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Abstract: Urban expansion is leading to the loss and fragmentation of habitats, which poses a threat
to wildlife. People are hopeful that, through scientific urban planning and the adoption of innovative
models for human communities, such a situation can be improved. Thus, a case study was carried
out in Nanning City, China, to extract habitats, build an ecological resistance surface, and construct a
habitat connectivity network (HCN). To simulate changes to unused land in the future, we put forth
the A (the parcel is divided into strips), B (the parcel is divided into two strips), C (the central area of
the parcel is planned as a quadrangle), and D (opposite to Scenario C, the peripheral area is green
space) scenarios of human communities that guarantee a 30% ratio of green space, and established
the corresponding HCNs. The results indicate that: (1) Currently, the habitats cover approximately
153.24 km2 (34.08%) of the entire study area. The ecological corridors in this region amount to a
total of 5337, and the topological indicators and robustness indicate a strong stability of the current
HCN. (2) With urban expansion, once continuous habitats are being fragmented into smaller green
spaces, it is estimated that the habitats will shrink by 64.60 km2. The topological indicators and
robustness reveal that the stability of the HCNs becomes lower as well. Multiple scenario simulations
demonstrated that Scenario D is better than Scenarios B and C, while Scenario A performed the worst.
(3) Furthermore, we observed a stronger negative impact of urban expansion on local connectivity.
This indicates that the influence of urban expansion on the local HCNs is often more pronounced
and may even be destructive. Our findings can advise urban planners on decisions to minimize the
impact of urban expansion on wildlife.

Keywords: urban expansion; multi-scenario simulation; habitat connectivity network; topological
indicators; robustness

1. Introduction

The spread of urban development on unused land in the vicinity of a city can lead
to urban expansion. As the global urban population continues to grow, urban expansion
continues [1]. In particular, in developing countries like China, urban expansion is still in
an accelerated stage of development. Many habitats that were once suitable for wildlife
survival have been converted into urban development areas, farmland, or industrial zones,
leading to habitat loss and fragmentation [2–4]. Moreover, the disturbance caused by traffic
accidents and human activities hinders the movement and migration of wildlife, limiting
their ability to find food, reproduce, and avoid predators, which has profound implications
for wildlife adaptive processes and subsistence [5–7].
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The biodiversity of wildlife in cities is generally low owing to urbanization and hu-
man activity, and these wildlife are quite sensitive to environmental changes [4,8–11]. It
was discovered that the habitat environment can be efficiently improved by integrating
fragmented habitats and constructing a stable habitat connectivity network [12,13]. Eco-
logical networks aim to tackle the threats of habitat fragmentation on species’ survival
and migration, which have been the focus of ecological research since the 1980s [12–14].
Since Forman and Godron [14] proposed that landscape structure consists of three basic
elements (patches, corridors, and matrix), the concept of ecological networks has been
extended and developed. Its related exploration and research contribute to the maintenance
of biodiversity and promote species dispersal, which has been widely used in academia. In
light of this, it is imperative to examine how urban expansion affects habitat connectivity
networks in conjunction with the ecological network.

A habitat connectivity network (HCN) is a cohesive entity formed by organically
connecting habitat patches through ecological corridors. Habitat patches are specific
areas where organisms breed and inhabit, while ecological corridors are vital pathways
used to connect these habitat patches [14,15]. The presence of ecological corridors not
only maintains connectivity between habitat patches but also provides crucial pathways
for species migration and ecosystem services [10,11,15]. However, with ongoing urban
expansion, habitat loss and fragmentation have significantly reduced the local habitat area
and altered the spatial arrangement of the remaining habitat patches. To address this
issue, numerous studies on urban expansion and habitat fragmentation have focused on
conducting ecological network assessments, often by constructing ecological networks and
using indicators to obtain the required research parameters [16,17]. Among them, one of
the most popular techniques for locating ecological corridors is the least-cost path model,
which accurately describes the direction of ecological corridors. Connectivity between
habitat patches is crucial for maintaining gene flow, ecosystem functionality, and species
distribution [18]. By computing topological indices based on HCNs, we can analyze HCNs
in depth and develop the corresponding conservation plans. Additionally, these indices
help determine the resistance and stability of networks connected by individual nodes. By
gaining a deeper understanding of habitat connectivity, we will be able to better maintain
the health of ecosystems, facilitate species adaptation and migration, and provide a stronger
foundation for sustainable development.

Previous studies have explored the impact of land expansion on connectivity networks,
which has been important for understanding the effects of human community development
on HCNs for wildlife [11,16]. However, predictions for the future are lacking. Often
times, the effects of different scenarios of human community development on HCNs for
wildlife are underestimated. Although a considerable amount of research has focused on
creating ecological networks, recent research has indicated the importance of analyzing
the effects of a variety of land use changes on habitat [16,17,19]. These studies remind
us that solely considering the creation of ecological networks may not be comprehensive
enough to evaluate the impact of urban expansion on wildlife habitats. However, we
have found that case studies on urban expansion in the future are insufficient thus far.
Therefore, it is necessary to discuss how urban development influences and constructs
HCNs under different circumstances. Such research can help us better understand the
impact of urban expansion on wildlife habitats and provide a basis for developing rational
urban planning and land use policies. We need more research to model the impact of land
use changes on wildlife and determine which scenario of human community development
can minimize habitat loss caused by urban expansion. These studies can help decision-
makers better understand the needs of wildlife under different development scenarios,
promote sustainable development, and protect biodiversity. Therefore, future research
should focus on filling the gaps in predicting the impact of urban expansion, strengthening
analyses of the impact of human community development on HCNs under different
scenarios, and conducting more simulation studies to provide more accurate scientific
support for urban planning and land use decision-making. Only then can we minimize the
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negative impact of urban development on wildlife habitats and achieve harmony between
humans and nature.

This study aims to fill this gap by exploring the impacts of urban expansion on the habi-
tat connectivity network in Nanning City, Guangxi Autonomous Region of southwest China.
We also employed a multi-scenario simulation approach to discuss how urban expansion
affects and builds HCNs under different scenarios. This is manifested by (1) building a
resistance surface and HCNs based on extracting habitat patches; (2) simulating the impact
of future urban expansion on the networks; and (3) evaluating the results of the HCNs
under different urban expansion scenarios. Thus, we can foresee the impact of urban
reshaping processes on wildlife, preserve regional ecological safety, and give theoretical
support for the creation of planning schemes by assessing the effects of various scenarios
on habitat connectivity.

2. Materials and Methods
2.1. Study Area

The study area (22◦40′15.45′′ N–22◦54′9.12′ ′ N, 108◦9′20.67′ ′ N–108◦25′55.21′ ′ E) is in
Nanning City District, Guangxi Zhuang Autonomous Region, southern China (Figure 1),
which is located south of the Tropic of Cancer and has a subtropical monsoon climate with
good water and thermal conditions. The study area is primarily made up of plains and
hills, with an altitude range of 4 m to 290 m. Among them, plains are mainly distributed
in the northwestern area, and the northeastern and southern areas are mainly hills with
evergreen broad-leaved forests as the vegetation cover type. The east–west Yongjiang River
runs through the middle of the study area. The soil is fertile and is a place for wildlife to
roost, feed, and breed. Most regions include woodland, construction land, and unused
land. Unused land can be defined as land that has value for use but is not currently being
utilized by people. To accommodate urbanization and population increases while using
the least amount of agricultural land as possible, one of the realistic options is to develop
unused land. Moreover, the unused land covers 92.28 km2, accounting for 20.5% of the
study area. Several of these undeveloped sites in the urban region, will be designed as
human neighborhoods. The region is densely populated and much of the unused land
will be transformed into human communities. The rapid urban expansion will result in a
greater dispersion of habitats, and the spatial pattern of the study area is certain to change
significantly [4,7].
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2.2. Data Sources

The primary data include digital elevation model (DEM), night lighting, land use,
Normalized Difference Vegetation Index (NDVI), population, density of road network,
distance from road, slope, density of water network, distance from water, and other
related data. Among them, the advanced satellite-based thermal emission and reflection
radiometer global digital elevation model (ASTER GDEM) is the source of the DEM. The
data for land use were obtained using the Sentinel-2 classification with a resolution of 10 m.
In this dataset, land use is divided into six types (cropland, woodland, grassland, water,
construction land, unused land). NDVI data were also obtained from Sentinel-2. In this
study, the above datasets were converted to the WGS1984 geographic coordinate system
with a spatial resolution of 30 m. A detailed description of the datasets and data sources is
presented in Table 1.

Table 1. Primary datasets presented in this study.

Dataset Time Resolution Data Sources (Accessed on 1 October 2022)

DEM 2020 30 m Download from NESSDC (http://www.geodata.cn/)

Night lighting 2021 30 m Download from NESSDC (http://www.geodata.cn/)

Sentinel-2 2020 10 m Download from USGS
(https://earthexplorer.usgs.gov/)

Population 2020 30 m Download from NESSDC (http://www.geodata.cn/)

Road 2020 30 m Download from NESSDC (http://www.geodata.cn/)

Water 2020 30 m Download from NESSDC (http://www.geodata.cn/)

DEM 2020 30 m Download from NESSDC (http://www.geodata.cn/)

2.3. Methods

This study constructed HBNs by selecting habitats and building resistance surfaces.
Then, we explored its evolution with future urban expansion, and quantitatively analyze
the changes in the spatial distribution of habitats after urban expansion. Notably, changes
to urban unused land is the type of land change that will be more variable during future
urban expansion. Thus, we considered the study area as a whole, from which we chose
three areas with a high density of unused land for local study. In other words, we conducted
a study in both overall and local dimensions. The flowchart presents an overview of the
methodological steps (Figure 2).
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The first step was to construct the HCN. Woodland, grassland, and unused land were
regarded as habitats. Our study combined 10 ecological resistance factors such as DEM,
lighting, land cover, NDVI, population, density of road network, distance from road, slope,
density of water network, and distance from water [20,21]. The weights of each resistance
factor were obtained using principal component analysis, based on which, the minimum
ecological cumulative resistance surface was constructed. Combined with the habitats and
resistance surface obtained above, we constructed the HCN.

The second step was the multi-scenario simulation. We selected the unused land
planned for human communities in urban areas (excluding patches less than 0.006 km2 in
area and with a fragmented distribution), and had them change according to four different
urban reshaping scenarios. Then, the habitats were selected again and combined with the
above-mentioned resistance factors, in which the land cover and NDVI data changed due
to the urban expansion. The subsequent operation steps were roughly the same as in the
first part, such as calculating the weights of each resistance factor and constructing the
minimum ecological cumulative resistance surface. Finally, we compared and analyzed the
differences between each resistance factor after urban reshaping.

The third step was the statistical analysis. By calculating and comparing the topological
indicators and robustness of the HCNs under different scenarios, the impact of the unused
land change on the HCNs during the urban reshaping was determined. The optimum
reshaping scenario was finally obtained, and it can be applied to other areas to provide
guidance for future planning [17,20,22–25].

2.3.1. Selection of Habitats

It is known to all that the protection of wildlife depends on safeguarding and preserv-
ing the biological environment of their habitats. Habitats provide sustainable ecosystem
services and maintain stable landscape patterns, which are also necessary for wildlife to
survive and thrive. The habitats in this research were derived from three main types of land
cover, which includes woodland, grassland, and unused land (only for development of
human communities). Since small habitats are too dispersed, have weak radiation capacity,
and have less impact on the HBNs, we selected land larger than 0.006 km2 as habitats.

2.3.2. Circuit Theory and MCR Model

Changes in land cover, such as those resulting from rapid urban expansion, can
inhibit or enhance ecological processes to varying degrees. Using complex network theory,
ecological processes such as species migration and gene flow are considered electrical
currents and landscape resistance are considered resistance, the results of which, can reflect
the energy required for species migration or mortality [20,21]. Based on the characteristics
of circuit theory, it can offer various methods for calculating the paths taken by ecological
processes in the landscape, such as isolating active areas with high levels of ecological
activity and creating spatial scenarios of the HCNs in the study area.

When transitioning between habitats, wildlife must overcome a number of obstacles.
Several habitats can be connected through ecological corridors, which can provide channels
for the interchange of resources and energy. As shown in Table 2, the 10 resistance factors
chosen for this study were separated into 5 levels and given the values 1, 2, 3, 4, or 5 in
accordance with the resistance’s intensity from high to low [20,21]. Therefore, the minimum
cumulative resistance surface was built. The specific formula is as follows:

Rmc = fmin

i=m

∑
j=n

Dij × Ri (1)

where Rmc is the value of the minimum cumulative resistance, f is an unidentified negative
function reflecting the inverse relationship between the minimum cumulative resistance
and the propagation or diffusion process, Ri is the resistance coefficient of the landscape
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unit to the propagation and diffusion process, and Dij is the spatial distance between the
source i and landscape unit j.

Table 2. Assignment of ecological resistance factors in this study.

Ecological Resistance Factor 1 2 3 4 5

DEM ≤75 (75, 100] (100, 125] (125, 150] ≥150

Slope (◦) ≤5 (5, 10] (10, 20] (20, 30] ≥30

LULC Woodland Grassland Cropland Water Building land

Night lighting ≤45 (45, 50] (50, 55] (55, 60] ≥60

NDVI >0.45 (0.4, 0.45] (0.35, 0.4] (0.3, 0.35] ≤0.3

Population ≤1000 (1000, 3500] (3500, 6000] (6000, 8500] ≥8500

Distance to road (m) >400 (300, 400] (200, 300] (100, 200] ≤100

Distance to water source (m) ≥600 (450, 600] (300, 450] (150, 300] ≤150

Density of the road network ≤450 (450, 800] (800, 1150] (1150, 1500] ≥1500

Density of the water network ≤5 (5, 10] (10, 15] (15, 20] ≥20

2.3.3. Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical method that is used
to transform variables into independent principal components and is also a widely used
network method. PCA transforms the values of a set of linearly uncorrelated variables,
known as PCs, into the observations of a set of potentially correlated variables via an
orthogonal transformation. In this research, weights were calculated using a weighted
superposition approach based on PCA by thresholding how similar each data trace was to
a reference trace created using PCA [26]. Since there are as many principal components
in the data as there are variables, the principal components are constructed in such a way
that the first component occupies the maximum possible variance in the set. The primary
benefits of adopting the method of PCA include highlighting dataset commonalities, re-
moving correlations between assessment metrics, drastically reducing the amount of metric
selection and computation, and being a potent tool for dimensionality reduction when
working with many datasets.

2.3.4. Multiple Scenario Simulation

The habitats selected here were mainly grassland, woodland, and unused land. With
urban expansion and human activity, habitats have been decreased in area and become
fragmented. As a comprehensive regional development activity, the development of unused
land may cause certain ecological impacts on the development area and its surroundings,
which requires advanced planning of the unused land development process. Thus, the
unused land in the study area will change relatively drastically in the course of future
urban development. Based on this, we simulated the unused land to provide advice for
policy making and urban planning.

According to urban reshaping, large areas of unused land in the study area will
transformed into residential areas, while in general, the green area ratio in new residential
areas should not be less than 30%. In this study, the unused land was selected according to
the urban development plan of Nanning City (Figure 1), and consists of areas that will be
developed into human communities in the future. For the utilization of urban unused land,
we put forth the A, B, C, and D scenarios for a human community (Figure 3). Scenario A
divides the parcel into strips and selected several strips with 30% of the total area to be built
as green land, while the rest are building land. Scenario B directly divide the parcel into two
parts, where one part with 30% of the total area is green land and the other part is building
land. In Scenario C, the central area of the plot is planned as a quadrangle, and 30% of the
total area of this central area is green space. Scenario D is the opposite of Scenario C. The
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peripheral area is 30% of the total area, which is green space, and the central area is 70%
of the total area, which is building land. The unused land selected in the aforementioned
areas was modified in the four different scenarios, but each scenario guarantees 30% green
space, as shown in Figure 3. Lastly, the conversion tool in ArcGIS 10.8 was used to convert
the 10 m land use data into vector files, which were then adjusted by type with cutting and
splitting procedures to obtain the four processes of habitat fragmentation.
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Figure 3. Schematic diagram of multi-scenarios simulations. These simulation scenarios in this study
were selected regular unused land and modified into green land and unused land in the ratio of 3:7.
Scenario A divided the parcel into strips. Scenario B divided the parcel into two strips. Scenario C
planned the central area of the parcel as a quadrangle. Scenario D was the opposite of Scenario C, the
peripheral area was green space. All scenarios of human communities that guarantee a 30% ratio of
green space.

The conversion of unused land leads to changes in the original land cover, and thus
data such as land cover and NDVI need to be adjusted. By combining the green land and
building land obtained in the previous steps and replacing the original unused land, the
new raster images of land cover were obtained using ArcGIS 10.8. Notably, the NDVI
data were modified by extracting the modified unused land portion from the original data
and reducing the NDVI by 70%. The habitats were then selected again, and the unused
land that had been converted to building land was removed. The resistance surface was
constructed by combining the resistance factors and calculating the weights. In accordance
with the four different scenarios, the aforementioned operation was repeated.

2.3.5. Topological Indicators for Evaluating HCNs

The topological structure of a network illustrates how the nodes are connected to
one another and how the network is arranged and configured. The spatial distribution
of this environment resembles an undirected, unprivileged network when habitats are
seen as nodes and corridors as edges. The topological relationships of HCNs reflect the
overall spatial structure of habitats [16]. In this study, the HCNs were described using
six topological indicators, including average degree, diameter, modularity, clustering
coefficient, eigenvector centrality, and average path length [19,27,28].

Average Degree

The number of edges in a network that are connected to a node determines its degree,
which reflects how connected a habitat patch is to its nearby patches in the HCN. The
average degree of the network is determined as the average of all nodes’ degrees [19,28].
The specific formula is as follows:

〈k〉 = 2M
N

(2)
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where M is the number of network edges and N is the number of nodes in the network.

Diameter

The diameter is the maximum distance between nodes i and j in the network. The
connectivity between habitats can be shown by the diameter [19,28]. The specific formula
is as follows:

D = max
(
dij

)
(3)

where D is the diameter and dij is the distance between nodes i and j.

Modularity

Modularity measures the degree of modularity of the network structure, and its value
usually lies between 0.3 and 0.7. Usually, a modularity value greater than 0.44 indicates that
the network has reached a certain degree of modularity. Modularity actually refers to the
distinction between a network that is part of a certain community division and a random
network, which means that a larger the difference means that the community division is
better and the internal link density is higher [28,29]. The specific formulas are as follows:

Tre = ∑
i

eii (4)

ai = ∑
j

eij (5)

Q = ∑
i
(eii−ai

2) (6)

where Q is the modularity and defines a k × k symmetric matrix e = (eii), where the element
eij denotes the proportion of edges in the network connecting nodes of two different
associations among all edges; these two nodes are located in the i-th association and the
j-th association, respectively.

Clustering Coefficient

The degree of connectedness between nearby nodes of a given node is represented
by the clustering coefficient. The probability that two nodes connected to the same node
will remain connected is known as the clustering coefficient of a node [19,28]. The specific
formula is as follows:

Ca =
Ea

C2
ka

(7)

where Ca is the clustering coefficient of node a, Ea is the actual number of edges between
node a and its neighboring nodes, and C2

ka is the total number of edges when node a and its
neighboring nodes are connected to each other.

Eigenvector Centrality

The importance of a node is determined by the quantity and importance of its nearby
nodes. In graph theory, eigenvalues are a way to measure the impact of a node on the
network. For nodes with the same number of connections, a node with a high neighboring
node score will score higher than a node with a low neighboring node score, and all nodes
are assigned a corresponding score based on this principle [7,19,28]. A node connected to
many other nodes that are connected to high-scoring nodes also has a high eigenvector
score. The specific formula is as follows:

Ax = λx (8)

where each specific vector in the above equation corresponds to a different specific value
λ, and each component of the eigenvector must be positive. According to the Perron–
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Frobenius theorem, only the eigenvector corresponding to the largest eigenvalue is needed
to measure centrality. To find this eigenvector, a power operation iterative algorithm can be
used. The i-th component xi is the eigenvector centrality CE(vi) of node vi.

Average Path Length

The shortest distance between node i and node j is the path that connects these two
nodes with the least number of edges. The average path length, which is the average of
the distance between any two nodes, indicates how far apart the nodes in the network are
from one another. A smaller value represents a greater connectivity of the nodes in the
network [7,19]. The specific formula is as follows:

L =
1

1
2 N(N − 1)

∑
i>=j

dij (9)

where L is the average path length, N is the number of nodes in the network, and dij is the
distance between node i and node j.

2.3.6. Robustness for Evaluating HCNs

Connectivity robustness and recovery robustness are two types of robustness that
describe the capacity of networks to preserve their initial functionality in the face of un-
certainties such external perturbations or internal parameter uptake [17,19,22–25]. The
literature shows that patches and edges can be used to measure habitat fragmentation,
reflecting the characteristics of changing landscape patterns in different habitats [30]. Con-
nectivity robustness measures how well the remaining nodes can maintain connectivity
even in the event that some nodes of the network are damaged. The ability of a network to
recover when some of its components are disrupted is measured by its recovery robustness.
The specific formulas are as follows:

R =
C

(N − Nr)
(10)

D = 1−
[
(Nr − Nd)

N

]
(11)

E = 1−
[
(Mr −Me)

M

]
(12)

where N is the total number of nodes in the initial network, C is the number of nodes in
the maximum connected subgraph after eliminating Nr nodes from the network, and R
denotes the connectivity robustness. The number of nodes recovered by a certain approach
is Nd, and D is the robustness of node recovery. Edge recovery robustness is measured by
the letters E, Mr, Me, and M, where M is the total number of edges in the initial network,
Me is the number of edges recovered by some approach, and Me is the number of edges
deleted from the network.

3. Results
3.1. Spatial Distribution of Habitats

In this study, we investigated the impact of urban expansion on HCNs from both local
and overall viewpoints. To conduct local network analyses, three major concentrations
of the western, central, and eastern areas with strong land use changes were selected for
urban reshaping (Figure 1).

Currently, habitats in the study area are relatively evenly distributed, with relatively
large areas of concentrated woodland cover in two hills on both sides of the Yongjiang
River in the southeast. The wetlands adjacent to the Yongjiang River have some adjacent
grass and shrub patches. Overall, the land cover of habitats is dominated by woodland
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and unused land. According to the real circumstances in the study area, a total habitat area
of 153.24 km2 was obtained, accounting for 34.08% of the study area. Figure 4 shows the
spatial distribution of habitats.
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After urban reshaping, habitats that are mainly influenced by land conversion of
unused land reached 92.28 km2. As shown in Figure 5, the largest region of the intended
reshaping habitats was in the east, followed by the middle and western regions. In this
study, we selected 80 habitat patches that met the aforementioned requirements. After
simple treatment, 89 habitat patches were obtained. These 89 patches were modified in
four different scenarios in turn to obtain 2106, 1873, 1886, and 1884 fragmented habitats. It
can be seen that the spatial distribution of these habitats differed more significantly under
different urban reshaping scenarios (Figure 5).
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Figure 5. Spatial distribution of habitats under four different scenarios.

The local analysis contained 81 western patches, 35 central patches, and 278 eastern
patches. It is worth noting that these three areas had higher concentrations of unused land.
These three local areas were modified in different scenarios in turn, with 119, 87, 88 and
91 broken habitat patches in the western region, and 57, 41, 39 and 39 in the central part,
and 502, 317, 331 and 326 in the eastern region, respectively. The fragmentation of habitats
under Scenario A was significant during the planning and reshaping processes.
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3.2. Principal Component Analysis and Minimum Cumulative Resistance Surface Analysis

Using ArcGIS 10.8, the resistance factors were reclassified and combined with principal
component analysis to obtain the resistance surface. The weighted sum of the 10 resistance
factors, which is the minimal cumulative resistance surface produced by the MCR model,
ranged from 1.40 to 4.59. Due to more frequent human activities in the downtown area,
worse environmental conditions, and a lower amount and quality of habitats, the cumula-
tive effect of ecological resistance was more visible. The ecological function in the research
region essentially rose from the center to the surrounding area, with the highest ecological
function in the forest patches and unused land patches. All in all, the ecological resistance
was strong in the central area and low in the surrounding area.

We conducted principal component analysis and constructed resistance surfaces for
the study area under different scenarios. We found that the resistance values of the areas
where unused land was converted were significantly higher, and the range of resistance
values was nearly the same for all three categories except for Scenario C, which was lower.
The conversion of unused land into residential areas increased the construction land by
70%, which also implied a significant reduction in habitats in the study area. Furthermore,
we discovered that the regions with higher resistance values under the four scenarios were
situated in roughly the same geospatial location, where the ecological environment was
poor and the ecological resistance was high. And comparing the weights of resistance
factors under the current situation and four simulation scenarios (Figure 6), it is easy to see
the profound influence of weights. After urban reshaping, we found that the contribution
of DEM, NDVI, road density, slope, and distance to water were elevated. In Scenarios A, B,
C, and D, the difference in contribution rates was at most 0.1%, except for one indicator
with the same contribution rate of distance from the road; the detailed information is shown
in Figure 6.
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3.3. Analysis of HCNs

Using the help of the Linkage Mapper tool in ArcGIS, we created HCNs for wildlife in
the study area. Based on the network results, we obtained 5337 corridor lines in the current
area, which are individually connected and densely distributed among them.

For the whole study area, the network results in different scenarios varied significantly;
there were 6235, 5527, 5564, and 5548 ecological corridor lines, respectively (Table 3). Thus,
the habitat connectivity priority was Scenario A > Scenario C > Scenario D > Scenario B.
In addition, we discovered that the center of the study area had fewer and longer ecological
corridors, and a sparser distribution of habitats than the outer regions, which had more
ecological corridors and a more dense distribution of habitats. This shows that the ecological
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position of the center is bad, the spatial structure of the landscape has to be modified, and
urban expansion will have a negative impact on the habitats of wildlife.

Table 3. Habitat patches and ecological corridors of whole study area.

Amount/Type Current Scenario A Scenario B Scenario C Scenario D

Habitat patches 1822 2106 1873 1886 1884
Ecological corridors 5337 6235 5527 5564 5548

As shown in Figure 7, a network analysis of the western, central, and eastern areas
with significant local land use changes was conducted. A total of 766, 83, and 214 ecological
corridors was obtained. Then, we conducted a multiple scenario simulation. The network
results from the different scenarios yielded 1447, 893, 936, and 913 corridor lines in the east;
151, 101, 94, and 93 corridor lines in the central part; and 336, 238, 239, and 248 corridor
lines in the west. The order of ecological effect priority is completely consistent with the
simulation effect in the whole study area. Moreover, there was a general upward trend in
the number of ecological corridor lines as habitat fragmentation increased; this change was
similar to the upward trend in the number of habitat patches.
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3.4. Topological Indicators Analysis of HCNs

By visualizing the complex network of habitats, we obtained some results (Figure 8).
In the entire study area, the greatest distance of in the HCN between habitat patches
was 24, and the average path length between nodes was 10.598, requiring an average of
10.598 edges to be passed to connect. The connection relationships of nodes demonstrate
that after reshaping, the average degree value and average path length grew, and the
importance of nodes increased, with the largest increase in the average degree value in
Scenario C and Scenario A. The eigenvector centrality became larger, among which, the
eigenvector centrality of Scenario A increased greatly, indicating that the connectivity
between nodes expanded and that the ability to transfer energy and information between
nodes improved. In addition, the clustering coefficients decreased to some extent except
in Scenario D, which remained basically stable. The definition of modularity states that
nodes with high modularity have greater connectedness and resistance to natural and
human-caused threats. The modularity of the future scenario increased slightly, indicating
a somewhat higher linkage density within the network.
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Figure 8. Topological indicators of HCNs for the entire study area.

For the three localized areas of the study area (western, central, and eastern), we
calculated the topological values of each area’s HCN with the HCNs under different
scenarios (Table 4). We found that the results of the study were approximately the same as
the analysis of the whole study area. The difference is that the graph density of the future
scenarios were all lower than the graph density of the current study area, which means that
the linkage density within the reshaping area was somewhat higher after urban reshaping.

Table 4. Topology indicators of habitat connectivity networks for the local study area.

Topological Indicator Average
Degree Diameter Modularity Clustering

Coefficient
Eigenvector
Centrality

Average
Path Length

Current
western 5.284 9 0.585 0.523 0.012 3.884
central 4.882 5 0.480 0.583 0.002 2.656
eastern 5.551 12 0.718 0.544 0.036 5.405

Scenario A
western 5.647 9 0.648 0.508 0.018 4.301
central 5.393 6 0.529 0.541 0.005 3.003
eastern 5.776 14 0.763 0.515 0.069 6.347

Scenario B
western 2.736 9 0.617 0.509 0.011 4.040
central 5.050 6 0.497 0.568 0.004 2.903
eastern 5.652 12 0.723 0.523 0.044 5.69

Scenario C
western 5.432 9 0.615 0.525 0.011 4.016
central 4.947 6 0.480 0.570 0.004 2.898
eastern 5.673 13 0.722 0.518 0.046 5.839

Scenario D
western 5.451 9 0.621 0.533 0.013 4.021
central 4.895 6 0.474 0.603 0.003 2.770
eastern 5.618 12 0.736 0.541 0.043 5.627
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3.5. Robustness Analysis of HCNs

We simulated robustness under the current state and scenario simulations, respectively,
using random and malicious attacks. Connectivity robustness, edge recovery robustness,
and node recovery robustness were the three types of robustness we focused on in this
research. The results show that the robustness against malicious attacks decreased faster
than that of random attacks regardless of the simulation scenario. In addition, the decreas-
ing trend of recovery robustness approximated a convex curve, decreasing slower at the
beginning of the attack than at the end of the attack, while the decreasing trend of edge
recovery robustness under malicious attacks decreased linearly. In addition, the decreasing
trend of connectivity robustness approximated a concave curve, increasing with the rate of
decline and then slowing down with the attack intensity.

The three robustness results of the networks in the present and future Scenarios A,
B, C, and D (Figure 9) show that urban expansion weakens the stability of the network
of habitats, with the same conclusions obtained in the overall and local analysis. Overall,
Scenario D showed the best results for urban expansion. We discovered that its robustness
in terms of connectivity was distinct from the other scenarios, and the fall in connectivity
robustness displayed a wave-like decline. After simulating future scenarios in the study
area, the robustness of the HCNs slightly decreased after malicious and random attacks.
The decreasing connectivity robustness curve for the status quo was more concave during
malicious attacks than it was after simulation, but the inflection point was delayed. In
the HCNs under all scenarios simulated, the decline in connectivity robustness and the
onset of network connectivity collapse were advanced. As shown in Figure 9, when
450 nodes were maliciously attacked, the robustness of the status quo fell below 0.1 and
the network crashed, while the network robustness of the future scenario with less than
450 nodes maliciously attacked fell below 0.1. In the random attack, the robustness of the
network in the future scenario decreased rapidly as the number of attacked nodes increased,
while the network of the status quo still maintained a high robustness and decreased
slowly. Regarding the recovery robustness of the nodes, the beginning decline point, curve
inflection point, and network collapse point for the future scenario were all moved to the
right under both attack modes compared to the pre-simulation period, indicating a later
appearance. The network robustness of the status quo stayed above 0.9 after 1160 and
1225 nodes were attacked and dropped below 0.1 and eventually crashed after 1730 and
1800 nodes were attacked. In addition, the node recovery robustness curve of the status quo
was somewhat more convex in the late attack period than in the future scenario. Both the
current situation and the future scenarios showed no significant change in the initial decline
in recovery robustness for both attack modes, but the curve inflection point and the network
crash point moved to the right, and the status quo was slightly more convex than after the
simulation. The robustness of the network in future scenarios started to decline during the
initial attack, while the current network robustness continued to be very high. However, in
the subsequent attacks, the robustness declined at approximately the same rate. Under both
attacks, the status quo about 1800 edges needed to be attacked, while in the future scenario
needed to have more than 1800 edges attacked to bring the robustness of recovery down to
0. Analyzing the study area locally and combining the conclusions obtained from the above
analysis of the study area as a whole, we concluded that in terms of HCN stability and
ecological resilience, the ranking is Scenario D > Scenario B ≈ Scenario C > Scenario A.
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4. Discussion
4.1. Construction of HCNs

Currently, wildlife conservation and habitat networking are important components of
global spatial planning, and improving the connectivity of habitat networks has important
implications. The research has started to concentrate on networks of habitat connection
during the planning and reshaping process as a result of urbanization [31–34]. Connectivity
between habitats is essential to maintaining communication between biological popula-
tions, and communication between species can be facilitated by improving the connectivity
of habitat networks [33]. This emphasizes the importance of constructing HCNs. As a
result, many researchers have explored different approaches to build biological habitat net-
works. Hofman proposed a habitat network assessment framework using habitat suitability
indicators and graph theory, and applied it to biological habitat network construction [35].
Changes in urban land use can affect habitat connectivity, particularly in the context of
urban expansion. The structure analysis of urban HCNs based on the minimum cumulative
resistance model has received more attention recently [36,37]. However, most studies on
HCNs have mainly focused on the assessment of the current situation, while very few have
applied the results of network analysis to construct HCNs and predict future patterns and
determine priority interventions.

Compared with previous studies, our research is unique and future facing. Our study
developed and evaluated HCNs during urban expansion, comparing the results of the
HCNs under current and future scenarios. Importantly, our study presents four possible
scenarios (Figure 3) that are able to demonstrate the inevitability of future urban expansion
and assess its impact on future development to support decisions on urban planning and
wildlife conservation. Why were only these four scenarios considered? Because human
communities typically expand in a more intensive manner along with population growth.
We gathered four of the more typical scenarios (Scenarios A, B, C, and D) by consulting
numerous development cases. Of course, there are many other scenarios out there waiting
to be explored.

4.2. Urban Expansion and the HCNs

Urban expansion has accelerated recently in developing countries like China. The re-
search has shown that habitat quality is negatively correlated with the level of
urbanization [1,5,6,38,39]. The study area is experiencing rapid urban expansion with
a gradually expanding urbanized core and a gradual replacement of adjacent natural land
cover by built-up land [40]. According one study, urban expansion has led to habitat loss,
habitat fragmentation, and a decline in diversity of wildlife [41]. Urban expansion may
have a negative impact on wildlife diversity because of the alterations it causes to natural
habitats rather than because of the urban expansion itself. As opposed to earlier research
that examined the relationship between habitat and urbanization, our results suggest that
changes in the distribution of different land cover types during urban development are
directly related to the HCNs for wildlife in urban areas. Exploring the complex effects of
habitat fragmentation on wildlife habitats due to urban expansion and identifying specific
outcomes triggered by fragmentation processes are important issues for relevant scientific
research and urban planning [42–44].

Urban expansion has weakened the stability of HCNs, posing a serious ecological chal-
lenge to the future planning and construction of cities. In contrast, the negative impacts of
urban expansion can be minimized through appropriate urban development planning and
ecological restoration. This study examined the construction of HCNs and their evolution
through urban expansion, with results that differ from studies that have mainly used a
simple analysis or non-quantitative methods. Using tools such as ArcGIS and Matlab to
analyze the constructed HCNs, the topological indicators and robustness curves of the four
scenarios of urban reshaping indicate that urban expansion weakens the stability of HCNs.
Moreover, the four scenarios and their simulation results were selected and differentiated.
For example, the individual patches in Scenario A are small and dispersed, despite the fact
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that the total habitat area was the same in each scenario. Ultimately, we concluded that the
four scenarios were ranked as follows: Scenario D > Scenario B ≈ Scenario C > Scenario A.
These results quantitatively describe the complex effects of different scenarios of urban
reshaping on wildlife habitats and reveal the importance of further research on the rela-
tionship between urban planning and wildlife conservation. Based on the results of this
paper, we suggest that Scenario D be chosen for urban residential land use planning for the
reshaping of unused land to better maintain the connectivity of habitats.

4.3. Implications for Management

Cities perform as an evolutionary system, continuously disrupting natural land-
scapes [45,46]. Research on land-use change in the past has shown how urban land
expansion affects natural environments [47–51]. Nonetheless, urbanization is acceler-
ating and developing at an unprecedented rate globally, which is displacing unused land,
cropland, and woodland in the areas surrounding big cities [47,48]. Our study shows that
urban expansion has some effects on formerly stable environments that are in danger of en-
vironmental degradation. This may not be restricted to the destabilization of environmental
structures and destruction, and may include a decline in habitat quantity and quality. This
entails reducing urban expansion while ensuring development. Additionally, we carried
out this study in local and overall perspectives, and built HCNs for the entire study area
as well as for each of the three locations with significant land use changes. The findings
demonstrate that urban expansion has a larger detrimental effect on local HCNs and may
potentially be destructive. Thus, we must give ecological conservation in localized areas
more consideration.

Furthermore, we developed four scenarios for human communities that mostly rely on
unused land (planned for human communities). Among the four scenarios, we discovered
that Scenario D maximizes the demand for urban expansion, which ensures that the
needs of a growing population for community development are met while at the same
time, mitigating environmental degradation. So when urbanization is inevitable, using
Scenario D to construct human communities in similar urban areas can better safeguard
natural habitats. Our research has important implications for both the planning of human
communities and the preservation of urban ecological patterns.

4.4. Limitations and Future Research Directions

Although our results provide insights for future urban planning and wildlife conser-
vation, this study has its limitations. Firstly, there are no uniform criteria for the selection
of ecological resistance coefficients, and differences in the resistance coefficients in the
same study area may result in different HCNs. Secondly, we only studied the migration
of wildlife in the horizontal dimension of the region, without considering the important
influences in the vertical direction or variations in species movement based on seasons.
This leads to some restrictions in the assessment of the HCNs. Thirdly, the choice of
urban expansion and reshaping scenarios is worth discussing. In our study, we chose
four reshaping scenarios for residential land. However, there are many other scenarios, or
better results than those obtained from the four development scenarios mentioned in this
paper. Finally, the construction and simulation of HCNs is mainly to provide guidance
for future urban planning and wildlife conservation, but it did not take into account the
socio-economic factors. For example, how to maximize ecological benefits within limited
economic resources is a question that deserves further exploration.

In the future, we will overcome the existing limitations, and set up thorough evaluation
and analysis methods that includes both vertical and horizontal directions. We will screen
more possible scenarios to reshape unused land and conduct more case studies in different
areas or at different scales to enrich our conclusions. Furthermore, a broad range of wildlife
species exist, each with distinct habitat requirements and migratory routes. To obtain
more general results, multi-species studies will be performed. Alvey highlights that urban
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planners should be aware that cities provide a foothold for biodiversity in urban areas [52].
Thus, it is also necessary to incorporate ecologists in the planning of urban expansion.

5. Conclusions

Urban expansion is an inevitable trend in human development. People are hopeful
that, through scientific urban planning and the adoption of innovative models for human
communities, such a situation can be improved. Hence we proposed the A, B, C, and D
scenarios of human communities, given the global urbanization trend and the increasing
conflicts with wildlife. Comparing the results of the four scenarios allows us to identify
more appropriate development scenarios to minimize the negative consequences of urban
expansion. In this study, we chose the habitat of Nanning City in Guangxi Province
of southwest China. We built an ecological resistance surface based on circuit theory,
principal component analysis, complex network, etc. Then, the fragmented habitats and
ecological corridors were used to composed the HCNs. It was discovered that the process
of urban expansion has a detrimental effect on wildlife habitats. This is shown by the
64.60 km2 decrease in habitats, the disruption of the HCNs’ structure, and the decline
in environmental stability. Also, the effects of various urban reshaping scenarios on the
alterations in wildlife habitats were very distinct, and their respective network stability was
compromised to varying degrees. In contrast, the topological indicators and robustness
effects of Scenario D had less negative impacts under expansion. It is important to note
that Scenario D refers to the situation where the quadrilateral of the plot’s central region
is changed into construction land and is surrounded by grassland during the creation of
the human communities. It was inferred that urban planning using Scenario D is the most
desirable development option for better protection of wildlife habitats.

Furthermore, Scenario D can be extended to similar human communities development
processes and is not limited to the specific case study under consideration. Although we
have chosen the habitats of Nanning to study the impact of urban expansion on HCNs
of urban wildlife, there are also implications for other urban wildlife network studies.
Accordingly, we can mitigate the damage to wildlife caused by urban expansion. In con-
clusion, we provided a fresh perspective for similar case studies in urban areas, providing
theoretical support and insights for further applications in urban planning and wildlife
conservation in urban areas. In further studies, more urban reshaping scenarios and more
reasonable evaluation methods can to be selected to provide more possibilities and improve
the accuracy of the results, providing more information for understanding the impacts of
urban expansion on wildlife habitats. This will assist with urban planning decisions and
policy-making.
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38. Sandström, U.G.; Angelstam, P.; Mikusiński, G. Ecological diversity of birds in relation to the structure of urban green space.
Landsc. Urban Plan. 2006, 77, 39–53. [CrossRef]

39. Devictor, V.; Julliard, R.; Couvet, D.; Lee, A.; Jiguet, F. Functional homogenization effect of urbanization on bird communities.
Conserv. Biol. 2007, 21, 741–751. [CrossRef]

40. Yi, X.; Jue, W.; Huan, H. Does economic development bring more livability? Evidence from Jiangsu Province, China. J. Clean.
Prod. 2021, 293, 126187. [CrossRef]

41. Chace, J.F.; Walsh, J.J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 2006, 74, 46–69. [CrossRef]
42. Grunewald, K.; Bastian, O.; Louda, J.; Arcidiacono, A.; Brzoska, P.; Bue, M.; Cetin, N.; Dworczyk, C.; Dubova, L.; Fitch, A.; et al.

Lessons learned from implementing the ecosystem services concept in urban planning. Ecosyst. Serv. 2021, 49, 101273. [CrossRef]
43. Mitchell, M.G.; Bennett, E.M.; Gonzalez, A. Linking landscape connectivity and ecosystem service provision: Current knowledge

and research gaps. Ecosystems 2013, 16, 894–908. [CrossRef]
44. Liao, Z.; Su, K.; Jiang, X.; Wang, J.; You, Y.; Wang, L.; Chang, S.; Wei, C.; Zhang, Y.; Li, C. Spatiotemporal variation and coupling of

grazing intensity and ecosystem based on four quadrant model on the Inner Mongolia. Ecol. Indic. 2023, 152, 110379. [CrossRef]
45. Yu, Z.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Liu, R.; Wang, Z.; Zang, J.; Shi, S. Spatiotemporal characterization of the urban

expansion patterns in the Yangtze River Delta region. Remote Sens. 2021, 13, 4484. [CrossRef]
46. Rimal, B.; Sloan, S.; Keshtkar, H.; Sharma, R.; Rijal, S.; Shrestha, U.B. Patterns of historical and future urban expansion in Nepal.

Remote Sens. 2020, 12, 628. [CrossRef]
47. Feng, R.; Wang, K. The direct and lag effects of administrative division adjustment on urban expansion patterns in Chinese

mega-urban agglomerations. Land Use Policy 2022, 112, 105805. [CrossRef]
48. Dhanaraj, K.; Angadi, D.P. Analysis of urban expansion patterns through landscape metrics in an emerging metropolis of

Mangaluru Community Development Block, India, During 1972–2018. J. Indian Soc. Remote Sens. 2022, 50, 1855–1870. [CrossRef]
49. Jezzini, N.; Nassif, N.; Mereu, V.; Faour, G.; Hassoun, G.; Mulas, M. Land Suitability Analysis for Forests in Lebanon as a Tool for

Informing Reforestation under Climate Change Conditions. Forests 2023, 14, 1893. [CrossRef]
50. Cuesta, F.; Calderón-Loor, M.; Rosero, P.; Miron, N.; Sharf, A.; Proaño-Castro, C.; Andrade, F. Mapping Above-Ground Carbon

Stocks at the Landscape Scale to Support a Carbon Compensation Mechanism: The Chocó Andino Case Study. Forests 2023,
14, 1903. [CrossRef]

51. Zhang, L.; Zhu, L.; Li, Y.; Zhu, W.; Chen, Y. Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree
(Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China. Forests 2022, 13, 126. [CrossRef]

52. Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green. 2006, 5, 195–201. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs15133420
https://doi.org/10.1016/j.scitotenv.2020.136794
https://www.ncbi.nlm.nih.gov/pubmed/31991278
https://doi.org/10.1146/annurev-ecolsys-110316-022612
https://doi.org/10.1111/1365-2664.13337
https://doi.org/10.1016/j.landurbplan.2004.09.041
https://doi.org/10.1007/s10980-008-9267-y
https://doi.org/10.1111/1365-2664.12179
https://doi.org/10.1016/j.landurbplan.2018.05.013
https://doi.org/10.1016/j.ecolmodel.2014.09.002
https://doi.org/10.1007/s10980-018-0618-z
https://www.ncbi.nlm.nih.gov/pubmed/31258244
https://doi.org/10.1016/j.landurbplan.2005.01.004
https://doi.org/10.1111/j.1523-1739.2007.00671.x
https://doi.org/10.1016/j.jclepro.2021.126187
https://doi.org/10.1016/j.landurbplan.2004.08.007
https://doi.org/10.1016/j.ecoser.2021.101273
https://doi.org/10.1007/s10021-013-9647-2
https://doi.org/10.1016/j.ecolind.2023.110379
https://doi.org/10.3390/rs13214484
https://doi.org/10.3390/rs12040628
https://doi.org/10.1016/j.landusepol.2021.105805
https://doi.org/10.1007/s12524-022-01567-y
https://doi.org/10.3390/f14091893
https://doi.org/10.3390/f14091903
https://doi.org/10.3390/f13010126
https://doi.org/10.1016/j.ufug.2006.09.003

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	Methods 
	Selection of Habitats 
	Circuit Theory and MCR Model 
	Principal Component Analysis 
	Multiple Scenario Simulation 
	Topological Indicators for Evaluating HCNs 
	Robustness for Evaluating HCNs 


	Results 
	Spatial Distribution of Habitats 
	Principal Component Analysis and Minimum Cumulative Resistance Surface Analysis 
	Analysis of HCNs 
	Topological Indicators Analysis of HCNs 
	Robustness Analysis of HCNs 

	Discussion 
	Construction of HCNs 
	Urban Expansion and the HCNs 
	Implications for Management 
	Limitations and Future Research Directions 

	Conclusions 
	References

