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Abstract: Chinese fir is one of the most widely distributed and extensively planted timber species
in China. Therefore, monitoring pests and diseases in Chinese fir plantations is directly related to
national timber forest security and forest ecological security. This study aimed to identify appropriate
vegetation indices for the early monitoring of pests and diseases in Chinese fir plantations. For this
purpose, the researchers used an imaging spectrometer to capture hyperspectral images of both
experimental and control groups. The experimental group consisted of Chinese fir trees with two
sections of bark stripped off, while the control group consisted of healthy Chinese fir trees. The
study then assessed the sensitivity of 11 vegetation indices to the physiological differences between
the two groups using the Mann–Whitney U test. The results showed that both the green-to-red
region spectral angle index (GRRSGI) and the red edge position index (REP) were able to monitor
the difference as early as 16 days after damage. However, GRRSGI performs best in monitoring
early death changes in Chinese fir trees because it is less affected by noise and is more stable. The
green–red spectral area index (GRSAI) also had high stability, but the monitoring effect was slightly
worse than that of GRRSGI and REP. Compared with other indices, GRRSGI and GRSAI can better
exploit the advantages of hyperspectral data.

Keywords: remote sensing; hyperspectral imaging; vegetation index; early monitoring; Chinese
fir; GRRSAI

1. Introduction

Chinese fir is a principal timber forest species in the subtropical region of China, with
advantages such as being fast-growing and productive [1,2]. To meet the increasing demand
for timber, the afforestation area of Chinese fir plantations has continued to increase, and
its forest stock volume now ranks first in the country [3,4]. However, crude forestation
techniques have resulted in Chinese fir plantations often being attacked by pests and
diseases, which has seriously damaged the productivity and ecological benefits of Chinese
fir plantations. Therefore, finding a timely, accurate, and effective method for the early
monitoring of pests and diseases in Chinese fir plantations is conducive to safeguarding
national timber security and ecological security.

The emergence of remote sensing technology has made rapid, real-time, large-scale
monitoring of forest pests and diseases a reality [5]. Vegetation indices are often used
to extract the spectral information on affected vegetation from remote sensing images.
Lin Long et al. [6] constructed a monitoring model based on Landsat 8 images using three
indices and four characteristic parameters to achieve regional-scale monitoring of pine
wilt disease. Leila Gooshbor et al. [7] indicated that the normalized difference vegetation
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index (NDVI) is effective in assessing the impact of Tortrix viridana on the health status of
oaks. André Duarte et al. [8] studied eucalyptus insect pests using the OTSU thresholding
method and UAV multispectral imagery and showed that all five indices could distinguish
well between healthy and dead eucalyptus trees. Deqin Xiao et al. [9] chose to combine
a random forest algorithm and UAV multispectral images to monitor apple fire blight,
screened three indices that are more sensitive to fire blight, and constructed a monitor-
ing model, which achieved an overall accuracy of 94.0% in detecting apple fire blight.
Anjin Chang et al. [10] found that the normalized difference red edge index (NDRE) per-
formed better in citrus greening disease monitoring. In addition, many studies have
successfully used vegetation indices to monitor the development of forest pests and dis-
eases. However, the spectral resolution limits the accuracy of extracting information on
damaged vegetation based on multispectral remote sensing techniques [11].

Hyperspectral remote sensing data are high-quality data sources for monitoring forest
pests and diseases because of their high resolution and rich spectral information, which
allows plant disease conditions to be captured before changes in the external characteristics
of the infected plants occur [12,13]. All four indices calculated using EO-1 Hyperion data
could effectively monitor the defoliation in spruce–balsam fir forests infected with spruce
budworm [14]. The green normalized difference vegetation index (GNDVI) performed
better in the detection experiments of Masson pine disease [15]. Run Yu et al. [16] concluded
that a random forest algorithm incorporating REP could better classify the disease severity
in diseased pine. The newly developed vegetation index from hyperspectral imaging data
had good potential for practical application in the early monitoring of mangrove pests and
diseases by Xiapeng Jiang et al. [17,18].

Recently, the combination of hyperspectral technology and vegetation indices has
become an important tool for monitoring forest pests and diseases. However, many studies
still utilize only a few spectral bands when calculating vegetation indices, which may not
take full advantage of hyperspectral data. Some scholars have developed new vegetation
indices for monitoring forest pests and diseases, mainly including GRSAI and GRRSGI.
They are all constructed based on non-imaging hyperspectral data, which are less affected
by the surrounding environment and perform better than other vegetation indices in the
early monitoring of coniferous forest pests and diseases [19,20]. However, GRSAI and
GRRSGI may not have the desired effect when used for imaging data because, compared
with non-imaging data, imaging data are mixed pixels and are greatly affected by the sur-
rounding environment. Therefore, verifying the application effect of the vegetation indices
studied by previous researchers on hyperspectral imaging data is of great significance for
monitoring forest vegetation diseases and insect pests.

This study aimed to use hyperspectral imaging data of a Chinese fir plantation to
analyze the differences in reflectance between healthy and damaged Chinese fir trees, to
compare the sensitivity of hyperspectral vegetation indices and other vegetation indices to
changes in the physiological health of Chinese fir trees, and to find the optimal vegetation
indices that are suitable for monitoring Chinese fir plantations. This study will offer data
support to the early monitoring of pests and diseases in Chinese fir plantations and is also
conducive to the promotion of hyperspectral imaging technology.

2. Materials and Methods
2.1. Study Area

The study area is located in the state-owned Huangfengqiao forest farm in You County,
Hunan Province, with approximate geographic coordinates of 113◦40′ E, 27◦2′ N (Figure 1).
It is situated in a subtropical monsoon humid climate zone, with simultaneous rain and
heat, and a mild and wet winter. You County has a frost-free climate with an average
annual temperature of 17.8 ◦C and precipitation of 1420.8 mm. The main landform of the
forest is low to medium mountains, with altitudes ranging from 115 to 1270 m above sea
level. The forest land of the forest farm has a total area of 6748.2 ha, mainly ecological
public welfare forests consisting of Chinese fir plantations [21].
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Figure 1. Study area: (a) the area marked in red is the selected experimental forest area; (b) one
Chinese fir tree in the experimental group was stripped of its bark; (c) the numbered trees.

2.2. Experimental Design and Data Collection

When pests and diseases infest Chinese fir, it undergoes physiological and biochemical
changes. The biofilm is damaged, the water content decreases, and the cells dehydrate. As
the disease progresses, the affected Chinese fir experiences metabolic disorders that hinder
its health growth and development. Additionally, the structure of chloroplasts may become
damaged, causing a decreased photosynthetic rate and a reduction in pigment content. The
external morphology of the Chinese fir begins to show a series of changes, with the leaves
turning from green to yellow, then wilting, or even dying along with the whole plant.

In this study, to simulate the process of death of the affected Chinese fir trees, a
15-year-old middle-aged Chinese fir plantation was selected as the research object, and
a total of 49 Chinese fir trees were selected, of which 32 target trees were used as the
experimental group and 17 reference trees as the control group, and were numbered
separately. After collecting hyperspectral imaging data in August 2016, we stripped the
bark of Chinese fir trees in the experimental group at 20 cm and 70 cm above the ground,
and the width of the stripped bark was 10 cm, resulting in the trees slowly losing water
until they died.

The hyperspectral imaging data in this study were collected indoors using a tungsten
lamp as a light source. The instrument used is the US SOC710 imaging spectrometer with
128 bands, a spectral range of 400–1000 nm, a spectral resolution of 4.6875 nm, and an
imaging resolution of 696 × 520 pixels. The study data were collected monthly as often as
possible to observe the spectral differences in Chinese fir trees. Therefore, the collection
times for this experiment were 27 August, 12 September, 4 November, and 5 December
2016 and 8 January and 17 February 2017. Most of the Chinese fir trees in the experimental
group had died in February 2017, but seven trees were still not dead.

2.3. Reflectance Extraction of Sample Points

Based on the preprocessed hyperspectral images, we randomly selected 20 sample
points on the leaves of each tree, with 5880 sample points. After extracting each sample
point’s reflectance using the ArcGIS software v 10.7, we made corresponding records
according to the group, collection time, and whether the leaves were withered or not, and
deleted the anomalous sample points located in the reflective position of the leaves.
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2.4. Vegetation Indices Calculation

Vegetation indices offer a straightforward and efficient way to evaluate the state of
vegetation [22]. According to different research objects and research purposes, scholars
at home and abroad have developed several new vegetation indices and improved the
existing ones. According to related papers, we selected 11 vegetation indices (Table 1).

Table 1. Vegetation indices to monitor vegetation senescence or damage.

Vegetation Index Equation Reference

Normalized difference vegetation index (NDVI) NDVI = RNIR−Rred
RNIR+Rred

Rouse et al. [23]

Green normalized difference vegetation index (GNDVI) GNDVI = RNIR−Rgreen
RNIR+Rgreen

Gitelson et al. [24]

Simple ratio pigment index (SRPI) SRPI = R430
R680

Penuelas et al. [25]
Vegetation index green (VIgreen) VIgreen =

Rgreen−Rred
Rgreen+Rred

Gitelson et al. [26]

Plant senescing reflectance index (PSRI) PSRI = R680−R500
R750

Merzlyak et al. [27]
Vegetation atmospherically resistant index (VARI) VARI = Rgreen−Rred

Rgreen+Rred−Rblue
Gitelson et al. [26]

Pigment-specific normalized difference (PSND) PSND = R800−R680
R800+R680

Chappelle et al. [28]

Red edge position (REP)
Rre =

R670−R780
2

REP = 700 + 40× Rre−R700
R740+R700

Guyot & Baret [29]

Normalized with index (NWI)
NDGI = Rred−Rgreen

Rred+Rgreen

NWI = −NDGI × (NDVI + NDGI)
Uto et al. [30]

Green–red spectral area index (GRSAI)
TotalArea =

∫ 670
k=550

xk+1−xk−1
2 × f (xk)

GRSAI = TotalArea
x550×120

Kim et al. [19]

Green-to-red region spectral angle index (GRRSGI) 1

GRRSGI = cos−1

 r1√
n
∑

i=1
r2

i

 Zhuo Zang et al. [20]

1 r1(r550), rn(r640), ri(r1, r2,. . ., rn).

2.5. Statistical Analysis

In this study, bootstrapping was used to calculate a 95% confidence interval for the
difference between the medians of the control and experimental groups, with a sampling
number of 1000. The Mann–Whitney U test was used to test the differences between the
experimental and control groups each month to see the indices that would detect the
differences earliest. The threshold for statistical significance (p) was established at 0.05.

3. Results
3.1. Comparison of Monthly Average Spectral Curves

In this study, the average spectral curves of the two groups were obtained based on
the sample point reflectance data, as shown in Figure 2. Overall, the trends of the two
groups of curves were significantly different. The curves of the control group for six months
had similar trends, with a reflectance peak from 500 nm to 600 nm, the peak located near
550 nm, the reflectance from 680 nm to 760 nm starting to rise sharply to form a sloping
edge, and the curves from 760 nm to 1000 nm all being relatively flat.
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(b) the experimental group.

Although the trends of the spectral curves of the experimental group were different in
different months, the reflectance of the same band showed a regular change in the degree
of damage to the health of the Chinese fir trees. The trends of the curves before 550 nm
did not differ much from those of the control group. The spectra from 550 nm to 680 nm
changed slowly with the increase in dead trees. Between August and November 2016, the
curves were high before and low after, but the reflectance differences gradually decreased.
The curves became low before and high after in December 2016 and February 2017, and
the green reflectance peaks disappeared. The slope of the curves became smaller from
680 nm to 760 nm. From 760 nm to 1000 nm, the characteristics of the curves in the six
observation periods were similar, but the difference in reflectance was large enough to be
clearly distinguished.

The mean reflectance value of the experimental group in August 2016 was nearly
identical to that of the control group. This is because the bark of the Chinese fir trees in the
experimental group had not been stripped off when the hyperspectral data were collected
in August 2016. Therefore, the spectral data from August can be considered the spectral
data of healthy trees. The trend of the curve of the experimental group in September was
similar to that of the healthy trees. From November onward, the green reflection peak
gradually decreased, and the experimental and control groups could be distinguished, as
shown in Figure 2.

3.2. Comparison of Monitoring Effectiveness of Vegetation Indices

To find the vegetation indices that could detect the difference between the experimental
and control data earlier, this study analyzed the effect of the 11 indices using Mann–Whitney
U tests. Based on the images of each vegetation index, the indices values corresponding to
each sample point were extracted and then tested (Table 2).

VIgreen, PSRI, and VARI were unsuitable for monitoring physiological changes in
Chinese fir trees, and they could not detect differences between the experimental and
control groups until the trees had been damaged for 134 days. Although GNDVI and SRPI
were able to monitor the difference between the two groups at a significant level of 0.05 as
early as September 2016, GNDVI performed poorly in January 2017, and SRPI performed
poorly in November 2016, suggesting that these two indices are less stable and unsuitable
for monitoring physiological changes in Chinese fir trees.
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Table 2. The results of bootstrapping and Mann–Whitney U tests for 11 vegetation indices.

VIs

August 2016 September 2016 November 2016 December 2016 January 2017 February 2017

p Median Difference
(95%CI) p Median Difference

(95%CI) p Median Difference
(95%CI) p Median Difference

(95%CI) p Median Difference
(95%CI) p Median Difference

(95%CI)

NDVI 0.395 −0.02(−0.05, 0.01) 0.000 *** −0.05(−0.10, −0.02) 0.037 * −0.03(−0.10, −0.02) 0.008 ** −0.07(−0.11, 0.00) 0.004 ** −0.11(−0.41, −0.04) 0.000 *** −0.46(−0.50, −0.05)
GNDVI 0.361 −0.02(−0.06, 0.02) 0.000 *** −0.10(−0.16, −0.04) 0.003 ** −0.06(−0.15, −0.01) 0.000 *** −0.11(−0.15, −0.03) 0.059 −0.03(−0.09, 0.00) 0.000 *** −0.08(−0.11, −0.03)

SRPI 0.536 0.09(−0.13, 0.22) 0.000 *** −0.30(−0.37, −0.12) 0.667 0.28(−0.54, 0.67) 0.003 ** −0.15(−0.30, −0.03) 0.003 ** −0.23(−0.85, −0.03) 0.011 * −0.43(−0.68, −0.08)
VIgreen 0.564 0.02(−0.11, 0.11) 0.289 0.03(−0.04, 0.10) 0.713 −0.02(−0.14, 0.14) 0.564 0.03(−0.07, 0.13) 0.124 0.10(−0.04, 0.70) 0.007 ** 0.57(0.03, 0.67)

PSRI 0.958 0.00(−0.01, 0.01) 0.087 0.01(0.00, 0.03) 0.133 0.01(−0.01, 0.04) 0.15 0.01(−0.01, 0.04) 0.165 0.02(−0.01, 0.35) 0.004 ** 0.28(0.01, 0.40)
VARI 0.745 −0.02(−0.11, 0.12) 0.189 −0.01(−0.13, 0.03) 0.372 −0.02(−0.22, 0.15) 0.383 −0.04(−0.17, 0.05) 0.082 −0.17(−0.94, 0.03) 0.024 * −0.86(−0.93, −0.09)
PSND 0.35 −0.02(−0.05, 0.02) 0.000 *** −0.06(−0.09, −0.02) 0.005 ** −0.05(−0.12, 0.00) 0.011 * −0.06(−0.10, −0.01) 0.003 ** −0.10(−0.50, −0.04) 0.000 *** −0.52(−0.58, −0.09)
REP 0.35 −0.77(−2.23, 0.98) 0.000 *** −2.41(−5.58, −0.95) 0.000 *** −3.69(−5.61, −2.23) 0.000 *** −5.49(−8.49, −2.44) 0.000 *** −6.27(−7.68, −3.01) 0.000 *** −6.38(−8.60, −3.80)
NWI 0.825 0.00(−0.01, 0.02) 0.000 *** −0.02(−0.04, −0.01) 0.002 ** −0.03(−0.05, −0.01) 0.027 * −0.02(−0.05, −0.01) 0.002 ** −0.05(−0.36, −0.01) 0.001 ** −0.29(−0.36, −0.03 )

GRSAI 0.508 0.01(−0.01, 0.02) 0.014 * 0.01(0.00, 0.02) 0.000 *** 0.01(0.00, 0.03) 0.000 *** 0.02(0.01, 0.05) 0.000 *** 0.07(0.02, 0.13) 0.000 *** 0.10(0.02, 0.12)
GRRSGI 0.443 −0.01(−0.03, 0.01) 0.009 ** −0.01(−0.03, 0.00) 0.006 ** −0.02(−0.08, 0.00) 0.000 *** −0.04(−0.07, −0.02) 0.000 *** −0.09(−0.15, −0.03) 0.000 *** −0.13(−0.14, −0.04)

* p < 0.05, ** p < 0.01, *** p < 0.001.
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Six vegetation indices, NDVI, PSND, REP, NWI, GRSAI, and GRRSGI, could distin-
guish between the two groups at the 0.05 significance level. NDVI, PSND, and NWI showed
irregular fluctuations at a significant level of 0.01, suggesting that these three indices are
still not optimal. The indices with the best test results were REP and GRRSGI, with highly
significant differences between the two groups from September 2016 to February 2017.
GRSAI performs slightly worse than REP and GRRSGI as it can only differentiate the data
in September 2016 at a 0.05 significance level.

3.3. Effectiveness Evaluation of REP and GRRSGI

Since the test results for REP and GRRSGI were approximately the same, these indices
need to be further evaluated to select the best vegetation index to monitor changes in
Chinese fir trees’ health. As seen in Figure 3, the mean and median of the same index for the
control group in the same month are very similar in magnitude, and the differences between
these two sample statistics over the six different observation periods are small. The mean
and median values of GRRSGI for the experimental group became progressively smaller as
the number of Chinese fir tree deaths increased. The mean REP of the experimental group
also gradually decreased over time, and the median showed a fluctuating trend, suggesting
that it may have been influenced by other factors.
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(b) REP.

During the observation period, the relationship between the median and mean of
REP in the experimental group changed frequently. The median and mean of GRRSGI
were almost the same in August 2016. As the number of Chinese fir deaths increased, the
relationship between the median and mean of GRRSGI changed from larger to less than in
January 2017. It is demonstrated that GRRSGI was less variable than REP.

For a more intuitive view of the application effect of REP and GRRSGI, hyperspectral
imagery, REP imagery, and GRRSGI imagery in September 2016 are compared in this study,
as shown in Figure 4. The difference between the REP image and the GRRSGI image of
the R26 sample branches is minimal. The GRRSGI of T9 and T29 outperformed REP and
could distinguish green leaves from wilted leaves more accurately. For example, some of
the sample branches in the two red ellipses have blurred edges for the wilted leaves in the
REP image, which are more difficult to distinguish; the wilted leaves in the GRRSGI image
have a high degree of differentiation from the green leaves, and their outlines match those
in the hyperspectral image. In addition, there is more noise in the REP image, whereas
GRRSGI is less affected by the noise factor. Therefore, GRRSGI is more suitable than REP
as a reference factor for monitoring pests and diseases in Chinese fir trees.
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image and GRRSGI image.

3.4. Validation of the Sensitivity of the Collection of Bands (550 nm–640 nm) Used by GRRSGI

The better and more stable performance of GRRSGI may be because it uses bands
that are more sensitive to the health damage of Chinese fir trees and accumulates subtle
variations in multiple bands (550 nm–640 nm). To verify the reliability of this band collec-
tion, we selected five trees in different physiological states and analyzed the differences in
reflectance at 550 nm–640 nm for each tree.

Figures 5 and 6 show hyperspectral images and spectral curves at 550 nm–640 nm
for five Chinese fir trees, respectively. The leaves of both T6 and R6 were green, and the
spectral curves both showed a decreasing trend. T6 and R6 behaved similarly with green
leaves and both curves showed a decreasing trend, probably because T6 has a better ability
to resist damage. In contrast, T1 already had a small portion of wilted leaves 16 days after
being debarked, and then the symptoms gradually deepened until it completely wilted in
December 2016. Its curves are a good representation of the spectral variation of the dying
process, with a downward trend from August 2016 to November 2016 and an upward
trend from December 2016 to February 2017 in all cases. T11 had more dead leaves on the
sample branches in November 2016 with the slope of the curve near zero, and the trends
of the curves in other months were similar to those of T1. The T25 curves from August to
November 2016 show a consistent and continuous decrease, but the curve in January 2017
indicates an increase. The other curves show an initial increase followed by a decline, with
the point of inflection occurring at approximately 600 nm. In February 2017, the T25 sample
branches had more wilted leaves and a smaller decline in reflectance than in December
2016. The difference in the curve’s trend between January and February 2017 could be
attributed to T25’s strong vitality.
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Overall, although there were individual differences in the trends of the curves of five
Chinese fir trees, 550 nm–640 nm could well reflect the physiological changes in each tree
and follow a regular pattern. The reflectance of a healthy Chinese fir decreases as the
wavelength increases. However, at the early stages of damage, the decrease in reflectance
becomes smaller. As the Chinese fir becomes more damaged or dies, its reflectance increases
as the wavelength increases.

4. Discussion

Of all the vegetation indices selected, NDVI is most commonly used to assess the
severity of forest pests and diseases and to estimate tree mortality [31–34]. Like NDVI,
PSND and REP utilize only the red and near-infrared bands. Since PSND varies with
vegetation chlorophyll content, it can be used to estimate the chlorophyll content or to
assess vegetation senescence [35,36]. Run Yu et al. showed that REP and PSRI could
distinguish infected red pine from healthy red pine after 30 days [37]. The ability of PSRI to
detect pine wilt disease was also verified by Dewei Wu et al. [38]. Vegetation indices that
also use blue light bands include SRPI and VARI. SRPI is correlated with chlorophyll and
carotene and was first used to assess damage in mite-infested apple trees [25]. It has also
been used to predict chlorophyll content or detect flooding stress [39,40]. VARI is related
to vegetation biomass and can be used to calculate relative greenness (RG) and monitor
vegetation health [41,42]. The model it participates in has a high accuracy in applications
for detecting diseased trees [43]. GNDVI, VIgreen, and NWI all use the green light band.
The first two indices performed better in applications to identify avocados infected with
laurel wilt [44]. NWI was constructed for oak wilt disease detection and performed better
than NDVI [30].

All of the above vegetation indices are commonly used to estimate the physiological
and biochemical parameters of vegetation or to monitor the vegetation damage caused by
pests, diseases, human activities, and environmental stresses. However, GNDVI, NDVI,
NWI, PSND, VIgreen, PSRI, SRPI, and VARI did not perform well in the early monitoring of
the Chinese fir dying process. There are two main reasons. One is that the utilized bands do
not reflect the subtle changes in damaged Chinese fir. The other may be that the number of
bands used is small, susceptible to noise and environmental factors, and poorly stabilized.
While REP could monitor highly significant differences between the experimental and
control groups throughout September 2016–February 2017, it utilized only four bands and
was also unstable. Kim et al. concluded that vegetation indices calculated based on only a
few bands have higher variability than those calculated based on multiple bands [19].

GRRSGI and GRSAI were created based on the 550 nm–640 nm band collection and
the 550 nm–670 nm band collection, respectively. Zhuo Zang et al. calculated 11 vegetation
indices based on hyperspectral non-imaging data, and the results of t-tests showed that
GRRSGI and GRSAI could detect differences between damaged and healthy Chinese
fir trees at the 0.01 significance level [20]. This experiment obtained similar results on
hyperspectral imaging data, indicating that GRRSGI and GRSAI can be generalized to
hyperspectral imaging data and that GRRSGI is superior to other vegetation indices.

Although hyperspectral imaging data have significant advantages in the early moni-
toring of pests and diseases, data quality is susceptible to measurement conditions. This
study compared only 11 vegetation indices to determine the best one for monitoring early
damage in Chinese fir trees. However, there may be other indices that are more sensitive to
vegetation senescence and damage. In future studies, we will compare the effectiveness
of more different indices in extracting spectral information of damaged Chinese fir. In
addition, the findings of this experiment only address early damage in a small range of
Chinese fir trees and require further validation when applied to other conifer forest types
and scales.
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5. Conclusions

In this study, we monitored the Chinese fir dying process using hyperspectral imaging
data and compared the effectiveness of 11 vegetation indices. The results show that REP and
GRRSGI were able to effectively distinguish subtle differences in leaf reflectance between
damaged Chinese fir trees and healthy Chinese fir trees at an early stage. However, GRRSGI
was able to effectively avoid the influence of noise, thus extracting the spectral change
information more stably and accurately, and performed best among the 11 vegetation
indices. Overall, GRSAI and GRRSGI constructed based on non-imaging hyperspectral
data showed better stability than the other vegetation indices in monitoring the early
damage process of Chinese fir trees, and they have the same advantages when used for
hyperspectral imaging data.
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