 ◦C to 10◦C. The two thermophilous Quercus classes peak toward the end of the
scale at 13◦C (G2) and 17◦C (G3). The frequency of true steppes (M1) peaks from 10 ◦C to
the end of the scale at 20◦C. The precipitation of the Warmest quarter (Bioclim 18) is suitable
to differentiate between the classes in the dry spectrum while having limited predictive
power above 350 mm/year. The CaPV classes associated with very little summer precipi-
tation (<100 mm/quarter) are true steppes (M1) and sub-mediterranean-subcontinental
thermophilous Q. cerris and Q. frainetto forests (G2) followed by sub-Mediterranean and
meso-supra-Mediterranean Q. pubescens forests (G3) (~150 mm/quarter) and western bo-
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real Picea forests (D1) (200 mm/quarter). The classes boreal and hemiboreal Pinus forests
(D5) and mixed Quercus-Carpinus forests (F3) both peak at 250 mm/quarter, while Fagus
and mixed Fagus forests (F5) are associated with precipitation >400 mm/quarter. The
annual precipitation (Bioclim 12) also has a limited capability as a predictor in the up-
per part of the spectrum (>1500 mm). In lower spectrum of this parameter there is a
detailed differentiation between the classes. The true steppes (M1) have the highest fre-
quency at 200 mm/year, followed by boreal and hemiboreal Pinus forests (D5) and mixed
Quercus-Carpinus forests (F3) peaking at 600 mm/year. western boreal Picea forests (D1) and
sub-Mediterranean-subcontinental thermophilous Q. cerris and Q. frainetto forests (G2) both
have the highest frequency at 700 mm/year, followed by Fagus and mixed Fagus forests
(F5) (900 mm/year) and sub-Mediterranean and meso-supra-Mediterranean Q. pubescens
forests (G3) (1500 mm/year). The precipitation seasonality (Bioclim 15) also mainly allows
a distinction between classes in the lower CV values. The classes western boreal Picea
forests (D1), boreal and hemiboreal Pinus forests (D5), mixed Quercus-Carpinus forests (F3),
sub-Mediterranean-subcontinental thermophilous Q. cerris and Q. frainetto forests (G2) and
sub-Mediterranean and meso-supra-Mediterranean Q. pubescens forests (G3) all have their
peak in occurrence probability at CV values between 20 and 30. The Fagus and mixed Fagus
forests (F5) peak in this predictor at CV values of 55 and the true steppes (M1) at CV values
of 65 (Figure 6).
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Figure 6. Partial dependence plots of the random forest model for prevalent CaPV classes: Western
boreal Picea forests (D1) ‘petrol lines’; boreal and hemiboreal Pinus forests (D5) ‘dark-blue lines’;
Mixed Quercus-Carpinus forests (F3) ‘dark-green lines’; Fagus and mixed Fagus forests (F5) ‘bright-
green lines’; sub-Mediterranean-subcontinental thermophilous Q. cerris and Q. frainetto forests (G2)
‘light-brown lines’; sub-Mediterranean and meso-supra-Mediterranean Q. pubescens forests (G3)
‘yellow lines’ and true steppes (M1) ‘dark-red lines’.

4. Discussion
4.1. Shifts in Vegetation Potentials

Our projections suggest the possibility of drastic shifts in the vegetation potentials
in Europe within the upcoming decades. Here, we want to provide a brief overview
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of the comparability of our simulations with the findings of other vegetation modeling
studies and species distribution model approaches. We additionally compare our results
to studies using other theoretical approaches, such as dynamic vegetation modeling and
other vegetation and empirical succession analyses. The direct comparison to these latter
approaches is limited, since they describe the empirical occurrence of species, rather than
the PNV. However, for generally comparing potential vegetation shifts all these studies
yield interesting insights.

Our projected decline in the potential of the mesophytic and hygromesophytic conif-
erous and mixed broad-leaved-coniferous forests (D classes) correspond with the future
estimates of the process-based generalized dynamic vegetation model (LPJGUESS) for
Europe [11]. Falk and Hempelmann (2013) and Thurm et al. (2018) [35,36] found a drastic
decrease in the distribution of Picea abies Karst. in Central Europe, which is one of the
dominating species in the CaPV classes western boreal Picea forests (D1), eastern boreal
Pinus-Picea and Abies-Picea forests (D2) and montane to altimontane, partly submontane
Abies and Picea forests (D4). Hot summer drought is probably the most limiting factor for
Picea abies [37,38]. This is in line with the very distinct decrease in the occurrence probabil-
ity of western boreal Picea forests (D1) at 7 ◦C in the effect curve of Bioclim 01 (Figure 6).
According to Woodward and Williams (1987) [39], the low winter temperatures limit the
otherwise highly competitive broad-leaved trees from colonizing the high altitudes and
boreal zone. This corresponds with the very abrupt drop of the occurrence probability for
mixed Quercus-Carpinus forests (F3) and Fagus and mixed Fagus forests (F5) at low tempera-
tures in the effect curves for Bioclim 01 (Figure 6). Rising temperatures enable Fagus and
mixed Fagus forests (F5), as well as other broad-leaved-tree–dominated vegetation classes,
to significantly expand northward. In the mountains across Europe, cold-adapted species
are estimated to decline under continued climate change, and the more warm-adapted
species could expand upslope [40]. This effect would be in line with our CaPV projections,
where the vegetation potentials tend to shift upslope with intensifying climate change.
The limitation for the occurrence of Fagus and mixed Fagus forests (F5) in the south is
drought [41]. In our model, this limit is visible in the strong decline of the probability of
the CaPV class Fagus and mixed Fagus forests (F5), when summer precipitation (Bioclim 18)
falls below ~150 mm (Figure 6). Q. pubescens is well adapted to both short- and long-term
drought [42,43] and is able to withstand low winter temperatures [44]. The partial depen-
dence plots for sub-Mediterranean and meso-supra-Mediterranean Q. pubescens forests
(G3) show a high occurrence probability for summer precipitation (Bioclim 18) between
0 and 200 mm (Figure 6) and a capability of withstanding low winter temperatures. Its
tolerance to high temperatures (Bioclim 01 Figure 6) gives Mediterranean Q. pubescens
forests advantages over other vegetation classes such as Fagus and mixed Fagus forests (F5),
which are much more susceptible to heat and drought in a projected climate with extensive
summer droughts. If the hydric deficits in the Mediterranean intensify due to decreasing
annual precipitation and increasing air temperature, the thermophilous mixed deciduous
broad-leaved forest (G classes) may be replaced by Mediterranean sclerophyllous forests
and scrub (J classes) [45]. An increase in severe summer heat waves was found to have a
negative impact on vegetation cover in the Iberian Peninsula, accelerating the degradation
of scrub lands in the semiarid Mediterranean [46]. These conclusions are consistent with
the projected expansion of the potential of deserts (O classes) in central Spain based on
our simulations. In southeastern Europe, climate projections suggest a very well-defined
trend toward aridity [47,48]. This goes along with the vast expansion of the potential of
steppes (M classes) and deserts (O classes) our model projected for this area. The shifts
in vegetation potentials in Figure 5 and the effect curves in Figure 6 are complementary.
The expected increase in temperature and decrease in summer precipitation in an ongoing
climate change clearly favor the hot and dry adapted vegetation classes sub-Mediterranean-
subcontinental thermophilous Q. cerris and Q. frainetto forests (G2), sub-Mediterranean
and meso-supra-Mediterranean Q. pubescens forests (G3) and true steppes (M1) (Figures 5
and 6). The effect curves illustrate this by the increased frequency of these classes in high
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temperatures (Bioclim 01) and low summer precipitation (Bioclim 18). While the opposite
is apparent for the boreal classes (Figure 6).

4.2. Considerations for Biodiversity and Conservation

Simulating with both RCP scenarios (RCP 4.5 and RCP 8.5), great changes in the
potentials for natural vegetation seem most likely. Large-scale shifts in vegetation potentials
can lead to the widespread decline of currently dominating species due to the disappearance
of suitable habitats. Thresholds may be passed where even established individuals quickly
die off, leading local ecosystems into disequilibrium stages due to lags in migration [49].
Conservation strategies must expand their planning further into the future, a process that
also implies the protection of future patterns of biodiversity [1]. European species with
a small range in distribution are often in locations that represent interglacial relict areas
where cold-adapted species have been able to survive. These so-called rare climates refugia
will potentially shrink disproportionately under future climate change, leading to high
vulnerability for many of the species they contain [50]. This shrinkage of rare climate
refugia can be observed for the potential of the montane and alpine vegetation in our CaPV
maps. The projected lack of potential of the montane to altimontane, partly submontane
Abies and Picea forests (D4), in Central Europe is an example of the vulnerability of these
classes. With a shift in habitat properties as projected by our model, habitats of endemic
species could be pushed beyond their ecological boundaries. Old-growth-dependent
species may also be confronted with a great loss of potential habitat due to simulated
rapid vegetation shifts [49]. Until 2080, more than 50% of the species conserved in the
European Natura 2000 network could lose climatically suitable habitats in the protected
areas [51]. Our findings suggest revising the static view of the state of conservation, e.g., in
Natura 2000 surveys, to be able to assess conservation measures in a climatically dynamic
environment. CaPV can provide insights into how and where vegetation potential shifts
are to be expected. This knowledge is key to adjusting conservation management plans to
meet the future demands of protected species.

4.3. Management Considerations

In field observations studying the development of succession, Prach and Tichý et al.
(2016) [9] found that the estimated average time needed to reach the associated potential
natural vegetation was about 180 years for primary successions and about 260 years for
secondary successions. According to our model, these time periods would exceed the speed
of climate-change-driven vegetation potential changes by far. An increase in tree mortality
due to dry and warm conditions can already be observed throughout Europe [52–55].
Additionally, postglacial migration rates of European tree species have been reconstructed
to range between 6 and 55 km per 100 years [56], while estimated biome shifts as a function
of anthropogenic climate change might require much faster speeds of 300 to 700 km by
the year 2100 [36,57]. We thus conclude that in many areas, climate change could drive
current vegetation outside its climatic suitability long before projected suitable natural
vegetation could replace it by means of natural dispersal and succession. In this condition,
vegetation could shift in disequilibrium with climate, which means that plant communities
do not contain all the species for which that climate is suitable [49]. The consequences
may be delayed local extinctions and slow losses of ecosystem structural components. In
this case, human intervention might be necessary to prevent the degradation of desired
ecosystem services. Our maps can be used in management plans for effective conservation
strategies, as well as forest management. Based on our results, it is highly recommended
that the European nations adjust their national strategies for sustainable, close-to-nature
forest management to the expected shift in potential vegetation [36,58]. The adaption
of the forest policy appears advisable. Diverse forests consisting of indigenous but also
nonindigenous species that might be probably suitable for the climate in a few decades
should be considered and cultivated soon.
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4.4. Methodological Considerations

Models are simplifications of reality created to enhance the understanding of a par-
ticular process or pattern. The focus of this study lies in the climate-induced changing
potentials for vegetation. The realization of the projected shifts in these potentials was not
the subject of this study. The used method did not include migration potentials or barriers.
Our modeling approach only considered the dominating species of the vegetation classes
as they were combined in the PNV map. Due to a changing climate, the competitive power
of the different species might change within habitats. Furthermore, the emergence of new
unique climatic combinations might lead to novel combinations of species not represented
by any of the used vegetation classes. These effects could also not be considered with our
method. Especially on a local scale, there are more site factors than the used variables can
represent. These small-scale factors might lead to discrepancies between our prediction
and the real potentials in the field. These effects may already be unrepresented in the
vegetation map of Europe [10]. Areas where the climate changes in a way that there is no
equivalent in Europe’s current climate are outside the model boundaries. Yet, the model
makes predictions without revealing that it predicts into untrained predictor combinations.
To examine the climatic dissimilarity between Europe’s current climate with the used future
climate data the multivariate environmental similarity surface (MESS) analysis [59] was
applied. The unrepresented areas differ just slightly from Europe’s current climate and
only make up 3% of RCP 4.5 and 6% of RCP 8.5 of the European land surface. In some
areas of Europe, especially the central east, the projection maps seem somewhat blurred.
Hypothetically, this could be due to creating ensemble means of the different GCMs for the
climate scenarios. When projected changes are averaged over the entire area of Europe, the
spatial variation of each GCM may become diluted [19].

The random forest algorithm was very suitable to create a robust classification model.
The comparison between the original maps and the simulations for the present showed only
minor differences. In some areas, the sharp borders of the original data were not reproduced
by the model. This is caused by the fact that the vegetation map of Europe is divided in a
mosaic-like fashion, where each polygon represents unique site conditions. Our prediction
maps, on the other hand, consist of raster pixels with unique parameter values per pixel.
The effect curves for the vegetation classes are interpretable and correspond with findings
of vegetation science. The model is a novelty in the resolution of 29 vegetation classes used.
Given the differentiated separation, the CaPV classes have enough explanatory power to
be considered in national or even regional forest management plans.

5. Conclusions

With the comprehensively analyzed database, it was possible to create a robust model
with 29 vegetation classes. The model displayed a very good representation of the site-
equivalent vegetation types of the current PNV across Europe. Our attempt can be consid-
ered as a good trade-off between the precision of vegetation potential maps even at regional
scale and generality by keeping the model as simple as possible with five predictors. With
29 vegetation classes, our approach is a novelty in precision and can therefore be seen
as an innovation for further studies. The results show drastic shifts in the potentials for
vegetation across Europe for both climate scenarios (RCP 4.5 and RCP 8.5). This stresses
the importance of further complementary research on the potentials of additional species to
obtain a more tangible understanding of vegetation able to cope with expected future con-
ditions. This study’s results may serve as a basis for forest conservation and management
under global warming.
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Appendix A

List of Zonal PNV (CaPV) Classes. Nomenclature follows the vegetation map of
Europe9 [10].

• A.1 = Arctic polar deserts;
• A.2 = Subnival-nival vegetation of high mountains in the boreal and nemoral zone;
• B.1 = Arctic tundras;
• B.2 = Alpine vegetation (Alpine grasslands, low creeping shrub, dwarf shrub and

shrub vegetation) in the boreal, nemoral and Mediterranean zone;
• C.1 = Eastern boreal open woodlands (Betula pubescens subsp. czerepanovii, Picea obovate,

Pinus sylvestris);
• C.2 = Western boreal and nemoral-montane birch forests (Betula pubescens s. l.), partly

with pine forests (Pinus sylvestris);
• C.3 = Subalpine and oro-Mediterranean vegetation (forests, shrub and dwarf shrub

communities in combination with grasslands and tall-forb communities);
• D.1 = Western boreal spruce forests (Picea abies, P. obovate, P. abies x P. obovate) partly

with Pinus sylvestris, locally with birch (Betula pubescens s. l., B. pendula), alder (Alnus
incana) or mixed forests;

• D.2 = Eastern boreal pine-spruce (Picea obovate, Pinus sibirica) and fir-spruce forests (Picea
obovate, Abies sibirica), partly with Betula pubescens subsp. czerepanovii, Larix sibirica;

• D.3 = Hemiboreal spruce (Picea abies, P. abies, P. obovate, P. obovate) and fir-spruce forests
(Picea obovate, P. abies x P. obovate, Abies sibirica) with broad-leaved trees (Quercus robur,
Tilia condata, Ulmus glabra; Acer platanoides, etc.);

• D.4 = Montane to altimontane, partly submontane fir (Abies alba, A. nordmannia) and
spruce forests (Picea abies, P. omorika, P. orientalis) in the nemoral zone;

• D.5 = Boreal and hemiboreal pine forests (Pinus sylvestris), partly with Betula pubescens
s. l., Picea obovara, P. abies;

• D.6 = Montane to altimontane (subalpine) pine forests (Pinus peuce, P. sylvestris, P.
kochiana) in the nemoral zone;

• E = Atlantic dwarf shrub heaths;
• F.1 = Species-poor acidophilous oak and mixed oak forests (Quercus robur, Q. petraea,

Q. pyranaica, Pinus sylvestris, Betula pendula, B. pubescens, B. pubescens subsp. Celtiberica,
Castanea sativa);

• F.2 = Mixed-oak–ash forests (Fraxinus excelsior, Quercus robur, Ulmus glabra, Quercus petraea);
• F.3 = Mixed-oak–hornbeam forests (Carpinus betulus, Quercus robur, Q. petraea, Tilia cordata);
• F.4 = Lime–pedunculate oak forests (Quercus robur, Tilia cordata, partly Acer platanoides,

A. campestre, Ulmus glabra);
• F.5 = Beech and mixed beech forests (Fagus sylvatica, partly F. sylvatica subs. Moesiaca,

Abies alba);
• F.6 = Oriental beech forests and hornbeam- Oriental beech forests (Fagus sylvatica

subsp. Orientalis, Carpinus betulus);
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• F.7 = Caucasian mixed hornbeam-oak forests (Quercus robur, Q. petraea, Q. iberica,
Q. pedunculiflora, Q. macranthera, Carpinus betulus, C. orientalis, etc.);

• G.1 = Subcontinental themophilous (mixed) pedunculate oak and sessile oak forests
(Quercus robur, Q. petraea, Q. dalechampii, Q. polycarpa, Pinus sylvestris, Acer tataricum);

• G.2 = Sub-Mediterranean-subcontinental themophilous bitter oak and Balkan oak forests
(Quercus cerris, Q. petraea, Q. frainetto, Q. dalechampii, Q. pedunculiflora, Q. pubescens,
Q. virgiliana, Q. polycarpa, Q. hartwissiana, Carpinus orientalis, Fraxinus ornus);

• G.3 = Sub-Mediterranean and meso-supra-Mediterranean downy oak forests, as well
as mixed forests (Quercus pubescens, Q. virgiliana, Q. trojana, Fraxinus ornus, Ostrya
carpinifolia, Carpinus orientalis);

• G.4 = Iberian supra- and meso-Mediterranean Quercus pyrenaica, Q. faginea, Q. faginea
subsp. broteroi and Q. canariensis forests;

• Gla = Glaceirs;
• H = Hygro-thermophilous mixed deciduous broad-leaved trees;
• J.1 = Meso- and supra-Mediterranean, as well as relict sclerophyllous forests (Quercus

ilex, Q. ilex subsp. Rotundifolia, Q. coccifera, Q. suber, Pistacia lentiscus);
• J.2 = Thermo-Mediterranean sclerophyllous forests and xerophytic scrub (Quercus

suber, Q. ilex subsp. Rotundifolia, Olea europaea, Ceratonia silique, Periploca angustifolia,
Rhamnus lycioides);

• K.1 = Pine forests and pine woodlands (Pinus sylvestris, P. nigra agg., P. heldreichii,
P. halepensis, P. brutia, P. pityusa);

• K.2 = Meso- and supra-Mediterranean fir forests (Abies pinsapo, A. cephalpnica);
• K.3 = Juniper and cypress open woodlands and scrub (Juniperus thurifera, J. excelsa,

J. foetidissima, J. polycarpos, Cupressus sempervirens);
• L.1 = Subcontinental meadow steppes and steppe-like dry grassland (Festuca rupicola,

F. valesciaca, Stipa tirsa, S. pennata, Poa aangustifolia, Agrostis vinealis) alternating with
pendunculate oak forests (Quercus robur);

• L.2 = Sub-Mediterranean-subcontinental herb-grass steppes, partly meadow steppes
(Festuca valesciaca, Stipa spp., Bothriochola ischaemum, Chrysopogon gryllus) alternating
with oak forests (Quercus pubescens, Q. robur, Q. pendunculiflora) with Acer tataricum

• M.1 = True steppes (Stipa pennata, S. trisa, S. dasyphylla, S. ucrainica, Festuca valesiaca,
Koeleria macrantha);

• M.2 = Desert steppes (Stipa lessingiana, S. sareptana, Festuca valesiaca, Artemisia spp.)
• N = Oroxerophytic vegetation (thorn-cushion communities, tomillares, mountain

steppes, partly scrub);
• O.1 = Northern lowland dwarf semishrub deserts;
• O.2 = Southern lowland-colline dwarf semishrub deserts with ephemeroids.
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Appendix B

Confusion matrix of the random forest model with class errors.
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run towards potential natural vegetation? An analysis across seres. J. Veg. Sci. 2016, 27, 515–523.
10. Bohn, U.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H.; Weber, H.; Hennekens, S. Map of the natural vegetation

of Europe. Scale 2000, 1, 500.
11. Hickler, T.; Vohland, K.; Feehan, J.; Miller, P.A.; Smith, B.; Costa, L.; Giesecke, T.; Fronzek, S.; Carter, T.R.; Cramer, W. Projecting

the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation
model. Glob. Ecol. Biogeogr. 2012, 21, 50–63.

12. Bakkenes, M.; Alkemade, J.; Ihle, F.; Leemans, R.; Latour, J. Assessing effects of forecasted climate change on the diversity and
distribution of European higher plants for 2050. Glob. Chang. Biol. 2002, 8, 390–407.

13. Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due
to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [CrossRef]

14. Simpson, M.G. Plant Systematics; Academic Press: Cambridge, MA, USA, 2019.
15. Ellenberg, H. Tentative physiognomic-ecological classification of plant formations of the earth. Ber. geobot. Inst. ETH Stiftg. 1967,

37, 21–55.
16. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Wilber Soria-Auza, R.; Zimmermann, N.; Linder, H.P.; Kessler, M.

Climatologies at high resolution for the earth’s land surface areas. arXiv 2016, arXiv:1607.00217.
17. Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93,

485–498. [CrossRef]
18. Blázquez, J.; Nunez, M.N. Analysis of uncertainties in future climate projections for South America: Comparison of WCRP-CMIP3

and WCRP-CMIP5 models. Clim. Dyn. 2013, 41, 1039–1056.
19. Lutz, A.F.; ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for

climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 2016, 36, 3988–4005.
20. Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge

University Press: Cambridge, MA, USA, 2017.
21. Christensen, O.; Christensen, J. Intensification of extreme European summer precipitation in a warmer climate. Glob. Planet.

Chang. 2004, 44, 107–117.
22. RStudio-Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2020.
23. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
24. Gall, J.; Razavi, N.; Van Gool, L. An introduction to random forests for multi-class object detection. In Outdoor and Large-Scale

Real-World Scene Analysis; Springer: Berlin/Heidelberg, Germany, 2012; pp. 243–263.
25. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
26. Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in

ecology. Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]
27. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Vol. 1 Springer Series in Statistics; Springer: New York,

NY, USA, 2001.
28. Bourel, M.; Segura, A. Multiclass classification methods in ecology. Ecol. Indic. 2018, 85, 1012–1021. [CrossRef]
29. Crisci, C.; Ghattas, B.; Perera, G. A review of supervised machine learning algorithms and their applications to ecological data.

Ecol. Model. 2012, 240, 113–122. [CrossRef]
30. Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform.

2008, 9, 307. [CrossRef] [PubMed]
31. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate data analysis 6th Edition. J. Abnorm. Psychol. 2006, 87,

49–74.

http://doi.org/10.1093/forestry/cpu018
http://doi.org/10.1111/j.1654-1103.2012.01387.x
http://doi.org/10.1111/j.1466-8238.2010.00558.x
http://doi.org/10.1175/BAMS-D-11-00094.1
http://doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
http://doi.org/10.1016/j.ecolind.2017.11.031
http://doi.org/10.1016/j.ecolmodel.2012.03.001
http://doi.org/10.1186/1471-2105-9-307
http://www.ncbi.nlm.nih.gov/pubmed/18620558


Forests 2023, 14, 239 19 of 19

32. Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227.
33. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017.
34. Reed, J.F., III. Homogeneity of kappa statistics in multiple samples. Comput. Methods Programs Biomed. 2000, 63, 43–46. [CrossRef]
35. Falk, W.; Hempelmann, N. Species favourability shift in europe due to climate change: A case study for Fagus sylvatica L. and

Picea abies (L.) Karst. based on an ensemble of climate models. J. Climatol. 2013, 2013, 787250. [CrossRef]
36. Thurm, E.A.; Hernandez, L.; Baltensweiler, A.; Ayan, S.; Rasztovits, E.; Bielak, K.; Zlatanov, T.M.; Hladnik, D.; Balic, B.;

Freudenschuss, A. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 2018, 430,
485–497.

37. Schlyter, P.; Stjernquist, I.; Bärring, L.; Jönsson, A.M.; Nilsson, C. Assessment of the impacts of climate change and weather
extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim. Res. 2006, 31, 75–84. [CrossRef]

38. Solberg, S. Summer drought: A driver for crown condition and mortality of Norway spruce in Norway. For. Pathol. 2004, 34,
93–104. [CrossRef]

39. Woodward, F.I.; Williams, B. Climate and plant distribution at global and local scales. Vegetatio 1987, 69, 189–197. [CrossRef]
40. Penuelas, J.; Boada, M. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 2003, 9,

131–140. [CrossRef]
41. Jump, A.S.; Hunt, J.M.; Penuelas, J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica.

Glob. Chang. Biol. 2006, 12, 2163–2174. [CrossRef]
42. Rigling, A.; Bigler, C.; Eilmann, B.; Feldmeyer-Christe, E.; Gimmi, U.; Ginzler, C.; Graf, U.; Mayer, P.; Vacchiano, G.; Weber, P.

Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Chang. Biol. 2013, 19, 229–240.
[CrossRef]

43. Vacchiano, G.; Motta, R. An improved species distribution model for Scots pine and downy oak under future climate change in
the NW Italian Alps. Ann. For. Sci. 2015, 72, 321–334. [CrossRef]

44. Pasta, S.; De Rigo, D.; Caudullo, G. Quercus pubescens in Europe: Distribution, habitat, usage and threats. In European Atlas of
Forest Tree Species; Publications Office of the European Union: Brussels, Belgium, 2016; pp. 156–157.

45. Ruiz-Labourdette, D.; Schmitz, M.F.; Pineda, F.D. Changes in tree species composition in Mediterranean mountains under climate
change: Indicators for conservation planning. Ecol. Indic. 2013, 24, 310–323. [CrossRef]

46. Vicente-Serrano, S.M.; Zouber, A.; Lasanta, T.; Pueyo, Y. Dryness is accelerating degradation of vulnerable shrublands in semiarid
Mediterranean environments. Ecol. Monogr. 2012, 82, 407–428. [CrossRef]

47. Cheval, S.; Dumitrescu, A.; Birsan, M.-V. Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena 2017, 151,
74–86. [CrossRef]

48. Kertész, A.; Mika, J. Aridification—Climate change in South-Eastern Europe. Phys. Chem. Earth Part A Solid Earth Geod. 1999, 24,
913–920. [CrossRef]

49. Svenning, J.C.; Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 2013, 100, 1266–1286.
[CrossRef] [PubMed]

50. Ohlemüller, R.; Anderson, B.J.; Araújo, M.B.; Butchart, S.H.; Kudrna, O.; Ridgely, R.S.; Thomas, C.D. The coincidence of climatic
and species rarity: High risk to small-range species from climate change. Biol. Lett. 2008, 4, 568–572. [CrossRef]

51. Araújo, M.B.; Alagador, D.; Cabeza, M.; Nogués-Bravo, D.; Thuiller, W. Climate change threatens European conservation areas.
Ecol. Lett. 2011, 14, 484–492. [CrossRef]

52. Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears,
D.D.; Hogg, E.T. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.
For. Ecol. Manag. 2010, 259, 660–684. [CrossRef]

53. Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sanchez, G.; Penuelas, J. Widespread crown condition decline, food web disruption,
and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478.
[CrossRef]

54. Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat.
Commun. 2020, 11, 6200. [CrossRef]

55. Taccoen, A.; Piedallu, C.; Seynave, I.; Perez, V.; Gégout-Petit, A.; Nageleisen, L.-M.; Bontemps, J.-D.; Gégout, J.-C. Background
mortality drivers of European tree species: Climate change matters. Proc. R. Soc. B 2019, 286, 20190386. [CrossRef]

56. Feurdean, A.; Bhagwat, S.A.; Willis, K.J.; Birks, H.J.B.; Lischke, H.; Hickler, T. Tree migration-rates: Narrowing the gap between
inferred post-glacial rates and projected rates. PLoS ONE 2013, 8, e71797. [CrossRef]

57. McKenney, D.W.; Pedlar, J.H.; Lawrence, K.; Campbell, K.; Hutchinson, M.F. Potential impacts of climate change on the
distribution of North American trees. BioScience 2007, 57, 939–948. [CrossRef]

58. Hanewinkel, M.; Cullmann, D.A.; Michiels, H.-G.; Kändler, G. Converting probabilistic tree species range shift projections into
meaningful classes for management. J. Environ. Manag. 2014, 134, 153–165. [CrossRef]

59. Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/S0169-2607(00)00074-2
http://doi.org/10.1155/2013/787250
http://doi.org/10.3354/cr031075
http://doi.org/10.1111/j.1439-0329.2004.00351.x
http://doi.org/10.1007/BF00038700
http://doi.org/10.1046/j.1365-2486.2003.00566.x
http://doi.org/10.1111/j.1365-2486.2006.01250.x
http://doi.org/10.1111/gcb.12038
http://doi.org/10.1007/s13595-014-0439-4
http://doi.org/10.1016/j.ecolind.2012.06.021
http://doi.org/10.1890/11-2164.1
http://doi.org/10.1016/j.catena.2016.11.029
http://doi.org/10.1016/S1464-1895(99)00135-0
http://doi.org/10.3732/ajb.1200469
http://www.ncbi.nlm.nih.gov/pubmed/23757445
http://doi.org/10.1098/rsbl.2008.0097
http://doi.org/10.1111/j.1461-0248.2011.01610.x
http://doi.org/10.1016/j.foreco.2009.09.001
http://doi.org/10.1073/pnas.1010070108
http://doi.org/10.1038/s41467-020-19924-1
http://doi.org/10.1098/rspb.2019.0386
http://doi.org/10.1371/journal.pone.0071797
http://doi.org/10.1641/B571106
http://doi.org/10.1016/j.jenvman.2014.01.010
http://doi.org/10.1111/j.2041-210X.2010.00036.x

	Introduction 
	Materials and Methods 
	Data and Data Preparation 
	Modeling 

	Results 
	Model-Based Representation of the Current PNV Map 
	Variable Importance 
	Model Projections of the Climate-Adapted Potential Vegetation (CaPV) 
	Vegetation Shifts 
	Focus Maps 
	Partial Dependence Plots 


	Discussion 
	Shifts in Vegetation Potentials 
	Considerations for Biodiversity and Conservation 
	Management Considerations 
	Methodological Considerations 

	Conclusions 
	Appendix A
	Appendix B
	References

