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Abstract: The conservation and management of forest areas require knowledge about their extent
and attributes on multiple scales. The combination of multiple classifiers has been proposed as an
attractive classification approach for improved accuracy and robustness that can efficiently exploit the
complementary nature of diverse remote sensing data and the merits of individual classifiers. The aim
of this study was to develop and evaluate multiple classifier systems (MCSs) within a cloud-based
computing environment for multi-scale forest mapping in Northeastern Greece using passive and
active remote sensing data. Five individual machine learning base classifiers were used for class
discrimination across the three different hierarchy levels, and five ensemble approaches were used for
combining them. In the case of the binary classification scheme in the upper level of the hierarchy for
separating woody vegetation (forest and shrubs) from other land, the overall accuracy (OA) slightly
increased with the use of the MCS approach, reaching 94%. At the lower hierarchical levels, when
using the support vector machine (SVM) base classifier, OA reached 84.13% and 74.89% for forest
type and species mapping, respectively, slightly outperforming the MCS approach. Yet, two MCS
approaches demonstrated robust performance in terms of per-class accuracy, presenting the highest
average F1 score across all classification experiments, indicating balanced misclassification errors
across all classes. Since the competence of individual classifiers is dependent on individual scene
settings and data characteristics, we suggest that the adoption of MCS systems in efficient computing
environments (i.e., cloud) could alleviate the need for algorithm benchmarking for Earth’s surface
cover mapping.

Keywords: ensemble classification; land cover mapping; machine learning; cloud computing

1. Introduction

Forest areas, which cover 31% of the world’s land surface, are an essential component
of the terrestrial landscape and one of the most valuable natural resources, playing a major
role in maintaining global ecological balance and providing a suite of essential ecosystem
services to society [1]. Mediterranean forests, while comprising a mere 2% of the world’s
forest resources (equivalent to 25 million hectares of forests and approximately 50 million
hectares of other forested land), hold a significance and function in sustaining ecological sta-
bility and promoting sustainable development that is disproportionately large compared to
their size [2]. These regions face considerable strain from both natural and human-induced
disruptions such as wildfires, pest diseases, and over-exploitation. This pressure is further
intensified by climate change, posing a risk to a multitude of ecosystem functions and
processes. However, the implementation of successful conservation strategies and forest
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management activities are impeded due to the absence of geospatial intelligence concerning
the geographical distribution and structural and biophysical aspects of forest regions.

Remote sensing (RS) has long being employed in forestry in various applications,
ranging from tracing geographic distribution to capturing the three-dimensional structure
of forest areas [3,4]. The extent of forests (i.e., forest masks), individual forest types, and
species distribution rank highly among the variables that necessitate regular mapping and
monitoring through RS [4–7]. These three variables pertain to different levels of hierarchical
forest vegetative classification systems and are commonly estimated using RS data; they
also describe the spatial hierarchical organization of forest landscapes [8]. For example,
binary woody vegetation (forest and shrub) maps, are required for a large suite of applica-
tions related to ecosystem accounting (i.e., accounts of the functions of ecosystem assets
and ecosystem services), reporting under international commitments, forest monitoring
supporting policy and decision making, and strategic forest management [9]. Spatially
explicit discrimination among forest types (broadleaves, conifers) and shrublands is one
of the most commonly used categorizations in forestry [7]. Such information is important
for carbon cycle and diversity assessment, watershed modelling, and climate change mon-
itoring and mitigation [10]. The classification and inventory of tree species within forest
areas is also very important for regional-/local-scale forest management, growth modelling,
invasive pest monitoring, ecosystem services, and carbon budget assessment on a regional
scale [6]. Furthermore, the accurate mapping of forest areas at multiple levels is crucial for
multi-level (known also as multi-masking or step-wise masking) classification approaches,
which have been shown to improve classification accuracy at the lower, fine, thematic level,
corresponding to tree species distribution maps [11,12].

Although numerous approaches in the literature have emerged focusing on the ex-
traction of these forest variables of interest, the increased availability of multi-source RS
data still motivates further research efforts for reliable, accurate and frequently updated
mapping products [3]. Local scale mapping studies may rely on hyperspectral and air-
borne light detection and ranging (LiDAR) data with very high spatial resolution (pixel
size < 1 m). Limitations such as data availability and high operational costs make these
approaches less common in regional or national forest area mapping [6]. On the other
hand, the open-access acquisitions offered by Landsat 8/9 and Sentinel-2 satellites at ad-
equate spatial and temporal resolutions, in spectral ranges essential for detecting forest
types/species and with radiometric stability, have facilitated the production of fine-scale
forest mapping satellite products for wall-to-wall mapping over extended geographical
areas [7,13,14].

When it comes to forest mapping over extended areas (i.e., regional to national),
information extraction at multiple scales can be facilitated owing to the complementary
advantages of different sensors with improved characteristics [15]. Active RS data such as
that of Sentinel-1 A and B (10 m to 20 m spatial resolution) can be used alongside optical
time series for filling data gaps noted in the temporal stacks due to cloud presence or
sunlight, providing detailed information on the phenological variations in forest areas [16].
Spaceborne light detection and ranging (LiDAR) and synthetic aperture radar (SAR) data
can also be used to provide information relevant to vertical forest structure and forest
biomass in areas with limited financial and technical resources, to thus employ airborne
LiDAR datasets for wall-to-wall mapping [17].

Rapid technological development has also facilitated a shift in the classification meth-
ods used for information extraction, with the aim of increasing the accuracy of the clas-
sification process while allowing for the incorporation of diverse, multi-source sensor
data. Traditional classification algorithms such as maximum likelihood, linear discrimi-
nant analysis, and spectral angle mapper classifiers receive less attention as forest related
information extraction methods nowadays compared to the more efficient shallow machine
learning (ML) and deep machine learning (DL) algorithms [12]. The use of DL in RS-based
forest mapping results in higher accuracies compared to earlier ML algorithms. However, it
presents challenges due to the substantial size of training data required [18]. Nonetheless, even
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when employing conventional machine learning algorithms for forest cover mapping—such
as random forests (RF) [19] support vector machines (SVM) [20], and classification and
regression trees (CART) [21]—the performance of individual classifications can differ based
on the RS data, classification scheme, and scene settings [22]. In light of this variability, a
new array of techniques has emerged within the RS field that merges different individual
classifiers to generate an ensemble map [23,24].

These techniques, known as multiple classifier systems (MCSs) [25], a classification
ensemble [26], or a committee of classifiers [27], can integrate the outputs of various ma-
chine learning algorithms, thereby potentially improving classification accuracy, reducing
variance, and increasing robustness to over-fitting [28,29].

Despite their encouraging initial results, these classification fusion methods have
not been widely applied and tested [29–31]. An underlying drawback of MCSs, which
hindered their wide usage in earlier studies, is the increased computational effort required.
However, nowadays, such an issue can be addressed with the aid of recent technological
breakthroughs made in hardware and software development, while cloud-based data
platforms enable high-scale, effective data processing. In addition, and to the best of our
knowledge, the application of MCSs has been explored so far only for single-level land
use/land cover classification [24,31], leaving unexplored their applicability across multiple
classification levels and their use in forest mapping, specifically.

The overall aim of this study was to explore the strength of MCSs for improving
mapping accuracy over different levels of spatial hierarchy within Mediterranean forest
areas. Accurate information about the extent and diversity of these heterogeneous areas
at multiple scales is essential for policy makers so as to implement conservation and
management strategies. Specifically, in our study, we (i) set up a cloud-based framework
for integrating multiple classifiers, (ii) explored different decision fusion rules for MCSs,
(iii) explored the strength of the MCS approach over different levels of the forest ecosystem
hierarchy, and (iv) identified the classification accuracy for each hierarchy level of thematic
legend in the context of the Mediterranean forest.

2. Overall Workflow

In this study, we conducted multiple experiments to evaluate the potential of MCSs for
improving accuracy at three different levels of the forest spatial hierarchy (Figure 1). The
hierarchy included: a higher (L1) binary level for discriminating woody from non-woody
vegetation (other land); an intermediate (L2) level (three thematic classes) for discriminating
between two forest types (broadleaves/conifers) and shrublands; and a lower (L3) level
referring to species composition within forested areas (nine thematic classes).

Thematic classification at all three levels relied on five individual classification algo-
rithms (“base classifiers”): random forest (RF), support vector machines (SVM), k-nearest
neighborhood (KNN), classification and regression trees (CART), and gradient tree boosting
(GTB). The base classifiers were combined using three ensemble approaches for each level,
forming a total of fifteen MCS classification experiments: (i) a simple plurality voting, (ii) a
random forest meta-classifier, and (iii) three linear opinion pool algorithms using different
accuracy metrics as weights.

All classification experiments used a “multiple” framework [12], relying on the use
of multisource and multitemporal data. Monthly composites of Sentinel-1 and Sentinel-2
imagery were created in Step 1 (Figure 1). In Step 2, ICESat-2 photon counting data were
filtered to remove erroneous and non-canopy footprints. In Step 3, the spatial explicit mean
forest canopy and top canopy height variables (from the ICESat-2 footprint data) were
upscaled and produced over the whole study area. Also, during Step 3, NDVI synthetic
bands were produced and included in the classification experiments, along with all the
original bands from the Sentinel-1 and Sentinel-2 temporal series.
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Figure 1. Overall workflow of the study.

In Step 4, the reference data for each level were split according to a 50–25–25 percentage
ratio for training, validating the base classifiers, and evaluating the MSCs using appropriate
measures. All algorithms were implemented on Google Earth Engine (GEE), a cloud
platform that is freely provided for research purposes.

3. Study Area

The study area in Northeastern Greece extended over the five prefectures (Evros, Rodopi,
Xanthi, Kavala and Drama) forming the Region of Eastern Macedonia and Thrace, and the
Serres prefecture within the Region of Central Macedonia (Figure 2). The 17,585.13 km2 area
includes many environmentally important sites and protected areas, such as the mountains
of Rodopi, the National Park of the Dadia-Lefkimmi-Soufli Forest, the National Wetland
Park of the Evros Delta, the Eastern Macedonia and Thrace National Park, the Rodopi
Mountains National Park, and part of the Kerkini Lake National Park.

The annual temperature ranges from −14 ◦C to 38 ◦C, while precipitation during the
summer period varies greatly from 80 to 120 mm in areas close to the coast and can be over
320 mm in the inland mountainous regions [32]. The vegetation zones found in the area are
Quercion ilicis, Quercion confertae, Ostryo-Carpinion, Fagion moesiacae, Azonal–riparian,
and Vacinio picetalia [33].
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Figure 2. Study area location and extent.

4. Data and Pre-Processing
4.1. Remote Sensing and Ancillary Data

The study relied in the use of satellite imagery from Sentinel-1 radar and Sentinel-2
optical missions, as well as LiDAR data from NASA’s ICESat-2 photon-counting Advanced
Topographic Laser Altimeter System (ATLAS) instrument (Table 1). Sentinel-1 ground
range-detected images and Sentinel-2 surface reflectance images (both at 10 m spatial
resolution) were accessed in an analysis-ready data format through the GEE platform [34].

Table 1. Details of the satellite data used in this study: namely, Sentinel-2, Sentinel-1, and ICESat-2 data.

Satellite Processing Level Bands Date Range

Sentinel-2 L2A (surface reflectance) B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 March 2019–November 2019
March 2020–November 2020

March 2021–May 2021Sentinel-1 L1 (Ground range detected,
backscatter coefficient) VV, VH (ascending and descending)

ICESat-2 ATL08
June 2019–August 2019
June 2020–August 2020

Sentinel-2 L2A images—which contained the following bands: visible (B2 to B4),
vegetation red edge (B5 to B7), near infrared (B8 and B8A) and shortwave infrared (B11
and B12)—acquired from March to November (2019 and 2020) and from March to May
(2021) were retrieved to generate information about the temporal spectral profiles of all
forest classes. Regarding the Sentinel-1 data, all images in ascending and descending order
over the same date ranges as the Sentinel-2 images were also considered.

After filtering the ICESat data, it was determined that the number of available points
within the study area for the months of May to September 2021 was insufficient. Therefore,
it was decided that we would retain only the data from the years 2019 and 2020. Since we
assume that there were no changes in vegetation during this period, for S1 and S2, data
from May to September 2021 was used in order to create higher-quality composites.

To quantify vertical forest structure across the study area, the maximum (‘h_canopy’)
and mean (‘h_mean_can’) canopy height estimates at each footprint point were obtained
from the ICESat-2 ATL08 data repository for the June–August period (2019 and 2020) via
the ‘icepyx’ library in python [35].

In addition to RS data, ancillary geospatial data were used to facilitate reference data
selection and ICESat-2 pre-processing. The Greek “Land Parcel Identification System”
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(LPIS) [36] and the Copernicus CORINE Land Cover product (CLC 2018) [37] were used to
identify ICESat-2 footprints over woody vegetation areas. Existing maps of tree species
distribution (analog and digital) from 10-year forest management plans were gathered
from local forest service departments within the study area. Finally, ESA’s IMAGE 2018
dataset, which provides very high-resolution (VHR) orthorectified multispectral prod-
ucts throughout Europe, and freely available very high-spatial-resolution basemaps from
Google and Hellenic Cadastre, was used for visual interpretation purposes and reference
data development.

4.2. Satellite Data Pre-Processing

Snow, cirrus, clouds, and cloud shadows were masked over the Sentinel-2 images using
the scene classification map included in the L2A product. Monthly temporal composites
based on the median pixel values were created, representing the median values of each
pixel over the course of 9 months, resulting in nine synthetic monthly images [16,38]. In
addition to the original Sentinel-2 temporal composites, an NDVI [39] value was calculated
for each month. The creation of Sentinel-1 image composites was based on the minimum
value instead of the median value, in order to overcome terrain and humidity effects [16].

The ICESat-2 data were filtered in order to remove erroneous and non-canopy points.
More specifically, filters related to (i) land cover, (ii) cloud coverage, (iii) terrain and canopy
height uncertainty, (iv) canopy height, (v) number of photons, and (vi) solar elevation
were applied [40,41]. Spatial queries were additionally applied to remove points that
(i) were outside the bounds of forest and seminatural areas (CLC 2018), (ii) were within
20 m distance of a water body (CLC 2018), and (iii) were within non-vegetated parcels
included in the LPIS dataset. The number of points that resulted from the filtering and that
were used for predicting canopy height in the next step was 782.

Subsequently, wall-to-wall maps of the top and mean canopy height across the study
area were created using the ICESat-2 ‘ATL08 footprint data. Two RF regression models
based upon Sentinel-1 and Sentinel-2 temporal composites (spanning from June to Septem-
ber 2019) were used for extrapolating the ICESat-2 footprint data. Each model’s accuracy
was then evaluated based on Pearson’s correlation coefficient (R) and the coefficient of
determination (R2), and the best-fitted models were used to extract the upscaled canopy
height layers across the study area.

4.3. Classification Scheme and Reference Data

To assess the potential of MCSs for improving the accuracy of classifications for
different levels of the spatial hierarchy within forest ecosystems, a multi-level classification
approach was adopted (Table 2).

Ground reference data were assembled using existing forest maps and intensive
manual interpretation procedures using VHR imagery. Initially, we delineated as many
“pure” polygons as possible with a high confidence level, which corresponded to spatial
entities across the study area that were included in the nine classes of the lower level (L3)
and the shrubs included in the middle level (L2). Additionally, to identify reference data
for non-woody vegetation areas, the “pure” spatial entities of artificial surfaces, water, and
barren and cultivated (annual/permanent) areas were delineated, taking into account the
information about “within-class” variability provided by the CLC. In total, 5000 reference
polygons for all levels were created. Subsequently, we generated random points within
each polygon, considering a 30 m minimum distance among them, to minimize spatial
autocorrelation while selecting an adequate number of points.

To formulate the training and testing sets, we followed a bottom-up approach. First,
sample points were selected for each class in the lower level of the hierarchy (species). Next,
evergreen and deciduous species samples were grouped together, and through proportional
stratified random sampling, sample points for these two forest types were specified, equal
to the available sample points for the shrub class. All individual tree species (L3) and shrub
sample points (L2) were integrated into the forest and shrub class samples in the upper
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level (L1). Again, using proportional stratified random sampling, an equal number of
non-woody vegetation samples were selected from the original pool of points of artificial
surfaces, water, and barren and cultivated areas.

Table 2. Classification scheme for the three levels and reference pixels for each class (in parentheses).
The lower level of the hierarchy (L3) refers to individual tree species; the middle level (L2) refers to
evergreen forests, deciduous forests, and shrubs; and the upper level (L1) includes the discrimination
of woody vegetation (forest and shrubs) areas from other land.

Upper Level (L1) (27,354) Mid-Level (L2) (9504) Lower Level (L3) (10,640)

Other land (13,677)

Forest and shrubs (13,677)

Shrubs (3170)

Deciduous forest (3167)
Oak (Quercus spp.) (1468)
Beech (Fagus spp.) (1464)

Riverine (Salix spp./Populus spp.) (632)

Evergreen forest (3167)

Norway spruce (Picea abies) (1468)
Scots pine (Pinus sylvestris) (1468)

Black pine (Pinus nigra) (1464)
Calabrian pine (Pinus brutia) (1466)
Maritime pine (Pinus pinaster) (608)

Mixed (602)

For each level of the hierarchy, the sample points were split into training, validation,
and testing, using a 1 km grid created over the image to avoid spatial correlation [42]. For
each class, 50% of the grid boxes were selected in a checkerboard manner for training,
and the remaining 50% were further divided by 50% into validation and testing samples,
creating a 50/25/25 percentage ratio.

5. Methodology
5.1. Base Classification Algorithms

The MCS framework used in the study employed five supervised, non-parametric
classification algorithms or “base classifiers”. These included RF, SVM, KNN, CART, and
GTB. RF [43] is a popular machine learning algorithm used in land use/land cover (LULC)
applications. RF’s advantages include its robustness in the presence of outliers and noise,
lower computational complexity compared to other ML methods, transparency, and ability
to handle to a large number of variables and maintain a bias–variance tradeoff [44]. RF
fits an ensemble of decision trees by randomly selecting a set of training samples and
variables. The number of trees in the forest (Ntree) was set to 400, and the number of input
variables randomly chosen at each split (Mtry) was set as the square root of the number of
features [45,46].

SVM [47] is well-known for handling small sample sizes and producing high classifi-
cation accuracies without overfitting [48]. In this study, the RBF kernel was chosen and the
penalty parameter C and bandwidth parameter γ were set to 10 and 0.5, respectively.

The KNN classifier [49] is a simple and effective classification method that requires
almost no parameter settings. This is a non-parametric classification technique where
a class is determined based on the most frequent class among its ‘k’ nearest neighbors,
with ‘k’ being a positive, usually small, integer value. If k equals 1, the pixel or object is
classified according to the class of its nearest neighbor [50]. In the current study, KNN was
implemented using the Mahalanobis distance, and k was set to 1 following the work of
Qian et al. [51] and Thanh Noi and Kappas [52].

CART [53] generates binary decision trees by dividing the feature space of each sample
into two sub-spaces until the terminal nodes of the developed trees are associated with
a class [54]. The only parameters defined for the CART algorithm were the number of
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instances in a node below which the tree will not split (set to 5), while the maximum
number of leaf nodes in each tree was given no limit.

GTB [55] is an ensemble machine learning technique that combines weak decision
trees into a strong one through the boosting method. The number of decision trees and the
rest of the parameters for GTB were set to the default GEE values (i.e., shrinkage: 0.005,
sampling rate: 0.7, maximum number of leaf nodes in each tree: no limit).

5.2. Ensemble Approaches to Fusing the Base Classifiers

Following the individual-level classifications using single-base classifiers, three ap-
proaches were implemented for the combination of the classifiers: (i) a plurality voting
algorithm, (ii) a random forest meta-classifier, and (iii) a linear opinion pool algorithm,
integrating three different accuracy metrics as weights. The plurality voting algorithm is
a commonly employed approach that selects the class label generated by the majority of
classifiers for each pixel [56]:

PV(A) = mode([L1, L2, . . . Li]) (1)

where Li is the label assigned to pixel A by base classifier i.
A meta-classifier is another ensemble approach that utilizes the outputs of prior

classifiers (base classifiers) as input features for a new classification. This technique is
commonly referred to as “stacking” in literature. In our study, the RF classifier was
employed as a meta-classifier, as described by Healey et al. [30].

The linear opinion pool (LOP) [57] is a general decision fusion method that is based
on the weighted sum of class label probabilities obtained from each base classifier:

LOP(A) = ∑K
i=1αiPi(A) (2)

where LOP(A) is the combined probability from applying a set of classifiers to pixel A, αi is
the weight given to the ith classifier, Pi(A) is the probability of the ith classifier for pixel A,
and K is the number of classifiers. In our study, the LOP approach was implemented by
incorporating three distinct accuracy metrics for each class: namely, the producer’s accuracy
(PA), the user’s accuracy (UA), and the Individual Classification Success Index (ICSI). The
combined probability value for each class label was calculated using Equation (2), and the
resulting class label was determined based on the maximum value obtained for LOP(A).

5.3. Accuracy Assessment

To validate the performance of each of the five base classifiers, a common set of
points corresponding to 25% of the reference dataset at each level was used to generate the
confusion matrix and calculate the resulting accuracy measures: the overall accuracy (OA),
PA, UA, and ‘kappa hat’ (Khat) values. In addition, the mean absolute differences (MAD)
between PA and UA and the Individual Classification Success Index (ICSI) values were
also considered. The ICSI is a combination of the PA and UA and accounts for the overall
classification success for each class [58]. Finally, we calculated the macro-averaged F1 score
as the average F1 score of the individual classes [59]. The class-level F1 score metric is
calculated as the harmonic mean of UA and PA [60].

The same set of metrics was used to assess the accuracy of the MCS classification
approaches based on an independent set of sample points (test data) corresponding to 25%
of the reference dataset.

To evaluate the impact of base classifier output diversity on the accuracy of the MCS
approach, a non-pairwise diversity measure based on entropy (E) was used. This measure
calculated the diversity of the ensemble at each of the three levels [61].

E =
1
N ∑N

i=1
1

L− ceil(L/2)
min{h(xi), L− h(xi)} (3)
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where N is the sample size used from the L classifiers, ceil(L/2) rounds the given number of
classifiers to the nearest integer, and h(xi) refers to classifiers among L that give the same
output. The entropy measure ranges from 0 to 1, with 0 indicating no difference among the
classifiers and 1 indicating the highest possible diversity value.

6. Results

The OA and the Khat values of the individual base classifiers were evaluated across
the entire study area, and the results are presented in Table 3 and Figure 3, while the
detailed error matrices are given in the Supplementary Materials. The highest accuracy for
discriminating forest and shrubs from other land areas at the upper level (L1) was achieved
using the RF and SVM algorithms, with OA values of 92.71% and 92.34%, respectively.

Table 3. Overall classification accuracy (in %) with 95% confidence interval (in parentheses) for
the 10 classification experiments across each hierarchical level. Results are shown for both the five
individual base classifiers and the five MCS approaches.

Hierarchy RF SVM KNN CART GTB Plurality LOP-ICSI LOP-PA LOP-UA Stack-RF

Overall Accuracy (%)

Level 1 92.71
(±0.59)

92.34
(±0.60)

84.95
(±1.14)

88.49
(±0.77)

91.57
(±0.61)

93.92
(±0.56)

93.98
(±0.56)

93.92
(±0.56)

93.95
(±0.56)

93.90
(±0.56)

Level 2 82.77
(±1.97)

84.13
(±1.83)

73.56
(±1.57)

72.61
(±2.37)

81.27
(±2.10)

82.84
(±1.73)

83.55
(±1.65)

82.39
(±1.69)

82.99
(±1.67)

80.75
(±1.94)

Level 3 72.00
(±2.25)

74.89
(±2.06)

58.22
(±2.64)

58.82
(±2.36)

68.19
(±2.30)

73.58
(±2.08)

72.93
(±2.10)

73.84
(±1.90)

74.61
(±2.01)

71.78
(±2.10)
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It appears that the CART-based approach had the lowest OA among the individual
base classifiers, with an accuracy of 88.49%. However, all of the five MCS approaches
that were employed showed a slight improvement in classification accuracy compared
to the RF algorithm, with OA values close to 94.00%. This represents an improvement of
approximately 1.00% compared to the best-performing individual base classifier, which
was the RF algorithm.

At the middle level of the hierarchy (L2), the OA obtained from the base classifiers
(Figure 3 and Table 3) is lower compared to the upper level (L1). The middle level of the
hierarchy (L2) exhibits a wider range of individual accuracies compared to the upper level
(L1), spanning from 72.61% (CART) to 84.13% (SVM) (Table 3). The range of OA values for
the five ensembles considered within the MCS framework to discriminate deciduous forests,
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evergreen forests, and shrubs in L2 is greater than the MCS accuracy results for the binary
class scheme of the upper level (L1).The RF stacking MCS approach produced the lowest
accuracy (80.75%), while the LOP approach using the ICSI metric (LOP-ICSI) generated the
highest accuracy (83.55%), albeit slightly lower than the SVM approach’s accuracy.

In contrast, the lower level for tree species composition discrimination (L3) resulted in
even lower OA compared to the other two levels of the hierarchy, for both the individual
and the ensemble classification approaches. The KNN classifier presented the lowest
OA (58.22%), followed by the CART classifier (58.82%). However, SVM (OA = 74.89%)
outperformed all the individual base classifiers. For the MCS approach, once again, the
Stack-RF approach had a low OA (71.78%), while the LOP approach using the UA measure
(LOP-UA) achieved the highest accuracy (74.61%).

The entropy diversity measure calculated for the results of the individual base clas-
sifiers in all three levels confirmed the differences observed in the OA of the classifiers.
Higher entropy (0.31) was noted in the lower level (L3), where the range of the OA classi-
fication accuracy noted between classifiers was almost 15%. Lower entropy values were
noted in the middle level (0.19) and upper level (0.08) of the hierarchy (Figure 4).
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used in the MCSs. A higher entropy is observed for the lower level (L3).

In terms of PA at the upper level (L1), the SVM (PA = 94.59%) and GTB (PA = 95.46%)
algorithms show the lowest commission error for forests and shrubs, while the KNN
algorithm (PA = 74.00%) exhibits the highest (Figure 5). On the other hand, the algorithms
with the highest commission errors are the GTB (UA = 89.12%) and CART (UA = 87.95%)
approaches. All five ensemble approaches produce the same balanced omission and
commission errors (PA = 94%, UA = 94%), as indicated by their high and equal ICSI
scores (88.00%).

At the middle level of the hierarchy, the SVM and CART base classifiers exhibit lower
MAD values, indicating a better balance of commission and omission errors. The SVM
classifier achieved high classification success (average ICSI = 68%), and CART presented the
lowest mean ICSI (45.00%). On the other hand, the KNN base classifier has the highest MAD
(30.67%) and a very low average ICSI (52.67%). Among the MCS approaches, the LOP-UA
ensemble performs the best (MAD = 6% and average ICSI = 66.33%), while the Stack-RF
approach yields the least satisfactory results (MAD = 10% and average ICSI = 62.33%).

At the lower level of the hierarchy (L3), SVM is the most balanced classifier in terms of
omission and commission errors, with an average MAD of 14.67%. In contrast, the CART
classifier performs poorly, with an average ICSI of 13.78%. In the L3 evaluations of MCS
approaches, LOP-UA yielded the most satisfactory individual class accuracies, recording
an MAD of 15.11% and an ICSI of 40.11%.

The efficacy of the MCS approach is underscored by the macro-averaged F1 scores
from both the LOP-UA and plurality systems. Impressively, these scores surpassed those
of the SVM and RF classifiers across all hierarchical levels, as shown in Table 4. Specifically,
at the upper level of the hierarchy, LOP-UA and LOP-ICSI both achieved a macro-averaged
F1 score of 98.56%, marginally trailing the plurality approach at 98.72%. Conversely, for
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individual base algorithms, RF (92.69%) and SVM (92.31%) presented the highest macro-
averaged F1 scores among the five algorithms, signaling balanced class accuracy.
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Table 4. Macro-averaged F1 scores (%) attained for the 10 classification experiments over each level
of the hierarchy, both for individual base classifiers and MCS approaches. The MCS approaches,
based on linear opinion pool using user’s accuracy (LOP-UA) and plurality, outperformed all other
classification experiments.

Hierarchy RF SVM KNN CART GTB Plurality LOP-ICSI LOP-PA LOP-UA Stack-RF

Average F1 Score (%)

Level 1 92.69% 92.31% 84.85% 88.45% 91.52% 98.78% 98.56% 93.72% 98.56% 93.89%
Level 2 82.84% 84.19% 72.08% 72.44% 81.32% 92.65% 92.91% 92.37% 92.67% 80.66%
Level 3 68.87% 71.71% 52.20% 56.18% 65.61% 80.63% 67.73% 74.53% 80.87% 68.58%

At the middle hierarchical level, every MCS approach, except for the Stack-RF ap-
proach, resulted in an average F1 score above 92%, markedly exceeding the SVM’s 84.19%
and RF’s 82.84%.

Lastly, at the more detailed L3 level, both LOP UA (80.87%) and plurality (80.63%)
replicated their L2 performance, showcasing an improvement of approximately 8% over
the SVM (71.71%) and RF (68.87%) base algorithms.

When comparing the resulting map with those generated by the other four base
classifiers (Figure 6), it is evident that the KNN algorithm shows a high omission error
(PA = 74.01%) in the discrimination of forest and shrubs.
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Figure 6. Forest maps generated by the base classifiers for each hierarchical level. It is evident that
the KNN algorithm underperforms across all levels.

Upon closer examination of the individual classifications at the middle and lower
levels of the hierarchy (Figures 7 and 8), it becomes clear that differences in numerical
accuracy also correspond to variations in spatially explicit class distribution. At both levels,
the maps generated from the MCSs are highly consistent with the one produced by the
best-performing individual base classifier (i.e., SVM).
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Conversely, the maps produced through the CART classifier at both levels exhibit a
significant “salt and pepper” effect. Furthermore, the magnitude of errors observed in
the KNN accuracy assessment results is also apparent in the corresponding maps when
compared to satellite imagery.

7. Discussion

In our study, we evaluated individual classifiers and multi-classifier systems (MCSs)
for forest information extraction across different levels of forest hierarchy in Northern
Greece using a Google Earth Engine workflow. Our best-performing individual classifier
for discrimination of forest and shrubs from other land (L1) was the RF algorithm, achiev-
ing an OA of 92.71%, slightly higher than the SVM algorithm’s accuracy of 92.31%. In
comparison, previous studies have reported even higher accuracies using RF for forest/non-
forest classification with Sentinel-2 time series data, such as 98% in the Polish Carpathian
Mountains [62] and 98.3% in Southern Poland [63], as well as 98% in a less complex terrain
in Denmark [64] using multi-temporal passive and active Sentinel data. However, this
might be related to the higher biological and structural diversity of Mediterranean forest
ecosystems resulting from the environmental characteristics of the region and the long-term
human impact [65].

The good performance of RF in terms classification accuracy, along with its low
requirements in terms of hyperparameter tuning and rather low computational costs,
justifies its popularity within the RS community for large scale applications [66]. RF, being
an ensemble classifier, aggregates results from numerous decision trees. This allows it
to model complex classification tasks better, reducing the chances of overfitting. The
inherently random nature of this classifier, where it randomly selects features for each tree,
can enhance the robustness of its classifications.

Although SVM was not the best-performing algorithm for forest and shrub discrimi-
nation in L1, it outperformed RF in the discrimination of forest types at L2 (OA = 84.13%)
and in forest species classification at L3 (OA = 74.89%). In a straightforward binary clas-
sification problem within a bidimensional feature space, an SVM would typically fit a
straight line as the optimal separating plane. However, when dealing with multiple classes
that exhibit high spectral similarity and are not linearly separable, it becomes essential
to introduce extra variables. These variables, known as slack variables, are incorporated
into SVM optimization using the soft margin method, allowing for some classification
errors [67]. In addition, the essence of the kernel trick lies in projecting the feature space
to a higher-dimensional space (like Euclidean or Hilbert) to enhance the separability of
classes [44].

Other studies have reported higher accuracies for these levels of the hierarchy. For
instance, Bjerreskov et al. [64] achieved a 95% OA for mapping broadleaved and conifer-
ous forests in Denmark, similar to the findings of Hościło and Lewandows in Southern
Poland [63]. Wessel et al. [68], who also used multitemporal Sentinel-2 data and an SVM
classifier, discriminated coniferous from broad-leaved trees, achieving a 97% OA in Bavaria,
Germany. We hypothesize that the lower accuracies observed in our study may be at-
tributed to forest heterogeneity and the inclusion of a shrubland class in the middle level of
the hierarchy. Classes based on forests and shrublands are frequently misidentified during
image classification. This confusion arises from similar species compositions (especially
in the case of early successional forests), which vary primarily in plant height or canopy
formation, thus making necessary the use of information such as that provided by airborne
LiDAR datasets for their discrimination [69].

In terms of forest species classification at L3, our study found that the SVM classifier
performed satisfactorily, achieving an OA that was comparable to the results obtained
by Bjerreskov et al. [64], who used the RF classifier (OA = 63% in the discrimination of
six forest species). However, Grabska et al. [20] achieved a higher OA of 87% for forest
species mapping in the Polish Carpathian Mountains using Sentinel-2 imagery and an
SVM, with a more complex class scheme consisting of eleven forest species. Our study
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also demonstrated the inferiority of the CART algorithm, as was also explored in Nasiri
et al.’s [54] study on tree species identification in a temperate Caspian forest. The CART
algorithm it has advantages in terms of the transparency of the results, speed, and ease of
use [70]. However, the partitioning of the feature space into many independent regions and
the fact that final classification output is generated by hard boundary decisions at every
node may result in lower accuracies compared to other machine learning algorithms [71].

Our findings are consistent with those of Maxwell et al. [22], who emphasize that there
is no one-size-fits-all machine learning algorithm and that the best approach depends on
the specific class scheme, the type of training data, and the RS data used. However, it is
worth noting that the largest difference in accuracy (i.e., 2.9%) was observed at the lowest
level of the hierarchy (L3), where the training data were highly imbalanced. RF algorithms
have been shown to struggle with imbalanced training data [22,68], whereas SVM may
perform better in such situations [72]. Also, SVM is more efficient in finding decision limits
for classifying objects with greater spectral similarity because of its ability to identify the
decision borders and expand the space between them, even when using limited training
datasets [54]. This is accomplished due to the soft margin and kernel trick to map the
feature space into a higher dimension for improving the separability between classes [73].
However, decision tree learning techniques such as CART and RF are advantageous in
terms of interpretability and simplicity, contrary to other algorithms (i.e., SVM, NN) that
are characterized as “black box” algorithms [22].

In RS image classification, MCSs have been proposed as a means to improve the
accuracy and reduce the variance in classification results [29]. However, studies have
shown mixed results regarding the effectiveness of MCSs, with some reporting only slight
improvements compared to the best individual classifiers [20,24], while others demonstrate
significant increases of up to 6% in classification accuracy [74–76]. Based on the findings of
this study, it appears that the use of MCSs only marginally improved the OA by 1.2% in the
L1 case, while in L2 and L3, the best MCS achieved slightly lower accuracy compared to
the most accurate base classifier (SVM). The lack of classifier diversity could be a possible
explanation for the marginal or lack of improvement in OA, as diversity is an important
parameter for the improvement of classification accuracy via MCSs. Previous studies have
demonstrated that the success of any MCS is related to the accuracy and diversity of the
base classifiers included in the system [74]. Thus, an ensemble of classifiers could improve
the accuracy of any of its individual members if they have a low error rate (are accurate)
and their errors are not coincident (are diverse). Obtaining base learners which satisfy both
requirements simultaneously is not an easy task because the lower the number of errors,
the higher its correlation is [77]. It is worth noting that in the more diverse L3, unlike L1,
none of the MCS approaches outperformed the SVM base classifier in terms of OA. This
mirrors the findings of an earlier study [31].

Yet, while the PA and UA of the base classifiers varied significantly among classes, the
MCSs had more robust performance among classes in most cases, especially at levels one
and three, except for two specific categories in L3—namely, “mixed forest” and “Maritime
pine”—likely due to the high within-class spectral variability. Nevertheless, improvement
in per-class accuracy with the use of MCS has been reported in the literature [78], indicating
that despite a marginal increase in OA, MCS can balance class accuracy differences. While
in some applications—for example, binary class mapping—imbalanced balanced class
accuracies might be advantageous for classification map quality fine-tuning [79], in forest
management, balanced accuracy among classes is usually advantageous since this can limit
uncertainty in forest management models and subsequent decisions.

The evaluation of the macro-averaged F1 scores suggests that the MCS approach gen-
erally enhances classification stability. Notably, the plurality and LOP-UA MCS approaches
consistently outperformed the base algorithms across all levels of the forest’s hierarchy. The
macro-averaged F1 score is deemed a more suitable metric when assessing the accuracy of
maps that display an unbalanced class distribution [59]. Previous research has highlighted
that, despite its simplicity, plurality voting is beneficial for merging the results of base
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classifiers [78]. Conversely, while approaches like LOP-UA, which weigh votes based on
accuracy metrics, can be effective, they may encounter stability or transferability issues
when applied across different biophysical covers [28].

8. Conclusions

The study assessed the performance of MCSs in comparison to individual base clas-
sifiers for forest information extraction at three different levels of forest hierarchy in a
Mediterranean region. The results showed that the use of MCS marginally improved OA
in the L1 case, but in L2 and L3, the best MCS achieved slightly lower accuracy compared
to the best-performing base classifier.

While there were high fluctuation rates in the OA measures for each classification in
the different base classifiers, the MCS experiments showed lower rates of fluctuation. The
MCSs also had more robust performance among classes, especially in levels one and three,
improving per-class accuracy and balancing class accuracy differences. Overall, while
MCSs may not always outperform individual base classifiers, they can provide more robust
performance among classes and balance class accuracy differences.

While this study contributes valuable insights to the application of multiple classifier
systems (MCSs) for multi-scale forest mapping, there are a few limitations that must be ac-
knowledged. Firstly, the optimization of the individual base algorithms was not conducted,
which could potentially lead to improved accuracy in future studies. Secondly, the findings
of this study were based solely on an examination of Northeastern Greece. An exploration
of other geographical areas could provide a more comprehensive understanding of the
applicability and effectiveness of the MCS approach in diverse settings. As such, further
research should consider these limitations in order to further enhance our understanding
of forest mapping using RS data.
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