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Abstract: Understanding the spatial and temporal variations of urban carbon dioxide fluxes (FCO2 )
and their influencing factors is crucial for solving urban climate problems and promoting the develop-
ment of low-carbon cities. In this study, the carbon dioxide flux (FCO2 ) in Changsha City, China, was
analyzed using the eddy covariance technique and flux footprint model. The results showed that the
extent of the flux footprint within the observation site was mostly limited to 500 m. Diurnal variation
of FCO2 showed a regular pattern influenced by plant photosynthesis and traffic flow. Meanwhile,
photosynthesis was directly regulated by photosynthetically active radiation and indirectly regulated
by air temperature and water vapor pressure differences. The average value of FCO2 was lower during
the daytime than at night, indicating the high vegetation cover (43.5%) in the study area. In addition,
there were spatial characteristics of FCO2 in each wind direction due to different surface land use in the
study area. Notably, a decreasing trend in carbon dioxide content was observed after the area covered by
vegetation was 1.8 times the area of buildings and major roads combined. These findings guide climate
management, urban planning, and sustainable development toward a low-carbon society.

Keywords: CO2 flux; urban; eddy covariance; footprint model

1. Introduction

Urban areas contribute to approximately 70%~80% of global carbon emissions even
though they cover only approximately 2% of the Earth’s land surface, exerting significant
and far-reaching impacts on global carbon cycling and climate change [1–3]. The undeniable
reality of global warming has emphasized the importance of conducting thorough research
on carbon cycling processes and their underlying mechanisms in urban ecosystems [4–6].
However, the highly heterogeneous and complex distribution of carbon sources and sinks
in urban land surfaces, coupled with diverse and dynamic factors such as population,
economy, transportation, and energy pose considerable challenges to the observation and
estimation of urban carbon fluxes [7–9].

The eddy covariance (EC) technique is a direct method of measuring the exchange flux
of matter and energy between the surface and the atmosphere and has gradually evolved
into an internationally accepted standard method for flux observations [10]. The EC
method can capture high-frequency data on carbon dioxide (CO2) exchange between urban
surfaces and the atmosphere, revealing the diurnal, seasonal, and annual variations in urban
carbon flux, as well as its relationships with meteorological, biological, and anthropogenic
factors [11–13]. In recent years, there has been a growing number of urban carbon flux
observations using the EC technique, providing important data support for understanding
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and recognizing the role and contribution of urban ecosystems in the global carbon cycle.
However, the data observed by the eddy covariance technique reflect the integrated effect
of carbon sources and sinks from surfaces. For urban areas with high heterogeneity, how to
accurately and objectively analyze and explain the spatial representation of observation
data is a key issue in the current urban flux observation research [14–16].

The flux contribution source model is an effective tool to explain the spatial variabil-
ity of flux based on the Monin–Obukhov similarity theory. It has been widely used in
the analysis of urban carbon dioxide flux (FCO2) changes [17,18]. This model can simu-
late the source area of flux observation data, and combined with the land use/coverage
of the urban surface, it can effectively explain the flux observation data. For example,
Kurppa et al. [19] used flux data from the city center and suburbs of Helsinki, Finland,
to analyze the FCO2 footprint distribution characteristics of the two using the Kormann
and Meixner model, and found that the difference in land cover was an important factor
influencing FCO2 . Kordowski et al. [2] used more than one year of flux data to analyze the
characteristics of FCO2 and its source area distribution in Essen, western Germany, and
found that the urban green space had an obvious role as a carbon sink; Velasco et al. [20]
used the Hsieh model to analyze the distribution of FCO2 source areas in a neighborhood
located in the state of Jalisco, Mexico, and found that the carbon emissions from transporta-
tion contributed as much as 87% of the FCO2 . The above results show that flux footprint
modeling has been widely used in explaining the change in observation data and identify-
ing the carbon source and sink properties of the specified partitions, and its application
effect has also been recognized by many researchers.

Changsha, the capital city of Hunan Province and a vital urban center in the middle
Yangtze River region, has experienced rapid economic and social development in recent
years. Simultaneously, urban construction and expansion have been accelerating. This
has led to severe urban ecological problems such as excessive resource consumption and
a dramatic increase in carbon emissions. Against the backdrop of ecological civilization
construction, seeking a sustainable development path for low-carbon urban construction
has become an urgent task for government departments [21,22]. Therefore, the objectives
of this paper are to (1) utilize the observed the FCO2 and meteorological data from January
to December 2012 in the study area and identify the driving factors affecting the temporal
variations in FCO2 and (2) combine the flux footprint model to determine the 90% flux
contribution footprint in the study area and analyze the driving factors affecting the
spatial variations of FCO2 in the urban ecosystem. This study is of great significance for
assessing the carbon balance of Changsha’s urban ecosystem and optimizing its low-carbon
development strategies and policies.

2. Methods
2.1. Study Area and Equipment Instruments

Measurements were undertaken in the urban ecological station within Central South
University of Forestry and Technology (112◦59′38.87′′ E, 28◦08′8.98′′ N, with an elevation
of 99.0 m, Figure 1). The area has typical characteristics of a subtropical humid monsoon
climate, with longer summers and winters and shorter springs and autumns. The tem-
perature varies greatly in spring, there is abundant rain in autumn and early summer,
prolonged high temperatures in late summer, and cold winters. The annual average tem-
perature is approximately 17.0 ◦C, with January being the coldest month and an average
temperature of 4~5 ◦C. The area receives abundant precipitation, with an annual average
precipitation of around 1362.0 mm, concentrated from April to August. The annual average
relative humidity is about 80%. The vegetation in the region is characterized by evergreen
broad-leaved forests.
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Figure 1. Overview of the study area. The red triangle indicates the location of the flux tower.

The flux tower is located in the center of the ecological station, and directly below it
is a Cinnamomum camphora plantation with a canopy density of about 0.8 and an average
height of about 8.7 m. The eastern, southern, and northern sides are primarily residential
areas, while the western side is occupied by student dormitories, teaching buildings, a
playground, and so on. There is a diverse distribution of trees, shrubs, and grasses in all
directions. Furthermore, there is a north–south main traffic artery road approximately
100 m to the east of the flux tower.

2.2. Placement of EC System

When conducting urban CO2 flux observations, in order to ensure that the airflow is
not affected by a single plant or building, the EC system must be installed at a location
at least twice the height of the average roughness elements (buildings and trees) [23–25],
generally at 2–3 times the average height of the buildings in the observation area at a range
of 250 m or 500 m [23]. In this study, we used the SuperMap software (version iDesktop 11i,
SuperMap, PEK, CHN) to process the oblique photographs taken by a DJI M300 unmanned
aerial vehicle (M300, DJI, CHN, Shenzhen, China) to obtain the heights of buildings and
trees in the study area and obtained the average height of objects within 500 m of the study
area to be 13 m by area weighting [26]. Therefore, our EC system was deployed in the
35 m high flux tower extension arm, which complied with the installation criteria for the
EC system.
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2.3. Composition of Instrumentation

The EC system consists of an open-path absorption gas analyzer (LI-7500, Li-COR,
Lincoln, NE, USA) and a three-dimensional sonic anemometer (CAST3, Campbell, Camden,
NJ, USA). The data acquisition frequency is 10 Hz. The raw data obtained are stored in a
data logger (CR3000, Campbell), enabling online calculations for 30 min flux data.

The automatic meteorological gradient observation system is used to measure soil
temperature and moisture, air temperature and humidity, wind direction and speed, precip-
itation, air pressure, photosynthetically active radiation, and four components of radiation.
The sampling frequency is 0.5 Hz, and the data are calculated and stored as 30 min averages
by a data logger (Zeno3200, Coastal, Holden Beach, NC, USA).

2.4. Data Processing

Raw eddy flux data were analyzed using EddyPro (version7.0.9, LI-COR, Lincoln,
NE, USA) software for data analysis, sonic virtual temperature correction [27], outlier
removal, double coordinate axis rotation, spectral correction [28,29], density correction
(Webb Pearman Leuning, Worcester, MA, USA, WPL) [30], and quality flags (0, 1, and 2) [31].
The above process was completed to export the data from EddyPro software (version7.0.9,
LI-COR, Lincoln, NE, USA). Excel software was used to exclude the data in the exported
data during the rainfall period and 1 h before and after the rainfall period and to exclude
the data with friction wind speed < 0.1 m/s [32], while the excluded data were named
“−9999” values. The pre-processing process of the raw data was completed.

The preprocessed results were further subjected to quality control and data interpo-
lation using Tovi software (version 2.9.0, LI-COR, Lincoln, NE, USA). This includes data
quality control [33], Biomet Merge and Gap Filling (BMG) [34], and flux data gap filling [35]
among other data processing procedures.

(1) Data Quality Control

Unreasonable data were removed by setting thresholds and using data quality indica-
tors. Thresholds were determined based on the range of theoretically normal values. The
data quality was assessed, and quality flags of 0, 1, or 2 as a data quality indicator. Data
with a quality indicator of 0 or 1 were retained, while data with a quality indicator of 2
were removed.

(2) Biomet Merge and Gap Filling (BMG)

The missing meteorological data were supplemented by regression analysis using the
observation data between the neighboring instruments of the automatic meteorological
gradient observation system. Setting each month as a time pane, for the missing rate of
less than 50%, the correlation analysis of meteorological data was performed to establish
the OLS regression equation (R2 > 60%) [34], filling the missing data to form a continuous
half-hourly time series data. For half-hourly data that could not be interpolated, a value of
“−9999” was named.

(3) Flux data gap filling [35]

The marginal distribution sampling method (MDS) was used to fill the flux data based
on the relationship (covariation) between the flux data and the meteorological factors and
the autocorrelation of the flux data in time. The MDS method is a comprehensive use of the
average diurnal variation method and the look-up table method. When the air temperature
(Tair), shortwave radiation (SWIN), and saturated vapor pressure deficit (VPD) observation
data are available, Tair, SWIN, and VPD are interpolated within a certain time window
(14~28 days before and after missing data) with a variation range of 2.5 ◦C, 50 w·m−2, and
5 hpa, respectively.
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2.5. Flux Footprint Estimation

Kljun et al.’s model [36] in EddyPro software (version7.0.9, LI-COR, Lincoln, NE, USA)
was used to calculate the flux footprint. The required input parameters for the model
include the receptor height (Zm), planetary boundary-layer height (Zh), surface friction
velocity (u∗), standard deviation of vertical velocity fluctuations (σw), etc. In this study, Zh
is defined as the average height of objects (buildings and vegetation).

During the calculation process in the EddyPro software (version7.0.9, LI-COR, Lincoln,
NE, USA), other parameters can also be obtained. The output presents the footprint upwind
distance representing a 10% to 90% contribution to flux measurements and the location
of the footprint peak. The model constructs a dimensionless parameter group through
dimensional analysis (Π theorem) using the input parameters mentioned above. It then
reconstructs a dimensionless upwind distance function X∗ and a dimensionless crosswind
integration footprint function F∗. The equations are as follows:

X∗ =
(

σw

u∗

)α1
(

σw

Zm

)
(1)

F∗ =
(

σw

u∗

)α2
(

1− Zm

Zh

)−1
Zm fiy (2)

F∗ = a
(

X∗ + d
c

)
exp

{
b
(

1− X∗ + d
c

)}
(3)

In the equation, α1 and α2 are free parameters. They are determined by validating
against experimental data (specifically, reliable results from the three-dimensional La-
grangian stochastic footprint model LPDM-B). Based on the parameterized Formula (3) for
the flux footprint, the fitting parameters a, b, c, and d (related to the roughness length Z0)
can be calculated. In addition to computing the crosswind-integrated footprint function fiy
as it varies with upwind distance x, this model can also output the upwind distance xmax
where the peak value of fiy occurs, as well as the distance xR where fiy reaches different
percentages R, according to the application requirements.

2.6. Data Analysis

In this study, we used one-year flux data from January to December 2012. Due to
unusual weather, instrument failures, and weak turbulence, 68.4% of the data were available
after quality control. To obtain more comprehensive annual flux data, we gap-filled the data
using the MDS method, filling 19.7% of the data. Monthly average, seasonal average, and
annual average diurnal patterns were further constructed from the gap-filled half-hourly
base data.

3. Results
3.1. Meteorological Situation

Studying the dynamics of meteorological factors is the basis for CO2 flux studies [37].
Figure 2 shows the temporal variation of the main meteorological factors during the
study period. The results show that the temperature (Tair), vapor pressure deficit (VPD),
and photosynthetically active radiation (PAR) showed seasonal variations. According
to the meteorological data of 2012 obtained from the automatic meteorological gradient
observation, Tair increased from March and decreased from August. The daily maximum
Tair from July to August was consistently higher than 30 ◦C. The daily minimum Tair from
December to January was close to 0 ◦C. In addition, VPD and PAR showed fluctuating
increases and then decreases, reaching the highest values in July. Cumulative rainfall was
higher from May to August during the observation period, with the highest cumulative
rainfall (204.2 mm) in May.
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Figure 2. Basic meteorological conditions during the study period. (a) VPD, daily average, maximum,
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3.2. Temporal Variation in CO2 Flux

Figure 3 shows the characteristics of FCO2 at different time scales. During the study
period, the average value of FCO2 every 30 min was concentrated between −30 and
30 µmol·m−2·s−1, and the daily average value fluctuated up and down from 0 µmol·m−2·s−1

(Figure 3a). As shown in Figure 3b, the monthly average FCO2 varied from 1.2 to
6.4 µmol·m−2·s−1. This indicates that the study area was a net source of CO2 emission
and the absorption of CO2 by vegetation was not sufficient to offset the CO2 produced by
anthropogenic activities. The average FCO2 was higher during the daytime than at night in
all months, especially from May to August when the difference between the average fluxes
at daytime and at night was 8.1~9.2 µmol·m−2·s−1. Stronger plant photosynthesis resulted
in more CO2 uptake during the daytime in the summer due to the higher proportion of
vegetation in the study area and the higher PAR in the summer.

The variation characteristics of FCO2 in urban ecosystems are affected by natural factors
and human activities. As shown in Figure 3c,d, the monthly average diurnal variation
in FCO2 was small and basically positive in January, February, March, November, and
December. The monthly average diurnal variation in FCO2 was larger during the midday
hours from April to October. Especially from May to August, the carbon sink capacity of
the study area during the midday hours was strong, and the maximum 30 min average FCO2

value of a single day could reach −20 µmol·m−2·s−1. However, the carbon sink capacity
of the study area gradually weakened after August (Figure 3d). This was strongly related
to the seasonal variation in PAR, VPD, and Tair. In addition, a double peak phenomenon
was observed in the monthly diurnal variation in FCO2 : the first peak appeared at around
8:00 a.m. and the second peak at around 19:00 p.m. (Figure 3c). This phenomenon was
closely related to the traffic flow. The above results indicate that there are obvious diurnal
and seasonal variations of FCO2 in the study area.

Figure 4 and Table 1 further analyze the characteristics of FCO2 between seasons. In
all seasons, the average value of FCO2 in winter is the highest, which is 2.2 times that in
summer (Table 1). From the average diurnal variation in FCO2 , it can be seen that the main
reason for the difference in seasonal fluxes was the different decreases om FCO2 during
the midday hours. The fluctuations in summer flux were the largest, and the minimum
fluxes in the diurnal variation were lower than those in other seasons, ranging from 6.1
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to 9.3 µmol·m−2·s−1 (Figure 4). In winter, the fluctuation in flux was the smallest, which
was basically positive. As traffic emissions were considered likely to be an important
anthropogenic source of emissions, their diurnal variations over the weekdays (Monday
to Friday) and weekends (Saturday to Sunday) were also independently analyzed. At
this study site, FCO2 varied similarly between weekdays and weekends (Figure 4) with
an average difference of only 0.1~0.67µmol·m−2·s−1 (Table 1). It shows that there was no
significant “weekend effect” in the study area.

Forests 2023, 14, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Characterization of CO2 fluxes at different time scales. (a) Observed data of fluxes per 30 
min; the solid line is the daily average; (b) monthly 𝐹஼ைమ  box plots for daytime, evening, and whole 
day (error bars are standard deviation SD); (c) monthly average diurnal course of 𝐹஼ைమ; the solid 
line is the average, and shading is the quartile; (d) day-by-day (x-axis) characterization of the diurnal 
variation in 𝐹஼ைమ (y-axis). 

Figure 4 and Table 1 further analyze the characteristics of 𝐹஼ைమ between seasons. In 
all seasons, the average value of 𝐹஼ைమ in winter is the highest, which is 2.2 times that in 
summer (Table 1). From the average diurnal variation in 𝐹஼ைమ, it can be seen that the main 
reason for the difference in seasonal fluxes was the different decreases om 𝐹஼ைమ during 
the midday hours. The fluctuations in summer flux were the largest, and the minimum 
fluxes in the diurnal variation were lower than those in other seasons, ranging from 6.1 to 
9.3 µmol·m−2·s−1 (Figure 4). In winter, the fluctuation in flux was the smallest, which was 
basically positive. As traffic emissions were considered likely to be an important anthro-
pogenic source of emissions, their diurnal variations over the weekdays (Monday to Fri-
day) and weekends (Saturday to Sunday) were also independently analyzed. At this study 
site, 𝐹஼ைమ varied similarly between weekdays and weekends (Figure 4) with an average 
difference of only 0.1~0.67µmol·m−2·s−1 (Table 1). It shows that there was no significant 
“weekend effect” in the study area. 

Figure 3. Characterization of CO2 fluxes at different time scales. (a) Observed data of fluxes per
30 min; the solid line is the daily average; (b) monthly FCO2 box plots for daytime, evening, and
whole day (error bars are standard deviation SD); (c) monthly average diurnal course of FCO2 ; the
solid line is the average, and shading is the quartile; (d) day-by-day (x-axis) characterization of the
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Table 1. Average values of CO2 flux on weekends and weekdays for each season during the study
period.

Season
CO2 Flux (µmol·m−2·s−1)

Weekday Weekend All

Spring 4.25 4.35 4.27
Summer 2.05 2.48 2.17
Autumn 4.19 3.57 4.01
Winter 4.78 4.99 4.84

3.3. Effect of Meteorological Factors on CO2 Flux

Seasonal variations in FCO2 vary in ecosystems due to the influence of meteorological
condition factors such as photosynthetically active radiation, VPD, and Tair. Figure 5 shows
the response of FCO2 to changes in meteorological conditions. There was a significant
negative correlation between FCO2 and PAR (p < 0.01, Figure 5a). Under the same circum-
stances, FCO2 responded differently to PAR changes in each season. There was a significant
correlation between FCO2 and PAR in spring, summer, and autumn (p < 0.01), but changes
in PAR in winter did not cause fluctuations in FCO2 (p > 0.05). The optimum values of
PAR in response to FCO2 existed in summer and autumn, which were 1500 µmol·m−2·s−1

and 830 µmol·m−2·s−1, respectively (Figure 5b). After PAR reached the optimum value,
the rate of FCO2 response to PAR decreased. The above results indicate that ecosystem
carbon sequestration was enhanced with the increase in photosynthetic photosynthetically
active radiation in the spring and summer seasons when vegetation growth was vigorous.
However, after the autumn, the photosynthetic capacity of plants gradually decreased, and
the carbon sequestration capacity of the ecosystem became weaker.

VPD affects the photosynthetic capacity of vegetation by altering the hydraulic prop-
erties of vegetation and leaves, and regression analyses help to screen the optimal range
of variation in the response of VPD to FCO2 . There was a significant negative correlation
(p < 0.01) between VPD and FCO2 during the study period (Figure 5c). Under the same
circumstances, the response rate of FCO2 to PAR changes varied among seasons. There
was no correlation between VPD and FCO2 in winter (p > 0.05) and significant negative
correlations in spring, summer, and autumn (p < 0.01). Among them, the response rate
of VPD to FCO2 was higher in spring and summer than in autumn (Figure 5d). The above
results show that there were seasonal differences in the response of FCO2 to VPD.

Temperature is the main environmental factor that affects ecosystem respiration, which
in turn affects CO2 exchange. Figure 6. shows the response of FCO2 to changes in Tair. during
the study period, where the average FCO2 of each month had an opposite trend with Tair.
The highest average value of FCO2 (6.4 µmol·m−2·s−1) was reached in December and
decreased to 1.2 µmol·m−2·s−1 in August (Figure 6a). There was a correlation (p < 0.05)
between monthly average FCO2 and Tair. FCO2 decreased with increasing Tair.

Figure 7 shows the rate of FCO2 response to PAR at different VPD and Tair gradi-
ents. As shown in Figure 7a, when PAR ≤ 1400 µmol·m−2·s−1, the rate of FCO2 re-
sponse to PAR decreased with increasing VPD. When PAR > 1400 µmol·m−2·s−1, the
effect of the rate of FCO2 response to PAR at different VPD gradients changed. Among
them, the rate of response of FCO2 to PAR changes slowed down and leveled off when
VPD ≤ 5 hpa (Figure 7a). And the rate of response of FCO2 to PAR increases when
VPD > 10 hpa. As shown in Figure 7b, the rate of FCO2 response to PAR gradually decreased
with the increase in PAR for Tair ≤ 16 ◦C and PAR≤ 1300 µmol·m−2·s−1. After PAR reached
1300 µmol·m−2·s−1, FCO2 increased with the increase in PAR. The lowest rate of FCO2 re-
sponse to PAR was obtained from the fitted polynomial curves when Tair > 16 ◦C and PAR
≤ 1300 µmol·m−2·s−1. The above results indicate that the rate of FCO2 response to PAR
was regulated by VPD and Tair. The above results indicate that plant photosynthesis was
not only directly affected by PAR but also indirectly affected by VPD and Tair, which in
turn affects the atmospheric FCO2 .
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Figure 5. The correlation analysis of meteorological conditions with FCO2 . (a) The correlation analysis
of PAR with FCO2 throughout the year; (b) the correlation analysis of PAR with FCO2 in each season;
PAR values are binned in 50 µmol·m−2·s−1 increments with per 30 min data, the dotted line is the
fitted polynomial curve, and confidence intervals are shown by shadows; (c) the correlation analysis
of VPD with FCO2 throughout the year; (d) the correlation analysis of VPD with FCO2 in each season;
VPD values are binned in 0.5 hpa increments with per 30 min data.

3.4. CO2 Flux Footprint

Figure 8 shows the land cover within a 500 m radius centered on the flux tower
(Figure 8a). The heights of land cover in the area in different wind directions (Figure 8b)
and the percentage of area covered by different land use types (Figure 8c) were obtained,
and the results show that the land cover in the study area was extremely heterogeneous,
which is in line with the characteristics of land cover in typical urban areas. The flux
footprint is dependent on the surface roughness (Z0 = 0.15 Zh) [38], which needs to be
considered for the height of objects in the land cover. In this paper, the 90◦ sector was
rotated every 1◦ with the wind direction to calculate the average height of objects in the
sector area weighted by area. Among all the fan shapes, the lowest average height is about
10 m, and the highest is about 15 m (Figure 7b). The average height of the objects in the
entire study area is 13 m.
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Figure 8. Overview of the surface in the source area. (a) Land cover map; (b) average height of
surface objects, calculated based on 90◦ sectors rotated every 1◦, with the first average assigned to
the 45◦ wind direction; (c) percentage of subsurface land use types per degree of wind direction.
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Figure 9 shows the distribution and frequency of 90% flux contribution footprints in
the study site. The flux footprints based on the average heights of 13 m and 15 m had 96%
and 99% frequencies from the 500 m radius, respectively. The flux footprint obtained based
on the average height of 10 m had 97% of its frequency from within the 600 m radius and
62% of its frequency from within the 500 m radius (Figure 9a). Since the flux footprint
of the study site was mainly distributed within the 500 m radius, and more than 50% of
the objects in the land cover had an average height between 12 and 14 m, the 90% flux
contribution footprint data derived from the average height of the object in the entire study
area (13 m) was used to further analyze the frequency of footprints at the study site. The
results close to 60% of the flux footprints were from the northwestern side (Figure 9b). The
findings indicated that the flux footprint of the study site was mainly within the 500 m
radius and focused on the northwest.
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3.5. Spatial Variation in CO2 Flux

The observation of FCO2 by the EC system depends on the wind direction. Therefore,
we divided the FCO2 data and the study area into eight parts based on the wind direction.
Figure 10 shows the location and land use classification of the eight areas of interest at
the study site. Figure 11 shows the annual average diurnal variation in FCO2 for the eight
regions of interest. Figures 10 and 11 were used to analyze the reasons that affected the
spatial variation in FCO2 at the study site. In regions 1~3, where there was a main traffic
artery road, the average diurnal variation in FCO2 ranged from 0 to 14.8 µmol·m−2·s−1.
Regions 4~6 had the largest vegetation-occupied areas of 48%~57%. The average diurnal
variation in FCO2 in region 4 was in the range of −5~9.5 µmol·m−2·s−1, and that in regions
5~6 were similar and ranged from−9.4 to 7.9 µmol·m−2·s−1. The average diurnal variation
in FCO2 was similar in region 7 and region 8, with a range of −5.4~6.5 µmol·m−2·s−1. The
composition of the land use varied considerably between them, with a difference of 35.5%
in the percentage of vegetation. The vegetation percentage in region 8 was among the
highest in the study area, but its lowest trough at midday was 2.3~6.7µmol·m−2·s−1 higher
than that in regions 4~6.

3.6. Effect of Land Cover on CO2 Flux

Figure 12 analyzes the area ratio of the major carbon sink (vegetation = S1) and the
major carbon source (the sum of the areas of buildings and main traffic roads = S2) on FCO2

in each sector, and the results show that FCO2 reached a maximum when S1/S2 reached a
ratio of 1.8, and then decreased with the growth of the ratio after S1/S2 > 1.8 times. This
shows that when the proportion of vegetation in the region was large enough, the carbon
dioxide content in the atmosphere could be reduced.
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Figure 11. Characterization of the annual average diurnal variation in FCO2 for the eight regions of
interest. The solid line is the average and the shading is the quartile.
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4. Discussion
4.1. Factors Affecting Temporal Variation in CO2 Flux

FCO2 variations at urban sites follow a seasonal cycle. Study sites in Portugal [39],
Swindon [40] and Arnhem [1] found that FCO2 was significantly higher in winter than in
other seasons. In the present study site, the average value of FCO2 was highest in winter and
lowest in summer, which was regulated by plant photosynthesis [11,18,41]. The increase
in PAR will promote the photosynthesis rate of plants [40]. Crawford et al. [42] found
that when PAR reached a high value, FCO2 tended to be stable. There was a significant
correlation between PAR and FCO2 at this site (p < 0.01), but the rate of response to PAR
was different in different seasons. After PAR reached 1500, and 830 µmol·m−2·s−1 in
summer and autumn, respectively, FCO2 increased with the increase in PAR, indicating
that excessive PAR would promote the recovery of FCO2 . This may be because high PAR
promotes the increase in VPD and causes the stomata of plant leaves to close, which inhibits
CO2 uptake by plants; on the other hand, the soil temperature rises too rapidly during
high PAR, which increases the heterotrophic respiration of the ecosystem and leads to the
increase in FCO2 [35].

VPD and Tair regulate the rate of FCO2 response to PAR [43]. VPD affects the pho-
tosynthetic rate of vegetation by regulating the stomatal conductance of vegetation and
the moisture conditions at the atmosphere–soil interface, which in turn affects the pho-
tosynthetic rate of vegetation [44]. Wang et al. [45] found that excessive VPD affects the
rate of FCO2 response to PAR by hindering photosynthesis in plants, and thus affects the
rate of FCO2 response to PAR. In this study, when PAR ≤ 1400 µmol·m−2·s−1, the rate of
FCO2 response to PAR decreased with increasing VPD, indicating that high VPD inhib-
ited the rate of photosynthesis in plants. However, when PAR > 1400 µmol·m−2·s−1 and
VPD ≤ 5 hpa, the rate of response of FCO2 to PAR changes slowed down and leveled off.
This may be because the plant photosynthesis has reached saturation and the photosyn-
thetic rate of the plant no longer changes with the increase in PAR [37,40]. In addition,
the response of FCO2 to PAR changes was lowest when PAR ≤ 1300 µmol·m−2·s−1 and
Tair > 16 ◦C, indicating that high temperatures inhibited the rate of FCO2 response to PAR,
which was consistent with the findings of Carrara et al. [46]. High temperatures were
usually accompanied by higher VPD, resulting in a decrease in the carbon sequestration
capacity of vegetation and reduced CO2 uptake [46].

The temporal variation characteristics of FCO2 in cities are related to the intensity
of human activities, and anthropogenic emissions are mainly through vehicle emissions
and gas consumption [40,47]. Takano et al. [17] and Ueyama et al. [48] found that more
frequent traffic flows during the daytime resulted in higher FCO2 than at night during
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the diurnal variation in FCO2 . During this study period, the average FCO2 was higher at
night than during the day and the difference between day and night ranged from 1.02 to
9.16 µmol·m−2·s−1. This phenomenon usually occurred in suburban or forested areas [49,50],
which indicated the high vegetation cover (43.5%) at this study site. In addition, traffic flow
affected the diurnal and cyclic characteristics of FCO2 , with two peaks in the morning and
evening diurnal variation, and lower FCO2 on weekends than on weekdays [48]. Significant
peaks were observed in the diurnal variation in FCO2 in urban research sites in Mexico,
Swindon, and Rhodes. The peak time of daytime FCO2 during weekends / holidays lagged
behind that of working days, and the diurnal average was smaller than that of working
days [20,40,50]. The diurnal variation in FCO2 at the present study site had peaks in the
morning and evening, but the characteristics of the diurnal variation in FCO2 between
weekdays and weekends were similar and the differences in the average values were small,
which may be due to the fact that the population of the study site consists of mainly students
and residents, and most of the trips were on foot, which triggered fewer changes in the
vehicular flow. This further indicates that flux changes in urban areas are jointly influenced
by both anthropogenic and natural aspects. In particular, traffic flow is one of the main
sources of anthropogenic emissions. Therefore, it is very important to reasonably regulate
the development of urban transportation in the future to reduce carbon emissions [51,52].

4.2. Response of CO2 Flux to Spatial Variability

Due to the differences in anthropogenic activities and geography, CO2 emissions vary
greatly even in different wind directions at the same site [17,37,53]. Velasco et al. [41]
and Crawford et al. [42] found that the areas with frequent traffic flow and more exhaust
emissions will lead to an increase in carbon dioxide content in the region. In regions of
interest 1~3 where a main traffic artery road was present in this study, the level of annual
average diurnal variation in FCO2 was higher than the other regions of interest. This was
consistent with the high level of FCO2 in road areas found by Vesala et al. [18], which
suggested that the main traffic artery road with high traffic volumes was the main cause
of elevated FCO2 in the regions of interest 1~3 of this study. As a major carbon sink area
in the city, the vegetated subsurface absorbed atmospheric CO2 through plant photosyn-
thesis, and thus absorbed atmospheric CO2 [45,54]. Liu et al. [55] found that the areas
with a higher percentage of vegetation in the urban area of Beijing resulted in lower FCO2 .
Salgueiro et al. [39] in a study of coastal cities and suburbs in Portugal found that due to the
influence of plant photosynthesis, a minimum FCO2 was observed at midday and was much
smaller in the suburbs than in the urban areas. In the present study, a decreasing trend
in FCO2 during midday hours was observed in all regions of interest during the annual
average diurnal variation in FCO2 , but the decrease in FCO2 was greater in regions 4~6 (up to
−9.4 µmol·m−2·s−1). This may be attributed to the high percentage of vegetation (48%~57%)
in this region 4–6, which is well irrigated, resulting in a higher CO2 uptake capacity of
the vegetation [56]. However, the decrease in FCO2 during the midday hours was lower
in region 4 than in regions 5~6, which may be due to the fact that region 4 was mainly
residential, and the frequency of residential activities during the midday hours was higher.
In addition, in this study, region 8 had the highest percentage of vegetation within the
source area, but the carbon sink capacity of vegetation was much lower than that of regions
5~6 during the midday hours, which may be due to the fact that this area had a driveway
facing the school gate (categorized as other impervious land), and the frequent traffic in
and out of the school increased CO2 emissions from this area.

FCO2 in urban areas is regulated by the size of buildings, roads, and vegetation, with
FCO2 increasing with the size of buildings and roads, and decreasing with the size of
vegetation [43,57]. Therefore, understanding the ratio of carbon source areas to carbon sink
areas in cities is useful in providing directions for the construction of sustainable urban
development in the future. Crawford et al.’s [42] study in Baltimore found that higher
FCO2 was observed in the southwest direction with dense buildings and a high proportion
of roads, while lower FCO2 was observed in the northeast direction with more vegetation.
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This study further analyzed the effect of the area ratio between carbon sinks (plants) and
carbon sources (buildings and roads) on FCO2 , which showed a decreasing trend when
the area ratio of the study site reached 1.8 times. It indicated that when the vegetation
ratio at the study site was large enough, the atmospheric CO2 content would decrease.
This may be because more CO2 in the atmosphere was absorbed as the photosynthetic
capacity of plants increased with the increase in vegetation area [48]. Therefore, in future
urban planning, the green area can be appropriately increased to mitigate atmospheric CO2.
However, due to the spatial heterogeneity of the city, the results of our study at this site can
only represent the state of similar urban functional units or ecosystems to a certain extent,
but not the whole city. Therefore, it is necessary to set up multiple observation stations
for different functional and ecosystem types in cities to improve the observation results
to provide the most objective and extensive data support for accurate estimation of urban
carbon emissions and identification of carbon sources and sinks.

The heterogeneity of the urban surface is extremely high, and there are great differences
in anthropogenic activities and natural factors in different wind directions. The FCO2

observed by the EC system depends on the wind direction, which may cause the observed
FCO2) to be high or low due to the influence of the wind direction frequency [48,55,58].
Pawlak et al. [50] found that the main wind direction was west and southwest in the study
site in Łódź, Poland, but the observed FCO2 in the east was nearly four times higher than
that in the west. Kleingeld et al.’s [1] study in Arnhem found that the FCO2 in the direction
of busy traffic artery roads was higher. Therefore, these studies illustrated the potential
for observed FCO2 to be unrepresentative of the entire source area if the study area had a
prevailing wind direction. In this study, 60% of the flux data came from the northwest.
In order to verify whether the observations at the study site were representative of the
source region, two approaches were used in this paper. One was based on the flux data
every 30 min after the observation data had been processed, averaging the FCO2 at each
moment to obtain the annual average diurnal variation characteristics of FCO2 within the
source region. The other approach averaged the FCO2 at each moment during the annual
average diurnal variation in the eight regions of interest again, and thus obtained the
FCO2 annual average diurnal variation characteristics within the source region. Compared
with the first approach, the second approach eliminated the effect of wind direction and
better characterized the diurnal variation in FCO2 within the source area. However, the
comparison revealed that the annual average diurnal variation in FCO2 obtained by the two
approaches had the same trend (Figure 13) and the correlation was very high (R2 = 0.98,
p < 0.01), which indicated that the observed FCO2 at the present study site was not limited
by the wind direction.
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5. Conclusions

This paper analyzed the variations of FCO2 and its influencing factors based on the FCO2

and meteorological data continuously monitored from January to December 2012 at the
urban ecological station of the Central South University of Forestry Science and Technology
in Changsha. The results showed that the source area was a net CO2 emission source all
year round, and the flux footprint was mainly concentrated in the 500 m range, which
was characterized by a typical urban subsurface. The diurnal variation characteristics of
FCO2 showed great differences in different time scales, but with a time-varying pattern,
which was mainly because the photosynthesis capacity of plants was influenced by PAR
and indirectly regulated by Tair and VPD, resulting in regular changes in the atmospheric
CO2 content. In addition, in the changing pattern of FCO2 in a day, it was obvious that it
was also affected by the traffic flow with the phenomenon of morning and evening peaks.
The land use of the surface is an important factor affecting the spatial variation in FCO2 ,
and in this study area, the region 4~6 with higher vegetation occupation obviously had
a larger diurnal variation in FCO2 , with an obvious carbon sink process in the middle of
the day, whereas the regions 1~3 with high traffic flow had a smaller variation in FCO2 and
were basically in the carbon source. It indicated that transportation was the main source of
CO2 emission in the region, while vegetation can effectively mitigate the CO2 content in
the region. By further discussing the impact of major carbon sources and sinks on the area,
it was found that the CO2 content of the area would decrease after the area was covered by
vegetation 1.8 times the sum of the areas of buildings and main traffic roads. This finding
may provide a reference for the development of targeted carbon reduction strategies in
the future.
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