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Abstract: During the growth of a forest insect outbreak epicenter, there are processes that involve
the formation and expansion of the primary epicenter of forest damage, as well as secondary
epicenters—both connected and unconnected to the primary one. This study characterizes out-
break epicenters in terms of their fractal dimensions and “viscous finger” parameters at the epicenter
boundary, highlighting their significance in the context of forest insect management. Local outbreak
epicenters were found to be characterized by fractal dimension D = 1.4–1.5, and the boundaries of the
epicenters were described using the “viscous finger” model. Proposed models were constructed and
validated using remote sensing data obtained from MODIS and Sentinel-2 satellites at epicenter sites
and boundaries during the outbreak of the Siberian silk moth Dendrolimus sibiricus Tschetverikov
from 2014 to 2020 in the Krasnoyarsk region of Russia. The study revealed that the frequency of
the mode spectrum of one-stage spatial series of “viscous fingers” corresponds with the data on the
development of the outbreak foci area.

Keywords: forest stands; pests; population dynamics; outbreaks; modeling; fractals; viscous fingers;
holographic principle

1. Introduction

Outbreaks of forest insects develop in various types of epicenters: primary epicenters,
within which population densities of the pests increase, and secondary epicenters, which
emerge because of the local migrations of the insects in the forest. In addition, there
are migratory epicenters, which are located rather far away from the primary epicenter,
resulting from the mass migrations of adult insects. It is assumed that the pre-imago stages
of the pests are relatively sedentary and that only adult insects are able to migrate over
considerable distances. The primary, secondary, and migratory epicenters taken together
represent the insect outbreak epicenter, which is characterized by a certain total area. The
damage done to forest stands and their death are determined by the dynamics of outbreak
epicenter development [1].

However, it is often difficult to analyze directly the state of the insect populations during
an outbreak. For example, in boreal forests of Siberia, which cover an area of about 2.7 million
km2, the average density of the stable, sparse population of the major forest pest—the Siberian
silk moth—may be less than 0.001 larvae per tree. Therefore, it is virtually impossible to find
the larvae of this pest in a local forest [2]. Although at the outbreak peak, the population
density may reach about 10,000 larvae per tree, i.e., the pest density may increase by seven
orders of magnitude, forecasts of future outbreaks cannot be based on insect counts. In
hard-to-reach taiga forests with a very low human population, entomological studies are
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usually started only when insect damage to the tree stands is serious enough to be visible
from space. The effects of parasites on insect population dynamics can be estimated only in
high-density populations. Moreover, even if the primary epicenter of the outbreak is detected
in the Taiga region, it can only be reached by helicopter. Hence, remote sensing is the only
tool for monitoring and forecasting insect outbreaks.

Point modeling, which considers the population as an aggregate, only takes into
account the total population size, and ignores the distribution of the insects over the
outbreak area, is usually limited to analyzing the type of spatial distribution of insects on
study plots. The random, uniform, and aggregative types of distribution of insects in the
forest stand are identified. Numerous aggregation indices are used to quantify the spatial
distribution of insects [3].

A more detailed analysis of the spatial structure of forest insect populations is based
on investigating spatial coherence between outbreaks of forest insects and the landscape
features of the area and forest stand composition. The studies based on the data on
outbreaks of Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae) reconstructed for
nearly 100 years (1928 to 2006) demonstrated more synchrony and higher intensity of
outbreaks in the regions with the greater abundance of host trees [4–8]. Outbreaks were
more synchronous and cyclic in the controlled zones, with greater proportions of aspen and
other deciduous host trees, compared to wild nature where coniferous species prevailed.
Yet, asynchronous outbreak dynamics were observed in the study area as well. Studies
on this subject, e.g., a case study of spruce budworm Choristoneura fumiferana Clemens,
1865 (Lepidoptera: Tortricidae) [8], were aimed at identifying the areas prone to outbreaks
of different species, but they did not investigate the specific behavior and spatial dynamics
of each outbreak. Mathematical tools for such analyses—multivariate regression analysis
and autocorrelation analysis—have been adequately developed.

The spatial distribution of insect species has been recently analyzed using an approach
that combines network theory and complexity theory. This approach was implemented in
the case study of the emerald ash borer bark beetle in Ontario, Canada, using geospatial
datasets [9]. Another approach employed in research on spatial dynamics of forest insect
outbreaks is an analysis of spatial cross-correlations among temporal changes of the out-
break areas on a vast territory [10]. This approach is used to reveal synchrony and time
shifts among outbreaks of the same species in the area.

The most complex approach, involving considerable human effort in data collection
and complicated methods for data analysis, is the spatial analysis of dynamics of forest
insect outbreaks that includes analysis of the shapes of outbreak boundaries, the rates of
outbreak spread in woodlands, and the relationships of these parameters to landscape
characteristics and the structure and species composition of forest stands. For many years,
it has been technically difficult to obtain such data with accurate coordinates of dynamically
changing outbreaks. At present, these parameters of outbreaks can be obtained using GPS
and the data gathered by satellites and unmanned aerial vehicles [11].

To gain insight into insect migration processes, it is important to study mechanisms
of outbreak epicenter formation. These mechanisms differ depending on the outbreak
phase. The main characteristic of the initial outbreak phase is condensation migrations:
insects move into the area where ecological conditions are the most favorable for their
development and concentrate there in large numbers [1]. Thus, the primary outbreak
epicenter is formed. Having damaged the trees in the primary epicenter and consumed
all food resources, the insects migrate to the secondary epicenters. These epicenters can
be divided into connected and unconnected migration epicenters. Connected secondary
epicenters are formed at the boundaries of the outbreaks of previous years; unconnected
migration epicenters are formed at certain distances from the epicenters of the previous
years. The emergence of unconnected epicenters may be caused by the patchiness of the
species composition of forest stands, where forest plots available for insect feeding border
the plots with no host trees for the insects. The formation of such outbreak epicenters
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results in the patchy structure of the damaged forest stands. In terms of statistical theory,
such processes can be regarded as Lévy flights [12].

As the outbreak epicenter increases, first, the existing epicenter grows and new con-
nected damaged forest areas emerge, and, second, new unconnected secondary epicenters
(islands) are formed and the outbreak epicenter of fractal dimension D appears. The forma-
tion of outbreak epicenters is associated with the migration of insects. Insects migrate and
continuously change their habitats because they search for food: food resources in local
epicenters are often consumed completely, and insects need to find new forest stands with
available food [1].

The existing remote sensing data can serve as the basis for developing models that
would be used to analyze the dynamics of outbreak epicenters and changes in their shapes
over time. The present study discusses approaches to describing the development of
epicenters of forest insect outbreaks.

2. Materials and Methods
2.1. Study Site

The study considered the spatial structure of outbreaks of the Siberian silk moth
Dendrolimus sibiricus Tschetverikov, 1908 (Lepidoptera: Lasiocampidae). The Siberian silk
moth is an endemic species in the forests of Siberia, the Russian Far East, and North China.
The adults of this species are good flyers, which have regular outbreaks in vast areas,
during which they may damage and kill tree stands [13–21].

The construction and verification of the models were based on remote sensing data on
areas and shapes of epicenters during two outbreaks of the Siberian silk moth D. sibiricus.
The first outbreak was observed in mixed stands of the Siberian fir Abies sibirica Ledeb. and
the Siberian pine Pinus sibirica Du Tour, 1803 in the Yeniseisk District of Krasnoyarsk region
(58◦52′–59◦15′ N, 90◦38′–91◦10′ E) [22]. Visible defoliation was observed in 2014; by 2020,
the damage had stopped increasing, and the outbreak had subsided. The total area of the
completely and partly defoliated tree stands was about 800,000 ha.

The second outbreak was observed in the mixed fir–pine stands of the Sayan Moun-
tains in the Irbey District of Krasnoyarsk Region (south of Middle Siberia, 54◦45′–55◦05′ N,
95◦20′–99◦10′ E). Dark coniferous stands dominate in this area: Siberian pine (P. sibirica), fir
(A. sibirica), and spruce (Picea obovata Ledeb.). Deciduous species (Populus tremula L. and
Betula spp.) occupy about 15% of the area. Visible defoliation was observed in 2019; by
2021, the damage had stopped increasing, and the outbreak had subsided. The total area of
the completely and partly defoliated tree stands was about 16 km2.

2.2. Data Collection

Local outbreaks were detected using remote sensing data from the MODIS and
Sentinel-2 satellites. The process of measuring the area and boundaries of the insect
outbreak epicenter using remote sensing data has been sufficiently well developed by now.
In the present study, changes in the sizes of the outbreak epicenters in the Yeniseisk District
were estimated using normalized difference vegetation index (NDVI) from MODIS satellite
data. Changes in the sizes of the outbreak epicenters in the Irbey District were estimated
using NDVI (Sentinel-2) data. Graphic images and the main statistical data (size, temporal
dynamics, functions of distribution of vegetation indices, etc.) for the study areas were ob-
tained using the application programming interface: apps.sentinel-hub.com/eo-browser/
(21 August 2023).

2.3. Data Analysis

Outbreaks of forest insects are associated with the formation of plots of damaged
trees—outbreak epicenters. The epicenter area is determined by the pest population size,
state of the trees, and landscape structure [2]. During outbreak development, the epicenters
are characterized by connectivity parameters. The epicenter is connected when any two
points inside the epicenter can be connected by a line within the bounds of the epicenter.

apps.sentinel-hub.com/eo-browser/
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However, the epicenter territory is often unconnected and includes a large number of
separate damaged plots that have different damaged areas. If the outbreak dynamics is
treated as the “flow” of insects across the forest territory, in the context of the percolation
theory, these damaged plots can be termed “lattice animals” [23–27]. The study showed
that during outbreaks of the Siberian silk moth, unconnected epicenters were formed. The
parameters considered while analyzing these epicenters included the area distribution of
the epicenters, the relationship between the epicenter area and boundary length, the shape
of the epicenter boundary, and the relationship between the shape of the boundary and the
growth rate of the epicenter area.

The shape of the outbreak epicenter, like the shape of any two-dimensional bounded
set, is characterized by two parameters: the function of distribution of local epicenters
by area and fractal dimensions of the boundaries of local epicenters [25]. To calculate the
fractal dimension of the epicenter, the area of the epicenter s and the length of its boundary
L (pixels) should be estimated. The area s contained with the boundary contour is fractally
determined using the length of the boundary L [12,25]:

s = s0Lα (1)

or
ln s = ln s0 + α ln L (2)

Parameter D = 2
α characterizes fractal dimension of the figure [12]. The area and the

length of the boundary of each lattice animal were calculated using remote sensing data
and original computer programs created in the Borland Delphi environment, and on this
basis, the fractal dimension D of the boundaries was estimated.

To describe epicenter boundaries, we used an ecological analog of Darcy’s model,
which describes the flow of a fluid through a porous medium in a two-dimensional
space [28]:

U(x, y) = − b2

12η
∇p(x, y) (3)

where U (x, y) is the rate of advance; η is “viscosity” of the medium; p (x, y) is the “pressure”
of the population on the tree stand; and b is constant.

If the moving interface remains straight in the horizontal plane, then its position in
time and space is given by the equation U = xt. In this case, the movement of the boundary
is supported by the pressure gradient ∇p, which is found in Equation (4):

pj = p0 −
12ηjU

b2 (x − Ut) (4)

where p0 is constant.
In the ecological analog of Darcy’s law, the “viscosity” parameter η can characterize a

value proportional to the time required for the defoliation of the host plant in the epicenter
and outside it (if the resistance of the host plant to insects is high, the defoliation time
is long, if the resistance is low, the defoliation time is short). “Pressure” ∇p is the ratio
of the insect density in the epicenter to the insect density outside it. Depending on the
characteristics of Equation (4), the interface can have different shapes and be characterized
by different fractal dimensions D [29–31]. Figure 1 shows the classification of the shapes of
boundaries depending on their fractal dimension.

At high “viscosity” and low pressure (“sleeping” epicenter), the shape of the epicenter
boundary will be characterized by a fractal size close to 1. When a more “viscous” medium
pushes a less “viscous” one, the interface between the media is stable. If, however, a small
periodic disturbance with wave number q and amplitude A(t) occurs along the y-axis:

x(y) = Ut + A(t) cos(qy) (5)
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Figure 1. Typical boundaries of the epicenter. (a) smooth boundary of the epicenter, D = 1, (b) weakly
fractal boundary of the epicenter, D > 1, (c) epicenter boundary shaped as “viscous fingers”, D → 2.

At low viscosity and high pressure (an aggressive form of the pest with a high popula-
tion density), the fractal dimension of the interface will be close to 2, and this boundary
will have a large number of protrusions—“fingers”. In this case, the disturbance will be
unstable, and the amplitude of the disturbance will increase with time. The largest pressure
gradients will occur at the vertices of the interface, and, according to Darcy’s equation, the
vertex will begin to move faster than the rest of the interface, and a small initial disturbance
will develop into a rapidly growing “viscous finger.” As integral characteristics of the shape
of viscous fingers, we will consider, firstly, the standard deviation σ of their heights and,
secondly, the frequency of spectral density mode of the spatial series of viscous fingers.

How does one introduce an integral estimate of the boundary surface? To give an
example, consider three variants of model boundaries:

• (A) a boundary with a small number of “viscous fingers” and small deviations from
the average characteristics of the interface (type a in Figure 1);

• (B) a boundary with an intermediate number of “viscous fingers” and moderate
deviations from the average interface characteristics (type b in Figure 1);

• (C) a boundary with a large number of “viscous fingers” and strong deviations from
the average characteristics of the interface (type c in Figure 1);

• (D) a boundary of random stationary shape.

We will use two indices as integral characteristics of the boundary: the standard
deviation for a series of the boundary after removing the spatial trend and the spectrum of
the series of this boundary.

Figure 2 shows a view of the boundary surface for types A, B, and C.
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For each type of boundary, the spectrum of the spatial series can be estimated (Figure 3).
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As can be seen from Figure 3, for the boundary with sparse viscous fingers with small
amplitude (type A), the frequency of the maximum fmax of the spectral power is shifted to
the region of low frequencies, and the power of the spectrum at this frequency is small. For
a boundary with frequent viscous fingers with large amplitude (type C), the frequency of
the maximum fmax of the spectral power is shifted to the region of higher frequencies, and
the power at frequency fmax is significantly larger than that for the type A series.

Two indices can be proposed as integral characteristics of the boundary shape: the
standard deviation s of the stationary spatial series and the frequency fmax (Table 1).

Table 1. Shape parameters of the model series of outbreak boundaries.

Type of Border’s Form
Parameters

s Fmax

A 0.354 0.032

B 1.420 0.081

C 3.571 0.161

D1 0.263 0.339

D2 0.897 0.258

As follows from Table 1, type A boundaries are characterized by minimum values of
shape parameters, and type C boundaries by maximum values.

If the outbreak boundary has a random D-type shape, the spectrum of this type of
boundary has no pronounced maxima of spectral power at some frequency (Figure 4).

Thus, the flash boundary shape characteristics can be reasonably well estimated from
the characteristics of s and fmax, as well as from the shape of the spatial series spectrum of
the boundary.

To describe the dynamics and forecast the development of an outbreak of forest
insects in space, let us consider the possibility of using in ecology the so-called holographic
principle proposed in cosmology, which states that for a mathematical description of any
world, the information contained in its outer boundary is sufficient: the idea of an object
of higher dimension can be obtained from “holograms” that have a lower dimension, by
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analogy with a two-dimensional plate—a hologram on which a three-dimensional image
of an object is recorded [32–34]. In the ecological case, this approach involves studying the
boundaries of an epicenter with fractal characteristics D < 2 and using these characteristics
to estimate the properties of a two-dimensional insect outbreak epicenter with D = 2.
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3. Results

The epicenter of the Siberian silk moth outbreak in the Yeniseisk District is uncon-
nected, consisting of a large number of micro-epicenters (lattice animals) (Figure 5). The
epicenter of the Siberian silk moth outbreak in the Irbey District has a structure similar to
that of local epicenters (Figure 6).
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Figure 7. The function of density f(ln s) of the area distribution of lattice animals in the Yeniseisk
District epicenter.

The function f(ln s) is bimodal, and there are lattice animals with small areas (up to
seven pixels), which cover about 33% of the total area of lattice animals. There are lattice
animals with areas larger than seven pixels, whose area reaches approximately twenty-two
thousand pixels (Figure 7). The tail of distribution with areas greater than 1000 pixels
occupies about 20% of the total area of lattice animals.

Remote sensing data were used to determine areas s and perimeter lengths L of lattice
animals of epicenters in the Yeniseisk District, and ln L dependences of ln s were constructed
(Figure 8).
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Figure 8. Relationship between the logarithm of the perimeter lengths L of lattice animals and the
logarithm of their area s for the outbreak epicenter in the Yeniseisk District in 2015.

Data of calculations of Equation (2) for different outbreak epicenters in different years
are presented in Table 2.

Table 2. Parameters of Equation (2) for Siberian silk moth outbreaks in different years.

Outbreak Variables Coeff. Std. Err. t-Test p-Value

Yeniseisk district, 2015.

ln s0 −0.587 0.115 −5.115 0.000

α 1.330 0.024 55.705 0.000

adjR2 0.979

F 3103

D 1.50

Yeniseisk district, 2016.

ln s0 −0.788 0.046 −17.311 0.000

α 1.362 0.011 122.561 0.000

adjR2 0.992

F 15,021

D 1.47

Irbey district, 2020.

ln s0 −0.844 0.033 −25.653 0.00

α 1.428 0.0084 169.523 0.00

adjR2 0.99

F 28,737

D 1.40

Irbey district, 2020.

ln s0 −0.701 0.026 −27.447 0.00

α 1.374 0.007 194.701 0.00

adjR2 0.986

F 37,908

D 1.455

The relationship between logarithms of boundary lengths and areas of micro-epicenters
in the Yeniseisk District is linear, coefficients of Equation (2) are significant according to
t- and F-tests, and the equation describes this relationship very well. The coefficient of
determination R2 is very close to 1, and Equation (2) takes into account over 98% of the
variance of lattice animal areas. The α value characterizes the fractal dimension of lattice
animals. The fact that lattice animals are described well by the general Equation (2) suggests
that all lattice animals have the same fractal dimension, D = 1.33–1.36.
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The relationship between the boundary lengths and areas of lattice animals was
calculated, and their fractal dimensions were determined for the outbreak epicenter in the
Irbey District in the same way as for the epicenter in the Yeniseisk District (Table 2). Remote
sensing data were used to calculate the area and boundary length for each lattice animal.
For the epicenter in the Irbey District, the fractal dimension of lattice animals is D ≈ 1.40,
and the fractal dimensions of the outbreak epicenters in the Irbey and Yeniseisk Districts
do not differ significantly.

The following can be said when estimating the spread rates of outbreaks of forest
insects. Quantitative parameters of the boundaries should be introduced to estimate the
relationships between the characteristics of epicenters and their boundaries. For this,
having outlined the boundary in the image (Figure 1), we write the regression equation for
coordinates X and Y of the epicenter boundary: Y = K − PX (Figure 9).
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Figure 9. The shape of the boundaries of the Siberian silk moth outbreak in the Irbey District.

After that calculation, the coordinates of the epicenter boundaries were altered using
the transformation Z = Y(X)− (K − PX). The results of that transformation are presented
in Figure 10.
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Figure 10. Transformed representation of the boundary of the Siberian silk moth outbreak in the
Irbey District as “viscous fingers”.

The boundary of the outbreak is shaped as protrusions and depressions—“viscous
fingers”. As integrated parameters of the boundary, we will use power W of the spectrum
of boundary length, regarded as an analog of the time series, frequency fmax of the spectrum
(at the maximum frequency equal to the Nyquist frequency fN = 1/2 of the folded spectrum),
which characterizes the maximum spectral power [35], and period λ of “viscous fingers”—the
value inverse to the fmax value. These values for the boundaries in the Irbey Districts are given
in Table 3.
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Table 3. Parameters of “viscous fingers” of the boundaries of the Siberian silk moth outbreaks in the
Irbey Districts.

Parameter
Year

2018 2019 2020 2021

Frequency of the spectrum maximum,
fmax, Hz 0 0.0077 0.0031 0.0002

Standard deviation σ of “viscous
fingers” pixels 0 57, 2 37.5 20.2

Area S of outbreaks in % relative to the
total area of the territory 0 17, 52 45.56 47.4

From Table 3, it follows that before the outbreak began in 2018, when there was no
damage, no viscous fingers were observed. In 2019, at the beginning of the outbreak, when
about 20% of the considered territory was damaged, viscous fingers were characterized
as frequent (fmax = 0.0077) and with a high height (σ = 57.2). By the end of 2020, the
characteristics of viscous fingers decreased to fmax = 0.0031 and σ = 37.5. The following can
be said regarding the shape of the foci in 2021 when the outbreak stopped. The parameters
of the viscous fingers observed in 2021 decreased to the values fmax = 0.0002 and σ = 20.2.
Comparing the dynamics of the shapes of viscous fingers, we can say that, in 2019, the
shape of viscous fingers was characterized in Figure 1c; in 2020, the shape of viscous fingers
was characterized in Figure 1b; and in 2021—Figure 1a.

4. Discussion

Most previous studies of tree-insect interactions using satellite-based methods [36–42]
and unmanned aerial vehicles [43–45] have focused on analyzing changes in spectral character-
istics of stands in the early stages of insect damage to trees. Using data from seasonal dynamics
of vegetation indices is preferable to individual observations for early detection of damage
with a probability of p = 0.75 of separating healthy and damaged stands [42]. However, these
methods cannot identify areas that will be attacked by insects in the near future as they are
time-lagged. Assessments of forest health using such methods cannot be used to identify
areas that will be attacked by insects in the near future as they cannot be used to identify
areas that will be attacked by insects in the near future. The use of remote sensing methods
in this context solely measures damage extent, which is significant for forest economics and
inventory purposes but not for forest protection. The development of remote observation
methods has made it possible to analyze the spatial dynamics of outbreaks. However, works
analyzing the spatial dynamics of outbreaks often use point models that only consider the
total area of outbreaks and do not assess the shape of foci and their boundaries [46–49]. Unlike
the mentioned approaches, the suggested method enables the identification of the potential
damage zone even before the insects start to affect the forest.

To effectively counteract the negative effects of outbreaks, it is important to have
reliable models to identify areas at high risk of tree mortality. For such models to accurately
estimate insect-induced damage and mortality in stands, information on stand structure,
environmental factors, and differences in topography must be taken into account [50]. Pest
population growth is usually modeled using population or system dynamics at the stand
level [51–53]. Nevertheless, it is difficult to estimate population growth characteristics in
large forest stands. Therefore, most models for predicting the risk of insect infestation
are built based on a combination of variables related to forest stand characteristics and
variables determined by insect impacts. This approach has been described in [50,54–56].
Outbreaks have been shown to be caused by factors at several levels, in particular, the
abundance of insect pests in stands, landscapes, and climatic influences at the regional
level [57–59].

Successful pest management requires a comprehensive, quantitative approach to pest
outbreaks. This approach describes pest distribution as a function of landscape topology
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and host-pest interactions. This perspective can be formalized via a mathematical model for
multiscale outbreak dynamics, resulting in enhanced prediction and effective preventive
actions to mitigate losses due to outbreaks. The achievement of this aim employs the
increased availability of high-resolution spatial data on pest outbreaks by linking observed
data to multiscale network theory [60]. The study of insect outbreaks through remote
sensing techniques has a well-established research history [61,62]. Considerable effort has
been directed toward the identification and monitoring of insect pests in agriculture and
forestry [39,63–65]. Plant stress symptoms caused by insects, such as defoliation, can be
readily detected through remote sensing techniques. These techniques have long been
applied for indirect insect detection [39,61,64]. For instance, researchers have utilized
satellite-obtained NDVI data to chart the spatial and temporal patterns of forest defoliation
caused by the caterpillars of various phyllophagous species [66–68] and bark beetles [69,70].
Prompt identification of defoliation pests is facilitated using high temporal resolution
data [71]. It is important to note that in these studies, damage detection is delayed relative
to the time of outbreak onset and does not predict outbreak spread, although some models
of outbreak dynamics are considered [47,72,73].

The authors in [73] present a spatially dynamic model of the interaction between
mountain pine beetles and forests that takes into account chemical ecology, beetle redis-
tribution, attack, and resulting host mortality. The model comprises six coupled partial
differential equations with seven state variables and 20 parameters. This set of equa-
tions outlines the temporal dynamics of the following: the attraction of beetles based on
pheromone concentration, fluctuations in the populations of flying and nesting beetles, the
susceptibility or resistance of trees to attack, and the recovery of trees after attack. Addi-
tionally, spatial dynamics are simulated through the movement of beetles in response to
gradients of pheromones and kairomones, as well as random redistribution in the absence
of semiochemicals. It is challenging to evaluate the accuracy of a model that necessitates
determining 20 free parameters beforehand. However, the absence of additional research
on this model does not favor its validity.

A set of probabilistic models for cellular transitions was created by Zhou and Lieb-
hold [72] to examine the spatial dynamics of gypsy moth (Lymantria dispar (Linnaeus)) defo-
liation. Technical terms were explained upon first use. The models consisted of four classes:
simple Markov chains, rook and queen movement neighborhood models (which obviously
characterize the type of spatial dynamics used in the models), and distance-weighted neigh-
borhood models. Historical maps of gypsy moth defoliation in Massachusetts from 1961 to
1991 were digitized into a binary raster matrix and used to estimate transition probabilities.
The analysis revealed that the distance-weighted neighborhood model performed better
than other neighborhood models and a simple Markov chain.

The most significant difference between the present approach and the works cited
above is the novel approach to analyzing the dynamics of outbreak development. The
estimation of the fractal structure of the outbreak, “viscous finger” analysis, and the
holographic principle of the relationship between the characteristics of foci and their
boundaries have not previously received attention in the field of forest entomology. These
methods have only been explored in hydrodynamics and cosmology, as is evident from our
citation list. Thus, comparing our data to earlier studies proves challenging.

The present study can be considered one of the possible approaches to modeling the
dynamics of outbreaks of forest insects. In contrast to fairly well-studied point models of
the population dynamics of forest insects, there are no generally accepted models yet for
assessing and predicting the growth processes of outbreak epicenters.

This is largely due to the uncertainty in describing the mechanisms of epicenter
formation. In classical models describing the seizure of territory by a certain gene [74,75],
the colonized area is, by definition, assumed to be connected. In the diffusion model, the
colonized territory is also connected. However, observations show that real epicenters
are unconnected, and models that take into account these aspects of the process of pest
invasion are needed.
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Perhaps the preference for point models over distributed models in analyzing the
spatial dynamics of outbreaks is due to the difficulty of using partial differential equation
models, as discussed in [74,75]. However, it should be noted that real local outbreak zones
are often not connected with each other, making the use of partial differential equation
techniques challenging. The proposed approach for describing the spatial dynamics of
outbreaks utilizes the fractal, viscous finger, and holographic models. These models
describe spatial dynamics using algebraic equations, simplifying the representation and
use of field data.

However, some aspects remain unclear even with this approach. In the theory of
the growth of insect outbreak epicenters is the relationship between the growth rate and
shape of the epicenter boundaries and the appearance of “viscous fingers” at the boundary.
The initial analysis conducted in this study suggests that such a relationship may exist,
but further research is needed to assess this relationship accurately. The results of this
work indicate that remote sensing data can be successfully used to describe and model the
dynamics of an outbreak epicenter. An important question is whether there is a critical
value of the epicenter area and its critical fractal dimension. If such characteristics exist,
then at values below critical values, no outbreak development will occur.

The current study demonstrated that the outbreak epicenters of the same species, the
Siberian silk moth, were characterized by the fractal dimension D = 1.3–1.4. However,
it is unclear whether there really is a species-specific fractal dimension of the outbreak
epicenters of individual insect species or whether this fractal dimension is determined by
the landscape features and the spatial distribution of tree species in the stands.

From the analysis of the relationships between the area and the length of the bound-
aries of local outbreaks, we can conclude that disconnected outbreak zones can be called
self-similar, and when the area of the outbreaks increases, it looks exactly the same as before
the increase. Indeed, the relationship between the area and the length of the boundaries
of local outbreaks does not change when the areas of these outbreaks change. How can
one explain the self-similarity of local outbreaks? The first possible assumption may be
that we are dealing with a mixed forest, and the shape of the boundaries depends on
the heterogeneity of the forest species composition in space. However, the proportion of
deciduous trees in the studied territories is quite small, and, for example, for the Irbeysky
district, birches and aspens are concentrated in the lower altitude zone of the territory,
while a self-similar form of local outbreaks is observed throughout the territory at altitudes
from 400 to 800 m a.s.l. The second assumption may be that the Siberian silk moth is char-
acterized by group placement of caterpillars on trees [2], and under these conditions, with
the general heterogeneity of the spatial distribution of pests, fractality and self-similarity
of the outbreak’s zone will be observed for damage zone. Finally, it is possible that the
self-similarity of outbreak zones is associated with the response of trees to damage to
needles by insects.

Further research may define more accurately the possible mechanisms responsible
for the development of epicenters of forest insect outbreaks and propose reliable models
that would enable predicting the dynamics of the epicenters and possible damage to forest
stands, which is very important for planning pest control measures in the forest.

5. Conclusions

The present study addressed parameters of the spatial structure of Siberian silk moth
epicenters. The concept of lattice animal was introduced to describe the microstructure
of damage; models of the distribution of lattice animals by area were considered, and the
relationships between the length of the perimeter and the areas of lattice animals were
studied. Models of “viscous fingers” describing the shape of lattice animal boundaries
were examined. The outbreaks of the same species were found to have similar parameters,
making it possible to estimate the growth rate of the outbreak area.
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