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Abstract: Accurate recognition of the canopy is a prerequisite for precision orchard yield estimation.
This paper proposed an enhanced LA-dpv3+ approach for the recognition of cherry canopies based
on UAV image data, with a focus on enhancing feature representation through the implementation
of an attention mechanism. The attention mechanism module was introduced to the encoder stage
of the DeepLabV3+ architecture, which improved the network’s detection accuracy and robustness.
Specifically, we developed a diagonal discrete cosine transform feature strategy within the atten-
tion convolution module to extract finer details of canopy information from multiple frequency
components. The proposed model was constructed based on a lightweight DeepLabv3+ network
architecture that incorporates a MobileNetv2 backbone, effectively reducing computational costs.
The results demonstrate that our proposed method achieved a balance between computational cost
and the quality of results when compared to competing approaches. Our model’s accuracy exceeded
89% while maintaining a modest model size of only 46.8 MB. The overall performance indicated
that with the help of a neural network, segmentation failures were notably reduced, particularly
in high-density weed conditions, resulting in significant increases in accuracy (ACC), F1-score, and
intersection over union (IOU), which were increased by 5.44, 3.39, and 8.62%, respectively. The
method proposed in this paper may be applied to future image-based applications and contribute to
automated orchard management.

Keywords: orchard canopy tree extraction; attention mechanism; DeepLabv3+; MobileNetv2
backbone

1. Introduction

Agricultural remote sensing is the process of optimizing crop production using satel-
lites, human-powered aircraft, and unmanned aerial vehicles (UAVs) [1,2]. Advances in
UAV technology have allowed farmers to obtain high-resolution images at far lower costs
than traditional methods. Thus, UAV images have become an important data source for
agricultural remote sensing [3–6]. Furthermore, innovative approaches to UAV image
processing have become a consistent pursuit in this domain [7–9]. In particular, stud-
ies that have focused on individual tree identification and extraction using UAV images
have suggested the platform’s potential for the detection and delineation of tree canopies.
Subsequently, it is expected that the morphological parameters of trees can be accurately
identified on a singular basis [10–12].

Accurate tree identification is a prerequisite for canopy extraction studies. Feature-
based machine-learning methods are widely used for tree identification owing to their
simplicity and universality in terms of canopy textures [13–15], grayscales [16–18], and
spectra [19,20]. Such image features typically do not appear individually, but are combined
together in statistical analyses to achieve various types of advanced tasks [21–23]. Inter-
estingly, complex and highly detailed images allow manual feature engineering to resolve
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object detection problems, but doing so is costly and difficult, especially when the object
and backgrounds share similar features [24]. Compared with manual feature engineer-
ing, deep learning (DL) networks enable the automatic detection of the characteristics of
single trees, making their identification an ideal candidate process for low-altitude and
high-spatial-resolution UAV image processing.

Many advanced DL techniques have been introduced for UAV tree extraction owing
to their powerful feature extraction capabilities. According to the output results, these
DL models can be divided into three categories: object detection, semantic segmentation,
and instance segmentation. Object detection-based tree canopy detection methods adopt
rectangular box-labeling of the tree canopy boundary. Santos assessed the performance of
three classic detection algorithms, including the “faster” region-based convolutional neural
network (RCNN), YOLOv3, and RetinaNet, for urban environments [25]. Their results
showed that target detection algorithms based on a convolutional neural network (CNN)
accurately locate single target trees in a canopy. Zheng proposed a framework based on
faster RCNN to delineate a bounding box around the individual canopies of single oil palm
trees, successfully providing information about their positions and locations [26]. Although
this information is valuable, some key details regarding the morphology of the tree canopy
(e.g., individual shapes and contours) were not provided.

Instance segmentation applies different labels to separate instances of objects be-
longing to the same class. The latest research reported that these technologies accurately
delineate the boundaries of distinct trees while providing detailed location and spatial
information [27–29]. However, this comes at the price of high computational and per-pixel
image annotation costs. Most instance segmentation algorithms focus on improving model
performance while ignoring the balance between computational costs and accuracy. In con-
trast, our approach in this paper emphasizes the use of semantic segmentation. Semantic
segmentation algorithms excel at capturing object boundaries compared to object detection
and offer computational efficiency compared to instance segmentation [30].

Semantic segmentation has ushered in a new era of benefits via the introduction of fully
convolutional networks (FCNs) [31]. Building upon this, U-Net adopts an encoder–decoder
structure to stitch shallow and deep features to accurately recover the details of reduced
images during image size recovery [32]. Kattenborn achieved semantic segmentations with
the U-Net architecture applied to shrubs, herbs, and trees with 84% accuracy [33]. How-
ever, the segmentation of large-scale objects suffers because the detailed location/spatial
information related to object boundaries is missing owing to pooling or striding operations,
despite the U-shaped encoder–decoder architecture storing the richest information [34].

Models such as DeepLab later extended these approaches by introducing atrous con-
volutions, conditional random fields (i.e., DeepLabv1), residual networks, and Atrous
Spatial Pyramid Pooling (ASPP). The current DeepLabv3+ surpasses the previous versions
in the DeepLab family, and experimental results using the PASCAL VOC-2012 dataset
have demonstrated that DeepLabv3+ outperforms SegNet [35], the pyramid scene pars-
ing network (PSP) [36], and FCN [37,38]. DeepLabv3+ has, therefore, been widely used
for image segmentation tasks in various complex scenes, such as along roads [39], water
systems [40], and farmland extraction [41]. Morales reported that the DeepLabv3+ model
outperforms four U-Net architectures in identifying semantically segmented mauritia flexu-
osa palm trees from UAV images [42]. Ferreira used DeepLabv3+ alongside morphological
post-processing to detect palm tree canopies and compared the results to the standard FCN,
showing an improvement in canopy detection of 34.7% [43].

Although DeepLabv3+ shows excellent performance, the application strategies that
can be applied to different scenarios require constant reassessment. For example, although
it improves accuracy and speed by adopting the improved Xception backbone, these
improvements come at the price of complex architectures and persistently high compu-
tational costs, which make it difficult to run on farm terminals with limited computing
power. Hence, Torres evaluated the performance of Xception and MobileNetv2 as inter-
changeable backbone models of DeepLabv3+ for Brazilian Cumbaru tree segmentation [30].
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Quantitative analyses showed that the MobileNetv2-based model effectively delineated
canopy types with lower computational costs than when using the Xception backbone.
Encoding lightweight backbone networks allows for practical algorithmic convergence
with lower costs, which is quite amenable to agricultural uses. However, DeepLabv3+
and its lightweight backbone networks do not perform well with noncompact cherry tree
extractions. Normally, fruit tree pruning, which comprises a task different to forest-land
classification, encourages branches to grow toward an outer spherical threshold so that
both air and light penetrate the inner foliage to reach the center of the tree as much as pos-
sible. This human-induced growth style exacerbates DeepLabv3+’s inability to completely
estimate the relationship between the local features of large-scale targets owing to their
non-customized expansion ratios, resulting in the appearance of holes in large-scale target
segmentation despite the high overall accuracy.

To remedy these shortcomings, the current study aims to develop a low-cost lightweight
tree canopy extraction model, provide a semantic segmentation strategy for non-compact
fruit trees with gaps between branches, and assess the DeepLabv3+ backbone variants in
the performance of tree segmentation.

2. Study Site and Materials
2.1. Study Site and Image Acquisition

Beijing Zhongnong Futong Horticulture Co., Ltd., is an agricultural high-tech service
enterprise, leveraging expertise and technologies from leading scientific research institu-
tions, including China Agricultural University, Chinese Academy of Agricultural Sciences,
Beijing Academy of Agriculture and Forestry, and Beijing Agricultural College. The study
area took place in Zhongnong Futong’s commercial cherry orchard (Figure 1a–c). The
orchard spans over 200 acres, featuring cherry tree heights ranging from 2 to 5 m. The
cherry trees were meticulously spaced at intervals of 4 m with 5 m paths between rows. The
canopy had grown irregularly, the branches and leaves were scattered with many gaps,
and some had noticeable holes (Figure 1d) and black-hole shadows (Figure 1e). Weeds
of different densities were randomly distributed on both sides of each row, and their
physiological characteristics (e.g., color and texture) were similar to those of a natural tree
canopy (Figure 1f). Images of the study areas were obtained using a commercial-grade DJI
Phantom 3 UAV quadcopter (DJI Technology Co., Ltd., Shenzhen, China) equipped with a
Sony EXMOR 1/2.3 in complementary metal–oxide–semiconductor digital camera (Sony
Corporation, Tokyo, Japan), outputting 3000 × 4000-pixel red–green–blue three-channel
images. Observations were taken in dry, windless weather (<1.5 m/s) at multiple distances
from the trees (20–60 m) to capture variations in scale.

A typical UAV flight plan includes a procedure to obtain video batch training datasets
and high-quality images by hovering at multiple distances from the trees. In our study,
1037 images were taken from the test area. For more details about the experimental setup,
please see Cheng et al. (2020) [24].

2.2. Dataset Construction

Semantic segmentation requires pixel-level labeled datasets. In this study, each image
pixel was manually assigned to a tree or background category using free DL LabelMe
software (version 5.0.1, developed by the Massachusetts Institute of Technology, Cam-
bridge, MA, USA) [44]. Each cherry tree crown was delineated manually by an expert with
experience in agricultural image processing, and the data were used as a benchmark for
model training and evaluation (Figure 2). To improve the generalizability of the model, the
original cherry tree images were selected under different weather and altitude conditions
and further expanded using image augmentation methods that included random rotations
of 45◦, 90◦, 135◦, and 180◦ and random flipping in mirror, horizontal, and vertical modes,
resulting in an augmented dataset of 2168 images, which were divided into training, valida-
tion, and testing sets at a ratio of 8:1:1 by random selection. The test set consisted of images
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near the ground (20–30 m), at low altitudes (50–60 m), and with low- and high-density
weed coverage. The statistics of these datasets are shown in Table 1.
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Table 1. Detailed dataset.

Dataset Training Set Validation Set
Test Set

Total Number
Near Ground Low-Altitude

Number of images 1730 215 109 109 2163

3. Methodology

The proposed method can be summarized in two steps. The first distinguishes the
tree canopy regions from the background using the LA-dpv3+ network. The model’s
DeepLabv3+ framework was modified by replacing Xception with MobileNetv2 as the
backbone for feature extraction, which effectively reduces the memory required for network
parameters and operations. To strengthen tree information extractability, an effective
discrete cosine transform (DCT) module was designed to enhance the convolutional block
attention module (CBAM). A simplified connection to the main module is shown in Figure 2.
The second stage, following background removal, discriminates individual tree detections
in the face of continuous tree canopies (see Section 3.2).
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3.1. LA-dpv3+ Network

This section briefly introduces the basic DeepLabv3+ architecture, MobileNetv2 net-
work, and enhanced CBAM modules, which comprise blocks of the proposed approach. It
then discusses the proposed segmentation framework.

3.1.1. Fundamentals of DeepLabv3+ Architecture

DeepLabv3+ was proposed by Google and was built upon its predecessor, DeepLabv3 [35].
It is mainly implemented by encoder and decoder modules. The encoder stage is dedicated
to extracting image features and consists of the X_ception-65 backbone and the ASPP
mechanism. Specifically, X_ception-65 outputs low-level features for the decoder module
and high-level semantics for the ASPP layer. In DeepLabv3+, X_ception-65 removes all
max-pooling layers of the aligned Xception backbone and replaces the depth-wise separable
convolution with striding. It also adds batch normalization and rectified linear unit (ReLU)
operations. The ASPP convolution’s custom dilation rate was used to capture the global
context of each image. It consists of a 1 × 1 and three 3 × 3 atrous layers at rates of 6,
12, and 18, and it incorporates an image-pooling layer. In the decoder stage, the features
extracted by the ASPP module were bilinearly upsampled by a factor of four, followed by
concatenation with the corresponding low-level features from the encoder stage. Before
concatenation, low-level features were first convolved with a 1 × 1 filter to reduce the
number of channels (Chen et al., 2018). Finally, the three 3 × 3 convolutions were applied
to refine the fused features, followed by 4× bilinear upsampling.

Figure 3 shows that X_ception-65 contained 65 convolutional layers, including 11 in
the ingress stream, 48 in the intermediate stream, and 6 in the egress stream. Although
X_ception-65 is a powerful feature extractor, its computational complexity is high, resulting
in a heavier-than-warranted DeepLab3+ encoder module. To reduce computational redun-
dancy, a lightweight network is needed that operates using limited calculation resources so
that agricultural platforms can be supported.

3.1.2. MobileNetv2 Backbone

MobileNetv2 [45] is a network conceived for mobile and embedded devices with
fewer parameters and fewer computational complexities than larger models. Therefore,
it is suitable for real-time applications on embedded terminals. Additionally, research
has reported that, although DeepLabv3+ uses the new generation MobileNetv3 to receive
slight advantages in computation, its accuracy is lower than that of DeepLabv3+ using
MobileNetv2 [46]. Therefore, MobileNetv2 was chosen in this study as the main feature
extraction network. It builds upon the core MobileNetv1 [47] benefits of extensive depth-
wise separable convolutions used as efficient building blocks, which significantly reduces
the number of parameters. In particular, MobileNetv2 introduced the inverted residual
block, in which residual connections exist between bottleneck layers. The bottleneck
structure was first developed as part of the ResNet network, and adding a bottleneck
structure to MobileNetv2 avoids information loss from tensors with a small number of
channels caused by the ReLU operation. Because the last layer of the point-by-point
convolution uses the linear activation function, it also has a “linear bottleneck” structure.
This inverse residual structure is based on the standard ResNet, which entails first reducing
the dimensionality, followed by increasing it, whereas the inverse residual increases the
dimension first using the point-by-point convolution and reduces the dimension of the
result of the depth-wise convolution. Compared with the standard design, the inverted
structure is significantly more memory-efficient. The MobileNetv2 encoder reduces the
computational complexity of the model, but it also weakly captures and fuses semantic
information. The solution to this problem is described in the next subsection.
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3.1.3. Enhanced Attention Module

Holes and other irregular canopy shapes are commonly observed in cherry orchard
scenarios, and they call for contextual and detailed semantic information so that neural
network models can pay attention to these features. CBAM (a convolutional block attention
module) is a sophisticated neural network module designed to enhance the performance of
convolutional neural networks (CNNs) by prioritizing relevant spatial and channel-wise
features for capturing intricate image features [48]. Demonstrating its effectiveness across
various computer vision tasks, including image classification and object detection, CBAM
has proven to be a powerful tool in diverse research areas [49–51]. Consequently, this paper
utilizes CBAM to refine the features extracted from the lightweight model. Therefore, this
paper leverages CBAM to refine the features extracted from the lightweight model.

The CBAM was developed from human visual attention methods, which pay more
attention to key features and ignore those that contribute less. It consists of channel
and spatial attention blocks, and the channel attention mechanism identifies the most
meaningful features located by the spatial attention mechanism. The CBAM uses global
average pooling (GAP) to simply average the features, which causes sufficient semantic
information to be preserved in feature maps, even when combined with global max-pooling.
Qin et al. showed that GAP is a special case of DCT, and using GAP in the channel attention
mechanism means that only the lowest-frequency information is retained, whereas it
discards important information from other frequencies [52]. Inspired by Qin et al., our
frequency layer is incorporated into the channel attention mechanism of CBAM to enhance
the information extractability of tree crowns (Figure 4).



Forests 2023, 14, 2404 7 of 16Forests 2023, 14, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 4. The architecture of the enhanced attention module. 

3.1.4. Architecture of LA-dpv3 
The proposed framework, LA-dpv3+, is based on DeepLabv3+, MobileNetv2, and 

enhanced CBAM modules (Figure 5). The LA-dpv3+ framework was modified in the 
DeepLabv3+ framework by using the lightweight encoder MobileNetv2 and retaining 
parts, such as the Atrous Spatial Pyramid Pooling and encoder–decoder modules. Because 
a tree canopy can be distinguished from the background by features of color, texture, or 
shape, which are generally extracted by a shallow neural network, an enhanced CBAM 
was added after the quarter layers of MobileNetv2 as part of the decoder module. The 
refined features were then compressed by a 1 × 1 convolution to be concatenated with 
multiscale features from the ASPP module. 

 
Figure 5. The overall architecture of the proposed LA-dpv3+ network. 

  

Figure 4. The architecture of the enhanced attention module.

The DCT is a mathematical operation capable of transforming an image from the
spatial domain to the frequency domain. Particularly, a two-dimensional (2D) version of
the DCT is widely used for feature extraction, and in various image processing applications.
For an image feature tensor in networks x2d ∈ R H×W , the 2D DCT can be formulated
as [53]
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This indicates that the GAP is a feature decomposition case with its lowest frequency
in the frequency domain. It is clearly preferable to capture adequate information by
exploiting more frequency components from feature maps instead of only those of the
lowest frequencies.

Inspired by DCT theory, the frequency layer is further incorporated into the channel
attention mechanism of CBAM to strengthen the information extractability of tree crowns.
In terms of the spatial attention module, we embraced the well-established iterative process
outlined by Sanghyun Woo et al. [47]. The overall structure of the enhanced CBAM is shown
in Figure 4. Typically, the feature map is equally split into several groups along the channel
dimension, and each part is assigned a corresponding 2D DCT frequency component. In
this study, a diagonal DCT feature strategy was used for efficiency. Specifically, five DTC
frequency components from low to high in the horizontal and vertical directions were
selected. According to Equations (1), these DCT frequency components can be written as



Forests 2023, 14, 2404 8 of 16



TP(0, 0) =
h−1
∑

i=0

w−1
∑

i=0
x2d

i,j cos
(

0
H

(
i + 1

2

))
cos
(

0
W

(
j + 1

2

))
,

TP(H − 1, 0) =
h−1
∑

i=0

w−1
∑

i=0
x2d

i,j cos
(

π×(H−1)
H

(
i + 1

2

))
,

TP(0, W − 1) =
h−1
∑

i=0

w−1
∑

i=0
x2d

i,j cos
(

π×(W−1)
W

(
j + 1

2

))
,

TP
(

H−1
2 , W−1

2

)
=

h−1
∑

i=0

w−1
∑

i=0
x2d

i,j cos
(

π×(H−1)
2H

(
i + 1

2

))
cos
(

π×(W−1)
2W

(
j + 1

2

))
,

TP(H − 1, W − 1) =
h−1
∑

i=0

w−1
∑

i=0
x2d

i,j cos
(

π×(H−1)
H

(
i + 1

2

))
cos
(

π×(W−1)
W

(
j + 1

2

))
, s.t. 0 ≤ k ≤ C,

(3)
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2 ),
and (H-1, W-1), respectively. If given an entire feature map, X ∈ R C×H×W , C is the number
of channels, each of which is processed by the same frequency component and concatenated.
Hence, a total of five multi-frequency feature vectors are obtained:

F1 = cat[(TP1(0, 0)), (TP2(0, 0)), . . . , TPC(0, 0))]
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(4)

where F1–F5 is the output of the DTC attention mechanism. Subsequently, these output
feature vectors are forwarded to the multilayer perceptron in parallel with the aggregated
max-pooling vectors to produce channel attention vectors. The whole channel attention
can thus be written as

Mc(F) = sigmoid

(
MLP(Maxpool(F)) +

5

∑
n=0

MLP(Fn)

)
(5)

3.1.4. Architecture of LA-dpv3

The proposed framework, LA-dpv3+, is based on DeepLabv3+, MobileNetv2, and
enhanced CBAM modules (Figure 5). The LA-dpv3+ framework was modified in the
DeepLabv3+ framework by using the lightweight encoder MobileNetv2 and retaining
parts, such as the Atrous Spatial Pyramid Pooling and encoder–decoder modules. Because
a tree canopy can be distinguished from the background by features of color, texture, or
shape, which are generally extracted by a shallow neural network, an enhanced CBAM was
added after the quarter layers of MobileNetv2 as part of the decoder module. The refined
features were then compressed by a 1 × 1 convolution to be concatenated with multiscale
features from the ASPP module.
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3.2. Individual Tree Detection

The proposed tree canopy extraction algorithm relies on an individual tree detection
module, as described by Cheng et al. (2020) [24]. It was developed to identify trees
from mingled canopies. This detection method was tested against different lighting and
overlapping conditions. For example, a canopy can have heavily intermingled or barely
overlapping branches with different numbers of interweaving trees. The method involves
several steps in which the background is removed by applying the Excess Green Index
(EXG) and Otsu’s method, the target regions are extracted using the length threshold of the
circumscribed rectangle of the connected area, a Gaussian mixture model (GMM) is built by
fitting a projection histogram curve in the horizontal direction of the extracted interlacing
regions, and image segmentation is performed by estimating the GMM parameters.

3.3. Experimental Setup and Evaluation Indices
3.3.1. Experimental Setup

The experiments utilized the Python and PyTorch deep learning framework for train-
ing and testing the performance of the LA-dpv3+ method. Additionally, the specific
configuration details of the experiments are shown in Table 2. The input image size for
our model was consistently set at 512 × 512 pixels. All experiments were trained using
the Adam optimizer with a learning rate of 0.007, the momentum factor was set to 0.9, the
batch size was set to 24, and 200 epochs were used. As we had two possible outcomes, tree
or background, binary cross-entropy was used as the loss function.

Table 2. Experimental software and hardware configuration.

Item Detail

CPU Intel® Core (TM) i7-6700 k
RAM 16 GB

Operating system Ubuntu 16.04 LTS
CUDA CUDA10.0 and CUDNN7.5
Python Python 3.7 and PyTorch 1.4.0
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3.3.2. Evaluation Indices

The proposed method was evaluated in terms of segmentation accuracy and imple-
mentation costs. Four evaluation indicators (i.e., model size, parameter quantity, training
time, and test time) were used to evaluate the running cost, and the indicators of accuracy
(ACC), F1-score, and intersection over union (IOU) were used to measure segmentation
accuracy. ACC is the percentage of correctly extracted canopy pixels (positives) from the
background (negatives). The F1-score is the harmonic mean of precision and recall, indicat-
ing the balance between false positives and false negatives (background). The IOU reflects
the consistency of the segmented canopy area with the ground-truth area. These metrics
are defined by the following equations:

ACC =
TP + TN

TP + FP + TN + FN
× 100% (6)

F1 =
2TP

2TP + FP + FN
× 100% (7)

IOU =
|S ∩ Si|
|S ∪ Si|

× 100% (8)

where a true positive (TP) is the number of canopy pixels correctly predicted as being
produced by the segmentation algorithm. A false positive (FP) represents the number
of background pixels classified as the canopy. A true negative (NT) is the number of
background pixels correctly predicted by the segmentation algorithm. Lastly, a false
negative (FN) is the number of canopy pixels counted as the background. S and Si are the
segmentation maps and ground truth images, respectively.

4. Experimental Results

First, the improved strategy based on DeepLabv3+ was verified, including the perfor-
mance of the DeepLabv3+ variant and the efficacy of the enhanced CBAM module. Second,
the overall performance of the proposed method under weed-covered conditions was
tested, which had already been determined to be the most challenging extraction case [24].

4.1. Comparison of Three Backbones

Three DeepLabv3+ variants were trained in this study: ResNet (the backbone of
DeepLabV3), Xception (the backbone of DeepLabv3+), and MobileNetv2. The results are
shown in Table 3. All networks were quite successful in their segmentation accuracy, achiev-
ing over 87% in ACC, F1-score, and IOU separately. Among them, ResNet provided the best
ACC, F1-score, and IOU values of 94.67, 95.32, and 89.87%, respectively. The segmentation
accuracy of MobileNetv2 was slightly lower than that of ResNet by 1.24, 0.61, and 2.22%,
respectively. However, in terms of running costs, MobileNetv2 effectively controlled the
functional parameters and memory usage of the model. The size of MobileNetv2 is only
46.8 MB, which is about one tenth of ResNet and one ninth of Xception. The numbers
of parameters used for ResNet and Xception are ~9.4 and 10.2× that of MobileNetv2,
respectively. Regarding time costs, ResNet took 9 h, 31 min to process; Xception took 8 h,
59 min; and MobileNetv2 only took 3 h, 29 min for training, saving ~6 and 5 h, respectively.

As shown in Table 3, the running cost of the model was proportional to its accuracy.
Compared with MobileNetv2, ResNet and Xception achieved small accuracy gains at the
cost of larger sizes, more parameters, and greater training and inference times. Although
the segmentation accuracy of MobileNetv2 was slightly lower than that of ResNet and
Xception, the model’s ACC, F1-score, and IOU values were greater than 87.65%. From the
perspective of the trade-off between segmentation accuracy and implementing efficiency,
applying MobileNetv2 as the backbone is the optimal choice.
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Table 3. Implementation cost and segmentation accuracy for the DeepLabv3+ variant, Resnet,
Xception, and MobileNetv2.

Backbone

Implementation Cost Segmentation Accuracy

Size
(MB)

Number of
Parameters

Total Training
Time (Hours)

Inference
Time

(Seconds)

ACC
(%)

F1-Score
(%)

IOU
(%)

Resnet101 475.3 59,339,426 12.31 0.51 94.67 95.31 89.87

Xception71 438.6 54,700,434 11.59 0.57 94.01 95.18 88.68

MobileNetV2 46.8 5,811,170 5.29 0.35 93.43 94.70 87.65

4.2. Effectiveness of Attention Module Embedding

To evaluate the effectiveness of the attention mechanism for key information extraction,
an intermediate feature map was visualized, as shown in Figure 6. Figure 6a shows the input
feature image of the DTC-channel attention module. Each square in the figure represents a
channel of the convolution operation, which indicates the current learning results (i.e., a
class of low-level image features). Visually explicit or indistinct appearances in the squares
reflect critical or minor feature contributions, respectively. Figure 6b shows the output of
the DTC-channel attention module. The values in the squares in Figure 6b correspond to
the weights of each channel in Figure 6a. The weight value of the explicit channel was
larger than that of the indistinct channel, which indicates that the key features were focused
through our channel attention module. The output feature maps of the spatial attention
module are shown in Figure 6c. The outline of the canopy is highlighted, indicating that the
spatial attention mechanism accurately and effectively locates the features. Additionally,
the main body of the canopy is surrounded by a complete borderline, implying that the
spatial attention mechanism achieves a high level of correlation between similar features at
different distances.
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To further evaluate the feasibility of the proposed attention mechanism, tests were
performed on images taken at different flight heights. Figure 7 illustrates an example of the
segmentation results. The first row shows the results of an image captured at approximately
20 m, and the second row represents 50 m. Green rectangles are set on the image for easy
visual inspection. Comparing the extraction results of the algorithm before and after
adding the enhanced CBAM, it is obvious that the proposed attention module eliminates
the hollow inside part (hole) of the tree canopy, which is particularly significant to the
performance of MobileNetv2, followed by Xception and ResNet. Comparing images taken
at different heights, it can be seen that, with the increase in the target scale, the holes inside
the canopy are more obvious, and complete canopy extraction becomes more difficult.
Limited by the model scale, MobileNetv2 turns out to be inferior to Xception and Resnet in
the segmentation of large-scale objects; however, the addition of the attention mechanism
makes up for this. A quantitative description is provided below.
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To quantitatively verify the effectiveness of the improved CBAM in the DeepLabv3+
framework, comparative experiments were conducted on different combinations of back-
bones and convolutional attention mechanisms. Comparing Tables 3 and 4, it can be seen
that, no matter the backbone, adding the attention mechanism has a positive impact on
the performance of DeepLabv3+ at a small cost increase. Notably, the combination of
MobileNetv2 and the enhanced CBAM improved the ACC by 1.11%, F1-score by 1.9%, and
IOU by 1.99%; memory added only 0.1 MB of resource consumption. Compared with the
DeepLabv3+ using only Xception, the ACC, F1-score, and IOU improved by 0.53, 0.97, and
0.96%, respectively, whereas the overall memory requirement was reduced by 397.7 MB.

Table 4. Comparison of attention mechanism and different backbone network combinations.

Model

Computational Cost Assessment Index Segmentation Evaluation Index

Size
(MB)

Number of
Parameters

Total Training
Time (h)

Inference
Time (s)

ACC
(%)

F1-Score
(%)

IOU
(%)

Resnet101+
Enhanced

CBAM
484.9 60,528,388 12.57 0.55 94.75 95.78 90.01

Xception71+
Enhanced

CBAM
441.0 54,998,004 11.21 0.58 94.34 95.68 89.26

MobileNetV3+
Enhanced

CBAM
46.9 5,821,780 5.32 0.36 94.54 95.97 89.64

4.3. Overall Performance of the Proposed Algorithm

The orchard image samples were taken in a variety of weather and background condi-
tions, and the primary focus area was weed-cover conditions. The proposed algorithm was
compared to Cheng’s [24] method and the classic Mask-RCNN [54] instance segmentation
algorithm. Figure 8 provides an example of the experimental results. Typical test images
included various weed-cover conditions, as shown in Figure 8a, where trees in the left and
middle columns of the image overlapped high-density weeds, whereas trees in the right
column overlapped low-density weeds. Figure 8b shows the individual canopies produced
by Mask-RCNN. Figure 8c shows the segmentation results of the algorithm proposed
by Cheng et al. (2020), and Figure 8d presents the results of the proposed method. The
extracted tree canopy is marked with red rectangles (Figure 8b,d), or highlighted patches
(Figure 8c).
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Figure 8b shows the excellent performance of Mask-RCNN in distinguishing between
weeds and tree canopies. However, many image details were missed, resulting in overly
smooth tree canopy borders. Additionally, the mask prediction of the target shape was
inconsistent. Examining Figure 8c and the results of the preprocessing method that applied
the EXG index and Otsu, the previous algorithm failed to discriminate the canopy from the
background with heavy overlapping of weeds. Additionally, because lighting conditions
have huge effects on the color index-based method, some shaded areas of tree canopies
were misclassified as background. However, with the proposed method, the incorrect
segmentations were corrected.

Table 5 shows the segmentation results of the 200 test images using three different
segmentation methods. The average ACC, F1-score, and IOU values of Mask-RCNN were
88.51, 88.72, and 77.38%, respectively. The overall performance of the proposed method
was higher than that of Mask-RCNN, with the average ACC, F1-score, and IOU values
increasing by 3.42, 2.29, and 13.03%, respectively. When preprocessing by color index, the
ACC, F1-score, and IOU values were 88.4, 87.62, and 82.15%, respectively. Adding the
neural network increased these scores to 91.9, 90.53, and 90.41%, respectively.

Table 5. Average results for 200 images using three different algorithms.

Method ACC (%) F1-Score
(%) IOU (%)

Mask-RCNN 88.51 88.72 77.38
Algorithm (Cheng et al.

(2020) [24]) 86.49 87.62 82.15

Proposed Algorithm 91.93 91.01 90.41

5. Discussion and Conclusions

This paper applied the LA-dpv3+ neural network for fruit tree canopy and back-
ground segmentation to improve the previously effective state-of-the-art method of canopy
extraction with weeds and open spaces in the background. The proposed model was built
upon the DeepLabv3+ network architecture and integrated the lightweight Mo-bileNetv2
network along with an enhanced CBAM that includes a frequency layer.

Three variants of DeepLabv3+ were tested with ResNet, Xception, and MobileNetv2
backbones. The results align with those specified in Torres et al. [30], demonstrating that the
MobileNetv2 variant consistently outperformed its Xception counterpart. The performance
was further improved by combining MobileNetv2 with the enhanced CBAM. The model
accuracy exceeded 89%, while the model size was only 46.8 MB, showcasing a favorable
trade-off between segmentation accuracy and implementation efficiency. In terms of overall
canopy extraction performance, the segmentation evaluation metrics, including ACC, F1-
score, and IOU, increased by 5.44, 3.39, and 8.62%, respectively, compared to the approach
by Cheng et al. [24]. This result is particularly promising because deploying high-end
hardware in the field is often impractical due to its exorbitant costs. In contrast, lightweight
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models designed for embedded terminals offer a more cost-effective, compact, and readily
deployable solution.

However, the LA-dpv3+ model is sensitive to light changes, which is minimized
when capturing images around noon or on cloudy days. During early morning or evening
hours, there is lengthening of the shadows between tree canopies due to the changing
position of the sun, which can lead to false detections. Further training and validation
would also be required to apply this method to similar fruit trees and to use it in different
orchards. This potential adaptation would enable users to capture videos in the field using
smartphones and leverage cloud resources for near-real-time detection. Future research
efforts should prioritize addressing these challenges with the ultimate goal of applying the
proposed model to embedded terminals for the intelligent image-based management of
cherry orchards.
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