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Abstract: The use of passive acoustic monitoring (PAM) can compensate for the shortcomings of
traditional survey methods on spatial and temporal scales and achieve all-weather and wide-scale
assessment and prediction of environmental dynamics. Assessing the impact of human activities
on biodiversity by analyzing the characteristics of acoustic scenes in the environment is a frontier
hotspot in urban forestry. However, with the accumulation of monitoring data, the selection and
parameter setting of the deep learning model greatly affect the content and efficiency of sound scene
classification. This study compared and evaluated the performance of different deep learning models
for acoustic scene classification based on the recorded sound data from Guangzhou urban forest.
There are seven categories of acoustic scenes for classification: human sound, insect sound, bird sound,
bird–human sound, insect–human sound, bird–insect sound, and silence. A dataset containing seven
acoustic scenes was constructed, with 1000 samples for each scene. The requirements of the deep
learning models on the training data volume and training epochs in the acoustic scene classification
were evaluated through several sets of comparison experiments, and it was found that the models
were able to achieve satisfactory accuracy when the training sample data volume for a single category
was 600 and the training epochs were 100. To evaluate the generalization performance of different
models to new data, a small test dataset was constructed, and multiple trained models were used
to make predictions on the test dataset. All experimental results showed that the DenseNet_BC_34
model performs best among the comparison models, with an overall accuracy of 93.81% for the seven
acoustic scenes on the validation dataset. This study provides practical experience for the application
of deep learning techniques in urban sound monitoring and provides new perspectives and technical
support for further exploring the relationship between human activities and biodiversity.

Keywords: acoustic monitoring; acoustic scenes; deep learning; urban forest; urban sound

1. Introduction

Today, the impact of human activities on biodiversity has spread to every ecosys-
tem on Earth [1]. Assessing how urbanization affects biodiversity has been the focus of
urban forestry in recent decades [2]. Urbanization is growing rapidly across the globe,
but how urban sprawl affects species living in urban areas is still largely unknown [3].
Understanding the interactions between urban and natural systems to provide theories
and solutions for sustainable urban development will be essential for urban forests in the
coming decade [4]. Habitat destruction and invasive species can lead to a general decline
in biodiversity, leading to a reduction in acoustic biodiversity [5]. It becomes increasingly
important to improve our monitoring capabilities and to understand the impact of human
activities on biodiversity [6]. The acoustic quality of habitats is a new aspect of environmen-
tal protection [7]. With the development of sensor technology, PAM techniques are widely
used in various kinds of ecological monitoring [8]. The PAM-based acoustic monitoring
has received more and more attention because it can rapidly and automatically acquire
large-scale spatial-temporal data and minimize the possibility of on-site observer bias [9].
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An important direction in the ecology of soundscape is to explore the distribution of
sound in landscape patterns and the factors influencing it and focus on ecosystem processes
and the impact of human activities on biodiversity [10,11]. The soundscape consists of
biophony, geophony, and anthrophony. Krause et al. [12] defined biophony and geophony
as a collection of biotic and abiotic sounds (wind, rain, thunder, etc.), respectively, while
Pijanowski et al. [11] expanded the soundscape categories by proposing the category of
anthrophony, defining it as sounds produced directly or indirectly by humans. Soundscape
properties vary according to geographic location, vegetation composition and structure,
and time [13]. Identifying acoustic scene patterns in natural landscapes is essential for
understanding the impact of anthropogenic changes on biodiversity. The ecologically
relevant information in sound data will be maximized by classifying various sound data
collected by PAM and then studying the impact of human activities on the environment [14].

Environmental sounds include many types, such as those produced by humans, tools,
animals, liquids, and objects [15,16]. Many methods in environmental sound recogni-
tion come from the field of speech recognition. Among them, classification methods
such as Gaussian mixture models [17], the Hidden Markov model [18], support vector
machines [19], and K-nearest Neighbor algorithm [20] are the most widely used. How-
ever, traditional machine learning algorithms cannot effectively model complex environ-
mental sounds and have poor noise robustness. For this reason, Piczak et al. [21] and
Salamon et al. [22] proposed the utilization of the powerful feature extraction and classifi-
cation capabilities of convolutional neural networks for environmental sound recognition.
Boddapati et al. [23] proposed the application of the image recognition networks to en-
vironmental sound recognition by converting sound signals into different spectrogram
features and then inputting them into AlexNet and GoogleNet, respectively. Chi et al. [24]
argued that a single spectrogram feature cannot provide enough information, and therefore
proposed combining two different spectrogram features before using them for recognition.
In addition, to enhance the classification ability of the models, various effective methods
have been proposed, such as expanding the dataset using data augmentation [22,25], using
multiple deep learning models for joint prediction [26,27], and designing more suitable
deep learning models [28–30]. However, the sound categories used in these methods are
mainly from urban public or indoor environments, and samples from urban forests are less
involved, which cannot meet the needs of biodiversity and human activity studies.

With the development of deep learning, deep learning techniques have been used
to study the relationship between acoustic scenes and biodiversity [31,32]. In acous-
tic scene ecology, deep learning techniques are more often applied in species-specific
identification and target sound recognition. In the 2016 BirdCLEF challenge, deep learn-
ing models were trained to identify 999 bird sounds in different recording scenes [33].
LeBien et al. [34] trained deep learning models to identify frog species in tropical acous-
tic scenes. Tabak et al. [35] collected the calls of ten bat species and used deep learning
models for species identification. These algorithms mentioned above are for single-species
recognition, and few studies have attempted to recognize acoustic scenes with a wide
range of acoustic categories. Among the existing work, Fairbrass et al. [14] constructed two
classification models, CityBioNet and CityAnthroNet, to measure audible biological sounds
and human sounds in complex urban environments, respectively, obtaining more accurate
measurements than traditional acoustic indices. To evaluate the ability of deep learning
methods to classify broadly inclusive acoustic scene and to analyze model uncertainty based
on deep learning methods, Quinn et al. [36] used deep learning models based on trans-
fer learning to identify human noise (anthropophony), wildlife vocalizations (biophony),
weather phenomena (geophony), quiet periods, and microphone interference (ABGQI).
They demonstrated that it was possible to quantify the vocal areas of animal activity and
understand the variability of human noise in this way. However, the classification models
proposed in the above studies gave less consideration to the correlation between artificial
and biological sounds, especially for mixed acoustic scenes such as bird–human sounds.
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Birds are vital vocal species in urban forests, and their songs are an essential indicator
of information on the quality of the urban forests [37]. Sound-producing insect groups
such as crickets, grasshoppers, and cicadas can also be good indicators of landscape and
climate change due to their small size and variable temperature [38]. Therefore, to further
investigate the correlation between animal and human sounds in acoustic scenes and to
better analyze the impact of human activities on biodiversity, guided by the previous
work [39], we classified acoustic scenes into human sound, insect sound, bird sound, bird–
human sound, insect–human sound, bird–insect sound, and silence in this study. On this
basis, we used different deep learning models to learn these acoustic scene samples and
compared the classification performance of different models, and we further analyzed
the requirements of different models on the amount of training data and the number of
training epochs. In terms of models, since deep learning models such as ResNet, DenseNet,
MobileNet, and EfficientNet are very representative and have been widely used in the
field of sound recognition [25,40–42], we used ResNet18, ResNet34, DenseNet_BC_34,
MobileNet_v2, and EfficientNet_b3 to classify the acoustic scene, respectively. The specific
contributions and innovations of this paper are summarized as follows: (1) By converting
the classification problem of different acoustic scenes into an image recognition problem,
this study proposes the DenseNet_BC_34 model to achieve the accurate recognition of
seven types of acoustic scene categories; (2) The innovative construction of an acoustic scene
dataset for analyzing the correlation between human and animal sounds, containing seven
types of acoustic scene data with a total of 7000 samples; (3) We analyzed and compared the
classification performance of ResNet18, ResNet34, DenseNet_BC_34, MobileNet_v2, and
EfficientNet_b3 models on the proposed acoustic scene categories under different training
data amounts and different training epochs and explored the generalization performance
of different models to new data.

2. Methods
2.1. Study Area

In this study, Song Meter SM4 acoustic recorders were used to record the sounds
with obvious urban–rural gradient in the northern, central, and southern urban forests of
Shimen National Forest Park (SM), Maofengshan Forest Park (MF), and Dafushan Forest
Park (DF) in Guangzhou. The SM is located in an exurban area, the MF is located in a
suburban area, and the DF is located in an urban area. All recording sites were located in
typical southern subtropical evergreen broad-leaved forests, and dominant species include
Machilus nanmu, Castanopsis fissa, Liquidambar formosana, and Acacia confusa. According
to human interference factors such as functional zoning and road distribution, 3 sound
collection points were set in each forest park of SM, MF, and DF, with a total of 9 sound
collection points, to ensure that the sounds collected in this study are representative.

2.2. Data Acquisition and Dataset Construction

The acoustic scenes in this study were divided into seven types, including human
sound, insect sound, bird sound, bird–human sound, insect–human sound, bird–insect
sound, and silence. Figure 1 shows typical mel spectrograms for each acoustic scene, and
the specific definitions are shown in Table A1. After acquiring a large amount of data and
setting the types of sounds, the data samples of each scene were manually selected and
labeled using Adobe Audition 2020. The sampling rate of each sample was resampled
to 22,050 Hz, the sampling bit rate is 16 bits, and the time duration is 3–5 s. Finally,
1000 annotated samples were selected for each acoustic scene to form the complete dataset,
denoted as the development dataset. The entire development dataset was sliced into
training and validation datasets in a ratio of 8:2. A test dataset was also constructed for this
study, in which the sample size of human sound, insect sound, bird sound, bird–human
sound, insect–human sound, bird–insect sound, and silence is 113, 100, 90, 158, 159, 100, and
100, respectively. To verify which model has better generalization ability to new samples,
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the data collection time for this test dataset differed from that of the development dataset.
Figure 2 summarizes the methodology for this work.
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2.3. Feature Extraction

Spectrograms are mainly used for audio analysis [43,44]. By converting a one-dimensional
audio signal into a spectrogram, the changes in the signal spectrum over time can be bet-
ter reflected. To identify acoustic scenes, the mainstream practice is to convert the one-
dimensional audio signal into a mel spectrogram [45]. The mel spectrogram can better
characterize the signal properties by mapping the linear frequency scale to the mel scale,
which mimics human auditory characteristics. The mapping relationship between linear fre-
quency and mel frequency is shown in Equation (1). Figure 3 compares a one-dimensional
waveform diagram of a bird sound signal and its corresponding mel speech spectrogram.
In this study, the number of FFT points was 1024, the frameshift was 512, and the number
of mel filter groups was 128. Finally, the size of the mel spectrogram was 128 × 216.

Fmel( f ) = 1125× ln(1 + f
700 )

F−1
mel( fmel) = 700

(
e fmel/1125 − 1

) (1)
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2.4. Data Augmentation

The major drawback of deep learning is the extensive amount of data to train, and
getting a large number of labeled samples manually is laborious. In order to solve this
problem, data augmentation [22] was used to increase the number of training samples. The
data augmentation strategies used in this study include noise addition, amplitude change,
time shifting, and spectrum augmentation.

Noise addition adds Gaussian white noise such that the signal-to-noise ratio is Rsnr
dB, where Rsnr was randomly chosen from 3 dB to 10 dB in this study. Amplitude change
multiplies the audio signal by a random amplitude factor Ramp to reduce or increase the
volume, where Ramp was randomly chosen from −12 dB to 12 dB. Time shifting randomly
divides the audio signal into two parts, which are then swapped and reconnected into a
new signal. Spectrum augmentation operates on the mel spectrogram in terms of frequency
masking and time masking. Frequency masking randomly selects fr consecutive mel
frequency channels [ f , f + fr], where fr is chosen from a uniform distribution U(0, f ′), and
f ′ is the masking parameter. Time masking is similar to frequency masking while working
in the temporal dimension.

2.5. Deep Learning Methods

Deep learning is a branch of machine learning that uses multiple hidden nodes and
nonlinear transformations to represent complex data abstractly. In contrast, traditional
machine learning algorithms are limited in their ability to model complex data without a
priori knowledge [46,47]. Convolutional neural networks (CNNs) are widely used in image
recognition, speech recognition, and other fields, because they can learn different scales
of interrelated features from input data based on mechanisms similar to the human brain.
Among all available CNN models, ResNet, EfficientNet, MobileNet, and DenseNet are
very representative and have been widely used in sound recognition [25,41–43]; ResNet18,
ResNet34, DenseNet_BC_34, MobileNet_v2, and EfficientNet_b3 were selected for perfor-
mance comparison.
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ResNet [48] was proposed by He et al., and by introducing Skip Connection, ResNet
overcomes the problem of gradient disappearance due to the increasing depth of the model,
which eventually makes it possible to design models with more layers. To test the effective-
ness of this model structure, two ResNet models with different depths were selected for
validation. Among them, ResNet18 contains 17 convolutional layers and 1 fully connected
layer, while ResNet34 contains 33 convolutional layers and 1 fully connected layer. Com-
pared with ResNet, DenseNet [49] uses a more aggressive dense connectivity mechanism:
interconnecting all layers, and each layer accepts all the layers before it as its additional
input. To reduce the model parameters as much as possible, the researchers introduced
Bottleneck layers and Compression operations in the model-building process to obtain the
DenseNet-BC model. The DenseNet_BC_34 model we used in this study has 33 convo-
lutional layers and 1 fully connected layer. To build deep learning models more suitable
for mobile devices, Howard et al. [50] proposed MobileNet by using depthwise separable
convolutions, thus building lightweight deep learning networks. MobileNet_v2 [51] is
an improvement on MobileNet, which further improves the expressiveness of the model
by introducing inverted residuals and linear bottlenecks. EfficientNet was proposed by
Tan et al. [52]. They found that the three main dimensions that affect the accuracy of
neural networks are depth, width, and resolution. They obtained a model backbone named
EfficientNet_b0 by the neural architecture search (NAS) [53] technique and then scaled the
above three dimensions simultaneously based on this backbone to obtain the models b1-b7
with a stunning performance. EfficientNet_b3 was chosen for the target model of this study.

2.6. Performance Evaluation

In this study, we used five quantitative criteria. Accuracy (ACC), precision (P), recall
(R) and F1 score (F1), and overall accuracy (OA) were applied to evaluate and compare the
performance of different models, as shown in Equations (2)–(6).

ACC =
TP + TN

TP + TN + FP + FN
× 100% (2)

P =
TP

TP + FP
× 100% (3)

R =
TP

TP + FN
× 100% (4)

F1 = 2× P · R
P + R

(5)

OA =

r
∑

i=1
xii

r
× 100% (6)

Both TP and TN denote samples that are correctly classified by the model, where TP
denotes true positive samples and TN denotes true negative samples. FP is false positive,
indicating the negative samples that are misclassified as positive by the model; FN is false
negative, indicating the positive samples that are misclassified as negative by the model.
Accuracy is considered from the perspective of the total training samples, indicating the
number of correctly predicted samples as a percentage of the total number of samples.
Precision represents the ratio of the number of correctly predicted positive samples to
the number of all predicted positive samples, while the ratio of the number of samples
predicted to be positive and actually positive to the number of all positive samples is called
recall. Accuracy and recall are metrics for evaluating model performance, but there is a
trade-off between them [54]. As a reconciled average of accuracy and recall, the F1 score
is often used as an overall metric. In addition, r denotes the number of samples in the
validation set, and xii denotes the value of the element in the ith row and ith column of the
confusion matrix. In all subsequent experiments, the experimental results were calculated
as the average of three replicate experiments.
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2.7. Experimental Environmant

The learning environment for both CNN models was a computer with a Windows
operating system (Windows 10, Professional, Version-22H2), Inter Core (TM) i7-1107F
central processing unit, and NVIDIA Geforce RTX 2080 Super GPU. Cuda 11.1 and cnDNN
11.2 were used to support the GPU with deep learning. All CNN models were modeled
using the Python tool in the Pytorch framework. Matplotlib (Matplotlib: v3.6.2 library by J.
D. Hunter, https://doi.org/10.5281/zenodo.7275322, accessed on 3 November 2022) and
Librosa (Librosa: v0.9.2 library by B. McFee et al., https://doi.org/10.5281/zenodo.6759664,
accessed on 27 June 2022) were used to export figures, load audio files, and calculate the
mel spectrogram.

3. Results
3.1. Comparison of the Results of Different Models with Different Amounts of Training Data

This section analyzes the classification results of different models for the same vali-
dation dataset under the maximum training epochs (200 epochs) with different training
sample amounts (the sample amounts here refer to the number of training samples for a
single class).

As shown in Table 1, the DenseNet_BC_34 model achieved the highest overall accuracy
when the number of training samples was greater than or equal to 600 compared with
other models. For example, the overall accuracy of the DenseNet_BC_34 model was 92.40%
and 93.81% at training sample numbers of 600 and 800, respectively. The ResNet34 model
achieved the highest overall accuracy with 62.90%, 65.79%, 75.31%, and 83.02% for training
sample numbers of 50, 100, 200, and 400, respectively.

Table 1. The results of different models with different amounts of training data.

Model
OA (%)

50 1 100 1 200 1 400 1 600 1 800 1

ResNet18 53.86 60.33 70.95 81.71 91.79 93.31
ResNet34 62.90 65.79 75.31 83.02 92.12 93.50

EfficientNet_b3 47.40 61.00 70.57 81.76 92.28 93.31
MobileNet_v2 48.33 57.19 67.64 79.31 91.48 92.95

DenseNet_BC_34 54.69 63.21 73.50 80.71 92.40 93.81
1 represents the number of training samples for each acoustic scene. The highest OA of the model with the same
number of training samples is marked in bold.

With the increase in training samples, the accuracy of each model improved accord-
ingly. When the number of training samples increased from 50 to 100, the maximum
improved accuracy of different model was 13.60% and the minimum improved accuracy
was 2.89%; When the number of training samples increased from 100 to 200, the maximum
improved accuracy of different model was 10.62% and the minimum improved accuracy
was 9.52%; When the number of training samples increased from 200 to 400, the maximum
improved accuracy of different model was 11.67% and the minimum improved accuracy
was 7.21%; When the number of training samples increased from 400 to 600, the maximum
improved accuracy of different model was 12.17% and the minimum improved accuracy
was 9.1%; When the number of training samples increased from 600 to 800, the maximum
improved accuracy of different model was 1.52% and the minimum improved accuracy
was 1.03%.

Figure 4 is a visualization of Table 1, clearly showing the trend of the overall accuracy of
each deep learning model after the size of training samples increases. When the number of
training samples was less than 600, the overall accuracy of each model changed significantly;
when the number of training samples was greater than or equal to 600, the increase in
the number of training samples contributed little to the overall accuracy improvement of
each model.

https://doi.org/10.5281/zenodo.7275322
https://doi.org/10.5281/zenodo.6759664


Forests 2023, 14, 206 8 of 17

Forests 2023, 14, 206 8 of 17 
 

 

2.89%; When the number of training samples increased from 100 to 200, the maximum 
improved accuracy of different model was 10.62% and the minimum improved accuracy 
was 9.52%; When the number of training samples increased from 200 to 400, the maximum 
improved accuracy of different model was 11.67% and the minimum improved accuracy 
was 7.21%; When the number of training samples increased from 400 to 600, the maximum 
improved accuracy of different model was 12.17% and the minimum improved accuracy 
was 9.1%; When the number of training samples increased from 600 to 800, the maximum 
improved accuracy of different model was 1.52% and the minimum improved accuracy 
was 1.03%. 

Figure 4 is a visualization of Table 1, clearly showing the trend of the overall accuracy 
of each deep learning model after the size of training samples increases. When the number 
of training samples was less than 600, the overall accuracy of each model changed signif-
icantly; when the number of training samples was greater than or equal to 600, the increase 
in the number of training samples contributed little to the overall accuracy improvement 
of each model. 

 
Figure 4. The trend of the overall accuracy of different models with the change of training samples. 

3.2. Effect of Training Epochs on Model Classification Results 
In this study, the number of training epochs was increased by 50, and the overall 

accuracy was evaluated for 50, 100, 150, and 200 training epochs (the OA in Table 2 repre-
sents the highest overall accuracy obtained by the model up to the current training epoch). 
Table 2 shows the effect of training epochs on the overall accuracy of different deep learn-
ing models with varying numbers of training samples. 

Table 2. The overall accuracy of the different models with different training epochs. 

Model Epoch 
OA (%) 

50 1 100 1 200 1 400 1 600 1 800 1 

ResNet18 

50 2 51.88 59.35 69.52 81.07 91.50 92.83 
100 2 53.64 

(+1.76) 
59.95 

(+0.60) 
70.95 

(+1.43) 
81.71 

(+0.64) 
91.64 

(+0.14) 
93.31  

(+0.48) 
150 2 53.86 

(+0.21) 
59.95 

(+0.00) 
70.95 

(+0.00) 
81.71 

(+0.00) 
91.64 

(+0.00) 
93.31  

(+0.00) 
200 2 53.86 

(+0.00) 
60.33 

(+0.38) 
70.95 

(+0.00) 
81.71 

(+0.00) 
91.79 

(+0.15) 
93.31  

(+0.00) 
ResNet34 50 2 58.50 64.29 75.17 82.72 91.55 92.76 

0 100 200 300 400 500 600 700 800
Number of samples per category

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ResNet18
ResNet34
EfficientNet-B3
MobileNet-V2
Densenet-34

750 800 850
0.92

0.925

0.93

0.935

0.94

Figure 4. The trend of the overall accuracy of different models with the change of training samples.

3.2. Effect of Training Epochs on Model Classification Results

In this study, the number of training epochs was increased by 50, and the overall
accuracy was evaluated for 50, 100, 150, and 200 training epochs (the OA in Table 2
represents the highest overall accuracy obtained by the model up to the current training
epoch). Table 2 shows the effect of training epochs on the overall accuracy of different deep
learning models with varying numbers of training samples.

Table 2. The overall accuracy of the different models with different training epochs.

Model Epoch
OA (%)

50 1 100 1 200 1 400 1 600 1 800 1

ResNet18

50 2 51.88 59.35 69.52 81.07 91.50 92.83
100 2 53.64 (+1.76) 59.95 (+0.60) 70.95 (+1.43) 81.71 (+0.64) 91.64 (+0.14) 93.31

(+0.48)
150 2 53.86 (+0.21) 59.95 (+0.00) 70.95 (+0.00) 81.71 (+0.00) 91.64 (+0.00) 93.31

(+0.00)
200 2 53.86 (+0.00) 60.33 (+0.38) 70.95 (+0.00) 81.71 (+0.00) 91.79 (+0.15) 93.31

(+0.00)

ResNet34

50 2 58.50 64.29 75.17 82.72 91.55 92.76
100 2 62.90 (+4.40) 64.29 (+0.00) 75.31 (+0.14) 83.02 (+0.31) 92.12 (+0.57) 93.50

(+0.74)
150 2 62.90 (+0.00) 65.79 (+1.50) 75.31 (+0.00) 83.02 (+0.00) 92.12 (+0.00) 93.50

(+0.00)
200 2 62.90 (+0.00) 65.79 (+0.00) 75.31 (+0.00) 83.02 (+0.00) 92.12 (+0.00) 93.50

(+0.00)

EfficientNet_b3

50 2 36.31 52.83 67.69 80.26 91.50 92.97
100 2 44.55 (+8.24) 56.93 (+4.10) 69.05 (+1.36) 81.31 (+1.05) 92.28 (+0.78) 93.21

(+0.24)
150 2 47.40 (+2.85) 58.62 (+1.69) 69.47 (+0.43) 81.47 (+0.16) 92.28 (+0.00) 93.21

(+0.00)
200 2 47.40 (+0.00) 61.00 (+2.38) 70.57 (+1.10) 81.76 (+0.29) 92.28 (+0.00) 93.31

(+0.10)
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Table 2. Cont.

Model Epoch
OA (%)

50 1 100 1 200 1 400 1 600 1 800 1

MobileNet_v2

50 2 41.62 50.59 63.17 76.12 90.45 92.36
100 2 44.86 (+3.24) 53.15 (+2.55) 64.81 (+1.64) 78.90 (+2.78) 91.36 (+0.91) 92.79

(+0.43)
150 2 47.67 (+2.81) 55.24 (+2.09) 66.93 (+2.12) 79.19 (+0.29) 91.48 (+0.12) 92.95

(+0.17)
200 2 48.33 (+0.67) 57.19 (+1.95) 67.64 (+0.72) 79.31 (+0.12) 91.48 (+0.00) 92.95

(+0.00)

DensNet_BC_34

50 2 49.24 56.59 69.69 78.41 90.62 91.79
100 2 52.05 (+2.81) 60.57 (+3.98) 72.88 (+3.19) 80.67 (+2.26) 91.78 (+1.17) 92.86

(+1.07)
150 2 53.12 (+1.07) 63.21 (+2.64) 73.41 (+0.52) 80.71 (+0.05) 92.19 (+0.41) 93.64

(+0.79)
200 2 54.69 (+1.57) 63.21 (+0.00) 73.50 (+0.09) 80.71 (+0.00) 92.40 (+0.21) 93.81

(+0.16)
1 represents the number of training samples for each acoustic scene. 2 Epoch. Bolded numbers represent the
maximum value.

As can be seen from Table 2, for different numbers of training samples, the overall
accuracy of most models improved somewhat with increasing training epochs. However,
the accuracy of some models stopped growing after 100 training epochs. For example, in
ResNet34, when the training data amount was greater than or equal to 200, the overall
accuracy did not increase after 100 epochs, which was 0.0%; in ResNet18, when the training
data amount was 200, 400, and 800, respectively, the overall accuracy also did not increase
after 100 epochs of training.

By analyzing, it can be found that for almost all different amounts of training data,
all tested models have the largest increase in overall accuracy after increasing the training
epochs from 50 to 100. As an exception, ResNet34 had the largest overall accuracy growth
after increasing the training epochs from 100 to 150 at a training data volume of 100, while
MobileNet_V2 had the largest overall accuracy growth after raising the training epochs
from 100 to 150 at a training data volume of 200.

Figure 5 shows the visualization of Table 2, from which we can see more clearly the
trend of the overall accuracy as the number of training epochs increases.
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3.3. Comparison of Different Models’ Ability to Predict New Data

This section analyzes the classification accuracy of different models for new data by
predicting samples from the test dataset to evaluate the generalization ability of different
models for new data. Models used in this section have been trained using the entire
training dataset.

As can be seen from Table 3, the DenseNet_BC_34 model had the highest overall
accuracy of 73.50% for the test dataset, which exceeded the second highest model, ResNet18,
by 2.81%. The model with the lowest overall accuracy was MobileNet_V2, which had an
overall accuracy of 61.18% for the test dataset.

Table 3. Overall accuracy of different models on the test dataset.

Model OA (%)

ResNet18 70.69
ResNet34 69.47

EfficientNet_B3 65.65
MobileNet_V2 61.18

DenseNet_BC_34 73.50
Bolded numbers represent the maximum value.

3.4. Analysis Results of Acoustic Scene Classification Using the DenseNet_BC_34 Mode

The DenseNet_BC_34 model was evaluated for acoustic scene classification using the
validation dataset in this section. This model was chosen because it mostly achieved the
best results when trained with different numbers of training samples (see Table 1) and had
a relatively low number of model parameters and floating-point operations (see Table A2).
It also had the best generalization capability for new data (see Table 3). Figure 6 shows the
confusion matrix of the DenseNet_BC_34 model on the validation dataset.
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Table 4 shows the quantitative analysis results when testing the validation dataset
using the DenseNet_BC_34 model. As shown in Table 4, the DenseNet_BC_34 model had a
strong classification capability for acoustic scenes. From the results of individual categories,
the accuracy (ACC) of each acoustic scene exceeded 97.00%, the precision (P) was higher
than 90.00%, and the recall (R) was greater than or equal to 94.00%, except for BH, and
the F1 score of each scene was higher than 89%. For example, the accuracy, precision,
recall, and F1 scores for B were 98.07%, 91.39%, 95.50%, and 93.40%, respectively. The
classification results of the DenseNet_BC_34 model for each scene showed that the model
could effectively identify each acoustic scene sample from the validation dataset.

Table 4. Quantitative analysis results of the DenseNet_BC_34 model.

Class TP TN FP FN ACC (%) P (%) R (%) F1 (%)

B 191 1182 18 9 98.07 91.39 95.50 93.40

BH 172 1189 11 28 97.21 93.99 86.00 89.82
BI 189 1190 10 11 98.50 94.97 94.50 94.74
H 189 1179 21 11 97.71 90.00 94.50 92.20
I 190 1190 10 10 98.57 95.00 95.00 95.00

IH 188 1190 10 12 98.43 94.95 94.00 94.47
S 195 1192 8 5 99.07 96.06 97.50 96.77

In addition, the results in Table 4 also show that the DenseNet_BC_34 model had some
misclassification results when classifying acoustic scene samples. For example, the FPs of
categories B, BH, BI, H, I, IH, and S were 18, 11, 10, 21, 10, 10, and 8, respectively, while the
FNs were 9, 28, 11, 11, 10, 12, and 5, respectively. Figure 7 shows the visualization of the
embedding features of the validation dataset. As shown in Figure 7, some of the features
are closer together in the feature space, which is a possible cause of misclassification.
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4. Discussion

This study used deep-learning-based acoustic scene classification algorithms to build
a framework that can analyze large amounts of audio data automatically, which can be
an effective tool for researchers to study the relationship between urban biodiversity and
human activities. Using reliable automated analysis tools can significantly reduce time and
labor costs and better prevent the introduction of human error factors.

4.1. Effect of Training Data Amount and Epochs on Model Classification Performance

The minimum amount of data and the minimum number of epochs for deep learning
training are vital to the workload and efficiency of researchers. In terms of training data
amount, we calculated the overall accuracy for different models with training data amounts
of 50, 100, 200, 400, 600, and 800, respectively. The results showed that the overall accuracy
of all models improved as the number of data increased. When the training data amount
increased from 400 to 600, the overall accuracy of the five models increased the most
on average, by 10.71%. When the training data amount was greater than 600, the overall
accuracy of the models had the lowest increase. For example, after the sample size increased
from 600 to 800, the average growth of the overall accuracy of the five models was only
1.36%. By analyzing the result, we believe that 600 training samples per category are
sufficient for the number of sound samples required in this study. The overall accuracy of all
tested models on the validation dataset had exceeded 92% at a data volume of 600 training
samples per category, and adding more samples had little benefit on the improvement of
model accuracy after exceeding 600 samples. On the one hand, although deep learning
is a data-driven approach, more training data can lead to better model capabilities [55];
on the other hand, related studies also point out that when the classification accuracy
improvement is small, researchers should make cost considerations to justify the effort of
collecting more data and performing labeling [56].

Although the overall accuracy of most of the models showed an increasing trend as
the number of training epochs increased, it showed little improvement after 100 training
epochs. The overall accuracy stabilized at a low level with a small amount of training
sample data, which indicates that the models were unable to learn more information with
insufficient data, which needs to be changed by increasing the amount of training data
rather than simply increasing the number of training rounds.

4.2. DenseNet_BC_34 Model for Classification of the Acoustic Scenes

The DenseNet_BC_34 model has certain advantages over other models. Firstly, the
model can achieve an overall accuracy of 92.40% and 93.81% among all models with
a training sample size of 600 and 800, respectively; secondly, there are also significant
differences between the floating-point operations and the number of training parameters of
the five tested models. Table A2 shows that both ResNet18 and ResNet34 have much larger
floating-point operations than the other models, while the remaining three are relatively
small in this respect. DenseNet_BC_34 has the smallest number of parameters among the
remaining three models, which is only 0.12 M. In addition, as shown in Section 3.3, the
DenseNet _BC_34 model also had the best predictive performance for new data in the test
dataset among all models. Therefore, the DenseNet _BC_34 model is superior to other
models in this study.

The DenseNet_BC_34 model obtained after training on the complete training dataset
had an overall accuracy of 93.81%. The quantitative analysis of the seven categories of data
in the validation dataset, as seen in Table 4, shows that the ACC of each acoustic scene
was above 97.00%, which indicates that the model can distinguish each of our predefined
acoustic scenes well. It is very capable in the ecological acoustic scene classification task.
The classification process will inevitably result in some misclassified samples. As seen from
the confusion matrix in Figure 6, the misclassification occurred mainly between BH and H,
BH and B, and BI and B. These are misclassifications that occurred between mixed sound
types and single sound types. The analysis of the misclassified samples revealed that the
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main reason for the misclassifications was the relatively low sound intensity of a specific
category in the mixed sound samples, which the model could not recognize. It is common
in reality, where the intensity between different types of sounds may differ significantly
due to the distance, making it more difficult to identify samples of mixed categories of
sounds. We extracted embedding features from the samples of the validation dataset and
used the UMAP algorithm [57] to reduce their dimensionality and visualize them, as shown
in Figure 7, from which we can see that there is a high degree of similarity between some of
the categories.

Considering that the models will be used to predict the environmental sound data
acquired at different periods after the models are trained, a test dataset was specifically
set up in which the data were obtained at different times from those in the development
dataset, to evaluate the generalizability of different models to new data. As shown in
Table 3, we can see that the DenseNet_BC_34 model had the best generalizability for new
data, with an overall accuracy of 73.50%, which was somewhat attenuated compared to
the overall accuracy of 93.81% achieved on the validation dataset. The reason may be that
the same acoustic scene contains a variety of sound patterns, and the patterns in the test
dataset have not yet been learned during the model training process and ultimately cannot
be recognized by the model. This result instructs the researchers concerned that in the
process of constructing training datasets for the same category of an acoustic scene, they
also need to collect as many samples with different sound patterns as possible to enrich the
sound patterns that can be learned during the model training and eventually improve the
classification ability of the model for new data.

4.3. Comparison of Related Studies

In contrast to other related studies, for example, Mullet et al. [58] used a machine-
learning-based stochastic gradient boosting method to analyze three categories of acoustic
scenes and investigated the relationship between different acoustic scene components
over time and space in winter. In Mullet et al.’s study, they manually identified and
labeled nearly 60,000 sound samples, which is a very labor-intensive task, while our
proposed method requires less than 5000 sound samples to be labeled (600 samples per
acoustic scene), requiring only a small amount of manual labeling cost. In the study by
Quinn et al. [36], they classified sound categories into five types: anthropophony, biophony,
geophony, quiet periods, and microphone interference. They trained the data using a
pre-trained MobileNet_v2 model based on transfer learning. To increase the number of
training samples, they also used the Freesound dataset [59] as auxiliary data added to
the training process. However, in our study, all data came from real samples of actual
scenes, which can make the model fit the real scenes to a certain extent. Quinn et al. [36]
used a transfer-learning-based method to reduce the training time of the model, which is a
worthwhile practice. In addition, in terms of acoustic scene categories, both of these studies
only classified broadly inclusive acoustic scenes such as geophony or biophony. In contrast,
our study made a distinction between mixed sound types such as BH and IH, which will
help further analyze which birds or insects are more likely to coexist with humans. In the
study of other animal populations, Dufourq et al. [60] designed and trained a high-accuracy
deep learning model for detecting the call of Hainan gibbon Nomascus hainanus in the
massive data collected by PAM. In this way, the efficiency of wildlife conservation can be
improved, but how to obtain enough call samples of the target species is also a problem
(for example, the habitat may be inaccessible, or the population may be reduced because
the species is threatened).
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5. Conclusions

In urban forest research, analyzing acoustic scenes in the environment to assess how
human activities impact biodiversity is a frontier hotspot. However, the knowledge barriers
of deep learning algorithms such as the accumulation of monitoring data and the selection
and parameter setting of the deep learning model greatly limit the application of acoustic
technologies in urban forestry. We validate the feasibility of acoustic scene classification
techniques in the urban forest domain in terms of model selection, number of learning
samples, and number of iterations, respectively, to help researchers who wish to use
acoustic methods to solve ecological problems to quickly find suitable deep learning
models and methods for themselves. In this study, we compared the ability of different
models to recognize biological acoustic scenes based on deep learning techniques and
proposed that DenseNet_BC_34 is relatively better among the five models. Based on this,
the DenseNet_BC_34 model was used to classify seven acoustic scenes and analyze the
classification results. We compared the performance of different models under different
amounts of training data, tested the ability of different models to classify new data, and
finally gave suggestions for dataset construction.

With the development of deep learning and sound recognition technology, recognizing
and classifying acoustic scenes based on deep learning will be more closely integrated with
urban forestry. We believe that PAM with an automatic data upload function can be devel-
oped to upload the sound data collected in the field directly to the cloud platform and use
deep learning models to automatically perform sound detection and classification, which
will significantly reduce the labor cost. In addition, the deep-learning-based approach can
also track the relationship of acoustic scenes over time and space in real time, providing
valuable clues for related biodiversity conservation efforts.
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Appendix A

Table A1. Acoustic scene classification criteria.

Acoustic Scene Criteria

Human (H) Sound clips contain only human activity sounds.
Insect (I) The sound clip contains only insect calls, such as cicadas.
Bird (B) The sound clip contains only bird sounds.

Bird–Human (BH) A mixture of human sounds and bird sounds in the sound clip.
Insect–Human (IH) A mixture of insect sounds and human sounds in the sound clip.

Bird–Insect (BI) A mixture of bird sounds and insect sounds in the sound clip.
Silence (S) There are no valid sound events in the sound clip.
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Table A2. FLOPs and Params of different models.

Model FLOPs (G) Params (M)

ResNet18 15.01 11.17
ResNet34 31.14 21.28

EfficientNet_b3 0.01 10.72
MobileNet_v2 0.18 2.23

DenseNet_BC_34 0.40 0.12
Minimum values are shown in bold.
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