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Abstract: Soil microorganisms play crucial roles in maintaining material circulation and energy
flow in desert ecosystems. However, the structure and function of soil microorganisms in different
forestlands are currently unclear, restricting the use of sand-fixing plants and the understanding
of forest ecosystem functions. In this study, Artemisia ordosica, Caragana korshinskii, and Salix psam-
mophila, three types of sand-fixing forests widely distributed in the Mu Us Sandy Land, were used to
explore the effects of sand-fixing forests on soil physicochemical properties, soil enzyme activity, soil
microbial biomass, microbial community structure, and inter-microbial species relationships. Soils
of forestlands showed higher soil organic carbon (SOC), total phosphorus (TP), and total nitrogen
(TN) contents than bare sandy land. The SOC in bare sandy soil was only 0.84 g kg−1, while it
remained 1.55–3.46 g kg−1 in forestland soils. The TN in bare sandy land soil was 0.07 g kg−1, which
was significantly lower than that in forestland soils (0.35–0.51 g kg−1). The TP in bare sandy soil
was 0.18 g kg−1, significantly lower than that in forestland soils (0.46–0.69 g kg−1). Afforestation
of bare sandy land improved soil microbial carbon and nitrogen contents and increased microbial
enzyme activities of acid phosphatase and N-acetyl-β-D-glucosaminidase. Significant differences
were observed between the three forestlands and bare sandy land in terms of soil microorganisms
and community composition. With the establishment of a sand-fixing forest, the alpha diversity
of soil bacteria significantly improved, whereas that of soil fungi remained stable. The bacterial
community comprised 33 phyla, 106 classes, 273 orders, 453 families, and 842 genera. While five
fungal phyla were detected by OTUs at a similarity of 97%, bacterial and fungal community structures
were affected by the organic carbon content, sand particle content, soil pH, total nitrogen, and total
phosphorus contents of soils. This study is helpful for vegetation construction and protection on
sandy lands from the perspective of plant-microbe interactions.

Keywords: shrub; soil microbial biomass; soil bacteria and fungi communities; soil nitrogen; soil
phosphorus; plant-microbial interactions

1. Introduction

Nowadays, land desertification in terrestrial ecosystems has always been a hot topic
in ecological and environmental issues worldwide [1–3]. In 2014, the total desert area in
China was 2.6 × 106 km2, occupying 27.2% of the total area [4]. Generally, ecological
restoration and reconstruction of land desertification are very urgent [5–7]. However,
using plant sand fixation as the main strategy of restoration is still at an unstable stage
because of its single ecological functions, weak anti-interference ability, poor stability,
and proneness to degradation [8–10]. Therefore, timely and accurate monitoring and
evaluation of desertification processes are very important to prevent land desertification,
consolidate the effects of artificial sand fixation, and stabilise the ecological restoration of
sandy areas [11].
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Among various biochemical processes in soil, the activities of soil microorganisms
are one of the most important components [12,13]. Soil microorganisms are the main
decomposers in desert ecosystems, participating in the exchange and flow of soil materials
and responding quickly and effectively to changes in soil ecosystems [14]. Soil microbial
indicators, such as soil microbial composition, community structure, microbial biomass,
and soil enzyme activity, can sufficiently reflect soil quality, fertility, and health [15–18].
Generally speaking, soil microorganisms can directly participate in the processes of the
carbon and nitrogen cycles, have a positive impact on the formation of soil humus and
the transformation of soil physiochemical processes, and play an important role in soil
formation and fertility restoration [8].

In desert areas, research has focused more on the impact of environmental gradient
changes on microbial communities and individual functional genes but still lacks a com-
prehensive understanding of the plant-soil-microbial system [19,20]. The diversity of soil
microorganisms, community structure composition, interspecific interactions, and differ-
ences in carbon and nitrogen functional genes in different sand fixation forests are currently
unclear. Fully analysing the impact of sand-fixing vegetation on the structure, interspecific
relationships, and functional characteristics of soil microbial communities is necessary to
deeply understand the important role of soil microorganisms in the construction of desert
plant communities, soil carbon and nitrogen cycling, and other processes.

As a typical desert ecosystem, the Mu Us Sandy Land, located in the agro-pastoral
transition zone of northern China, is one of the four major sandy lands in China [21]. In this
site, Artemisia ordosica, Caragana korshinskii, and Salix psammophila are the main established
species and are important for maintaining regional ecological security [22]. However, the
effects of these three shrubs on the soil microbial community structure and interspecific
interactions are unclear. In summary, this study aimed to answer the questions that (1) how
the activity, diversity, and composition of soil microbial communities in three typical sand-
fixing forestlands and (2) what are the interspecific interactions and influencing factors of
soil microorganisms in the three typical sand-fixing forestlands. Based on the previous
studies, we hypothesised that forestland soils have superior soil biochemical properties
than bare sand soils and have distinguished bacterial and fungal community properties in
different forestland soils.

2. Materials and Methods
2.1. Sample Collection

Three forestlands (Artemisia ordosica, Caragana korshinskii, and Salix psammophila) and a
bare sandy area were selected as the four experimental sites in the Mu Us Desert, China.
The chosen study sites were located at Dabaodang Town (38◦38′06′′ N, 109◦59′50′′ E), Yulin
City, on the southeastern edge of Maowusu Sandy Land and the northern edge of the Loess
Plateau in northern Shaanxi Province. This study area has a typical temperate semi-arid
continental monsoon climate, with a mean annual temperature of 8.4 ◦C and a mean annual
precipitation of 2111 mm. The altitude of this study site is 1095–1225 m. Three experimental
plots (100 m × 100 m) were randomly set at each forestland and bare sandy land. The
selected plots were free of livestock grazing or human damage. The distance between each
plot was more than 20 m. The nearby bare sandy land was chosen to be under the control
of the three forestlands. Soil samples of 0–10 cm depth were collected from the 12 plots
using a sterile soil drill with a diameter of 5 cm. Soil samples were collected from four
directions: southeast, northwest, and northwest, to ensure the uniformity of the collected
soil samples. The soil samples collected from each sampling site were mixed as a mixing
sample to guarantee the representativeness of the samples. After discarding the plant
residues, the soil samples were kept in sterilised sampling test tubes, placed in a vehicle
refrigerator, and immediately brought to the laboratory for further analysis. Each sample
was divided into three parts in the laboratory. The first part was stored at 4 ◦C to measure
soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), soil water content
(SWC), and enzyme activity. The second part was stored at −80 ◦C for high-throughput
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sequencing of 16S rRNA and ITS. The last part was air-dried for the determination of soil
physicochemical properties.

2.2. Soil Physicochemical Properties, Enzyme Activity, and Biomass Determination

Freshly weighed soil was placed in an oven and dried at 105 ◦C to a constant weight,
and the weight of the soil after drying was measured. The soil moisture content was
measured based on the difference in mass before and after balance.

According to the water-soil ratio of 1:2.5 (g/v), distilled water was added to the air-
dried soil, stirred for 1–2 min, and allowed to stand for 30 min before measuring with a
pH meter.

The bulk density was measured using the ring-knife method [23]. The amount of
organic carbon was measured using the potassium dichromate oxidation method [24]; total
nitrogen was measured using a fully automatic Kjeldahl nitrogen analyser [25]; and total
phosphorus was measured using the molybdenum antimony colorimetric method [26].

The activities of two enzymes (acid phosphatase and N-acetyl-β-D-glucosaminidase)
were determined using the disodium phenylene phosphate colorimetric method [27,28].
The soil MBC and MBN were determined using the chloroform fumigation extraction
method [29].

2.3. High-Throughput Sequencing and Bioinformatics Analysis

Total DNA was extracted from the soil microbiomes. The 16S rRNA (515F/806R) and
ITS (ITS2/2043R) loci were sequenced for the identification of bacterial and fungal commu-
nities separately, using Illumina MiSeq at the Shanghai Invitrogen Biological Technology
Company, Ltd. (Beijing, China). The original sequences were spliced, filtered, and clustered
into operational taxonomic units (OTUs) with a consistency of ≥97%. After the library con-
struction is completed, Qubit2.0 is used for preliminary quantification, the library is then
diluted, and Agilent2100 is used to detect the insert size of the library [30]. After meeting
expectations, Q-PCR was used to accurately quantify the effective concentration to ensure
the quality of the library. Species annotation was performed to obtain species information
on Bacteria and Fungi in each sample and analyse the differences in the composition and
structure of microbial communities among different soil samples using cluster analysis,
dimensionality reduction analysis, and statistical analysis using R version 3.1.1.

2.4. Microbial Community Structure Analysis

Alpha diversity generally includes species richness and community evenness. Rich-
ness was characterised by the number of OTUs and the Chao1 index of the sample, and
evenness was characterised by the Shannon-Wiener index (H).

H = −∑ Pi lnPi
Pi = relative abundance

Non-parametric testing methods, including analysis of similarities (ANOSIM), multi-
ple response permutation process analysis (MRPP), and permutation multivariate analysis
of variance (PMAV), were used to compare microbial communities among different soil
samples. Non-metric multidimensional scaling (NMDS), principal coordinates analysis
(PCoA), and one-way analysis of variance (ANOVA) were used to analyse the differences
in microbial community structures between the soil samples. Redundancy analysis (RDA),
Spearman’s correlation analysis (SCA), and canonical correspondence analysis (CCA) were
used to study the relationships between microbial community structure and soil properties.

3. Results
3.1. Soil Physicochemical Properties, Enzyme Activity, and Biomass Determination

Compared with that of the bare sandy land, the soils of Artemisia ordosica and Salix
psammophila forestlands had higher soil organic carbon (SOC), total phosphorus (TP), and
total nitrogen (TN) contents (Table 1). There were significant differences in the SWC,
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SOC, and TN among the three forestlands (Artemisia ordosica, Caragana korshinskii, and
Salix psammophila). The SOC was highest in the Artemisia ordosica forestland and lowest
in the Caragana korshinskii forestland. The TN was highest in the Caragana korshinskii and
Salix psammophila forestlands and lowest in the Artemisia ordosica forestland. The SWC was
highest in the Artemisia ordosica forestland. There were no significant differences in soil pH
among the three forestlands. The plant diversity of the Artemisia ordosica forestland was
significantly higher than that of the Salix psammophila and Caragana korshinskii forestlands.

Table 1. Soil properties of the four experimental sites. Different lowercase letters behind the data
indicate significant differences among the four experimental sites for each soil property.

Soil Properties Experimental Sites

Bare Sandy Land Artemisia ordosica Salix psammophila Caragana korshinskii

SWC 1.53 ± 0.32 a 2.62 ± 0.23 b 1.72 ± 0.31 a 1.68 ± 0.22 a

pH 8.38 ± 0.22 a 8.85 ± 0.22 a 8.94 ± 0.36 a 8.81 ± 0.23 a

SOC (g/kg) 0.84 ± 0.03 a 3.46 ± 0.35 b 2.57 ± 0.06 c 1.55 ± 0.14 d

TN (g/kg) 0.07 ± 0.01 a 0.35 ± 0.02 b 0.48 ± 0.02 c 0.51 ± 0.02 c

TP (g/kg) 0.18 ± 0.03 a 0.51 ± 0.02 b 0.69 ± 0.02 b 0.46 ± 0.02 b

Plant diversity 0 0.98 ± 0.01 a 0.63 ± 0.07 b 0.70 ± 0.03 b

Microbial carbon (mg/kg) 26.9 ± 0.23 a 150 ± 12 b 110 ± 6.56 c 60 ± 3.56 d

Microbial nitrogen (mg/kg) 1.23 ± 0.11 a 11.0 ± 0.17 b 9.1 ± 0.56 b 3.3 ± 0.23 c

Acid phosphatase 0.25 ± 0.12 a 0.75 ± 0.01 b 0.52 ± 0.06 c 0.38 ± 0.03 d

N-acetyl-beta-D-
glucosaminidase 0.57 ± 0.11 a 1.41 ± 0.02 b 1.12 ± 0.23 c 0.98 ± 0.08 d

SWC, soil water content; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus.

The soil microbial carbon and nitrogen contents in the three forestlands were signifi-
cantly higher than those in the bare sandy land (Table 1). The microbial carbon content in
the Artemisia ordosica forestland was significantly higher than that in the Salix psammophila
and Caragana korshinskii forestlands, and that in the Salix psammophila forestland was signifi-
cantly higher than that in the Caragana korshinskii forestland. The microbial nitrogen content
in the Artemisia ordosica and Salix psammophila forestlands was significantly higher than that
in the Caragana korshinskii forestland, whereas the difference between the Artemisia ordosica
and Salix psammophila forestlands was not significant.

The enzyme activities of acid phosphatase and N-acetyl-β-D-glucosaminidase in the
three forestlands were significantly higher than those in the bare sandy land. Moreover, the
enzyme activities in the three forestlands were significantly different in the following order:
Artemisia ordosica > Salix psammophila > Caragana korshinskii (Table 1).

3.2. Bacterial Community Structure Characteristics

Based on the sequencing data, 5668 bacterial OTUs and 614,895 bacterial sequences
were obtained. Subsequently, microbial diversity and community structure analyses were
performed based on the minimum number of sample sequences. In the bare sandy land and
sand-fixing forestlands, the total number of OTUs was 1150. The numbers of OTUs unique
to the bare sandy land and Caragana korshinskii, Artemisia ordosica, and Salix psammophila
forestlands were 447, 454, 628, and 695, respectively.

As shown in Figure 1, the Shannon and ACE indices of the bare sandy land were the
lowest, whereas those of the forestlands were significantly higher. There were significant
differences in microbial species diversity among the three forestlands. The order of the
Shannon indices was as follows: Salix psammophila > Artemisia ordosica > Caragana korshinskii.
The ACE indices in the Salix psammophila and Caragana korshinskii forestlands were signifi-
cantly higher than those in the bare sandy land and Artemisia ordosica forestlands. These
results showed that bacterial diversity increased significantly after the establishment of a
sand-fixing forest.
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munities between the bare sandy land and the three forestlands. The NMDS results fur-
ther confirmed that the differences between the bacterial community structures in the bare 
sandy land and three forestlands were significant. 

(a) (b) 

Figure 1. Alpha diversity indices [Shannon index (a) and ACE index (b)] for the bacterial communities
in the bare sandy land and different forestlands. * indicates significant results at p < 0.05.

NMDS and PCoA were used to compare the bacterial community structures in the
bare sandy land and three forestlands (Figure 2). The results showed that the cumula-
tive explanations of the first- and second-ordering axes of the PCoA reached 26.63% and
36.95%, respectively. The bare sandy land and Artemisia ordosica, Salix psammophila, and
Caragana korshinskii forestlands were distributed sequentially along the first sorting axis.
They were separated from each other, indicating obvious differences in the bacterial com-
munities between the bare sandy land and the three forestlands. The NMDS results further
confirmed that the differences between the bacterial community structures in the bare
sandy land and three forestlands were significant.
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 Figure 2. Non-metric multidimensional scaling (NMDS, (a)) and principal coordinates analysis
(PCoA, (b)) of the bacterial community structure in the bare sandy land and three forestlands. Note:
Aro, Artemisia ordosica; Sap, Salix psammophila; Car, Caragana korshinskii; Bare, bare sandy land.
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The bacterial community comprised 33 phyla, 106 classes, 273 orders, 453 families,
and 842 genera. At a gene sequence similarity level of 97%, 13 phyla had relative abun-
dances greater than 1%. The top 8 phyla were Actinobacteria (10.6%–19.4%), Proteobacteria
(35.7%–64.5%), Chloroflexi (7.5%–10.2%), Bacteroidetes (5.1%–9.4%), Gemmatimonadetes
(1.2%–2.5%), Verrucomicrobia (0.6%–11.9%), Planctomycetes (0.8%–3.0%), and Armatimon-
adetes. The relative abundance of bacteria in these categories accounted for more than 90%
of the total bacterial abundance. In contrast, the relative abundance of bacteria in the other
categories was less than 10% of the total abundance (Figure 3).
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The relative abundance of bacteria at the phylum level was compared using a signifi-
cance test analysis of the differences between the groups. The results (Figure 4) showed that
there were significant differences in the relative abundance of bacteria at different phylum
levels among the forestlands, mainly in Actinobacteria, Bacteroidetes, Gemmatimonadota,
Acidobacteria, Firmicutes, Deinococcota, Verrucomicrobia, Planctomycetes, and bacterial
species in the phylum Armorymycota. The abundance of Bacillus, Acidobacteria, and Plan-
comycetes was highest in Artemisia ordosica forestland soil, while the relative abundance
of Actinobacteria was highest in Salix psammophila and Caragana korshinskii forestlands
(Figure 4).

To explore the factors that affected the soil bacterial community structure in this
study area, RDA was used to screen out the environmental variables that affect bacterial
community changes (Figure 5). The Monte Carlo permutation test was used to analyse
the correlation between environmental factors and the spatial distribution of the species
(permutations = 999). The results showed that the environmental variables that affected
the distribution of bacterial communities included SOC, TN, TP, pH, and sand content.
Among them, the SOC had the greatest impact on community structure, followed by the
sand content and pH. The explanation rates for the RDA1 and RDA2 axes were 24.2% and
48.28%, respectively. The composition of the bacterial community in Artemisia orchard
woodland was closely related to the SOC. The bacterial community in the bare sandy
land was most related to the pH, and the bacterial communities in Salix psammophila and
Caragana korshinskii forestlands were most affected by the sand content.
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As shown in Figure 6, there was a significant correlation between SOC, pH, sand, silt,
and clay content, and bacterial community composition. SCA showed that each environ-
mental factor was closely related to the dominant bacterial phyla. The SOC, SWC, and silt
and clay contents of the bare sandy land and three forestlands had significant or extremely
significant positive correlations with Planctomycetota, Verrucomicrobiota, Bacteroidota,
and Patescibacteria. A significant negative correlation was observed between Muricutes
and Deinococccota. Sand content and pH showed a significant negative correlation with
Planctomycetota, Verrucomicrobiota, Acidobacteriota, and Bacteroidota and a significant
or extremely significant positive correlation with Deinococccota and Firmicutes. The above
results further verified that the measured environmental factors had an important impact
on the bacterial community composition.

3.3. Fungal Community Structure Characteristics

Based on the sequencing data, 197 fungal OTUs and 782,024 fungal sequences were
identified. Subsequently, microbial diversity and community structure analyses were
performed based on the minimum number of sample sequences. As shown in Figure 7,
there were no significant differences in the Shannon and ACE indices between the bare
sandy land and Artemisia oleifera forestland. There was no significant difference between
the bare sandy land and Artemisia oleracea, Caragana korshinskii, and Salix psammophila
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forestlands, indicating that the establishment of sand-fixing shrub forests had no significant
impact on fungal diversity.
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NMDS and PCoA were used to compare the fungal community structures in the
bare sandy land and three forestlands (Figure 8). The results showed that the cumulative
explanations of the first- and second-ordering axes of the PCoA reached 19.79% and
23.63%, respectively. The bare sandy land and Artemisia oleracea, Caragana korshinskii, and
Salix psammophila forestlands were distributed sequentially along the first sorting axis. They
were separated from each other, indicating that there were obvious differences in the fungal
communities between the bare sandy land and the three forestlands. The NMDS results
further confirmed that the differences between the fungal community structures in the bare
sandy land and forestlands reached a significant level.

At a similarity level of 97%, all detected OTUs were divided into five fungal phyla.
Among them, there were two phyla with relative abundances of >1% (Figure 9), namely
Ascomycota (bare sandy land, 86.56%; Artemisia ordosica, 93.08%; Salix psammophila, 80.10%;
Caragana korshinskii, 90.86%) and Basidiomycota (bare sandy land, 5.22%; Artemisia ordosica,
1.91%; Salix psammophila, 4.43%; Caragana korshinskii, 2.78%). Other phyla with relative
abundances less than 1% included Blastocladiomycota (bare sandy land, 0.1%; Artemisia
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ordosica, 0%; Salix psammophila, 0%; Caragana korshinskii, 0.10%), Chytridiomycota (bare
sandy land, 0%; Artemisia ordosica, 0.03%; Salix psammophila, 0%; Caragana korshinskii, 0%),
Mucoromycota (bare sandy land, 0%; Artemisia ordosica, 0.68%; Salix psammophila, 0.20%;
Caragana korshinskii, 0.03%), and unrecognised categories (bare sandy land, 8.21%; Artemisia
ordosica, 4.31%; Salix psammophila, 15.26%; Caragana korshinskii, 6.32%).
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To explore the factors that affected the soil fungal community structure in this study
area, CCA was used to screen out the environmental variables that affect fungal communi-
ties based on the measured environmental variables (Figure 10). The results showed that
the environmental variables that affected the fungal community structure mainly included
SOC, TN, TP, pH, and sand (sand content). Among them, the pH had the greatest impact
on species distribution, followed by the SOC and sand content. The explanation rates for
the CCA1 and CCA2 axes were 17.84% and 13.57%, respectively. The composition of the
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soil fungal community in the Artemisia ordosica forestland was most related to the SOC. In
contrast, the fungal community in the bare sandy land and Caragana korshinskii forestland
was more related to the sand content and pH.
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As shown in Figure 11, there was a significant correlation between pH, sand content,
silt content, clay content, TP, SOC, and the fungal community composition; that is, these
factors significantly affected the fungal community compositions of the bare sandy land and
Artemisia ordosica, Salix psammophila, and Caragana korshinskii forestlands. SCA showed that
each factor was closely related to the dominant fungal phyla. The pH of the bare sandy land
and three forestlands showed a significant positive correlation with the families Discomyc-
etaceae, Spyrozoaceae, and Chaetomaceae. The sand content was positively correlated with
the family Discomycetaceae. The SWC, SOC, and powder content were positively correlated
with Didymellaceae and were negatively correlated with the unclassified families of Pezizales
and Colpodea. The silt content, cohesive content, and TP showed a significant positive corre-
lation with Aspergillus and Didymellaceae. These results further verified that the measured
environmental factors had an important impact on the fungal community composition.
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4. Discussion

According to our hypothesis, our study demonstrated that the afforestation of bare
sandy lands can significantly improve the physicochemical properties, microbial enzyme
activity, and microbial biomass conditions in soil [31–36]. The soil moisture and nutrient
conditions of the Artemisia ordosica forestland were much better than those in the soils of
the Caragana korshinskii and Salix psammophila forestlands. Withered root secretions and
biological knot skins are important sources of SOC, as well as the main energy and substrate
source of soil microorganisms [37]. A higher coverage of vegetation in Artemisia ordosica
forestland can reduce the evaporation of soil moisture, thereby promoting the growth of
Artemisia ordosica. In the Artemisia ordosica forest, in addition to higher water and nutrient
conditions, other factors can also lead to an improvement in the number and activity
of soil microorganisms. Some studies have shown that some soil microorganisms use
compounds released by plants as carbon and energy sources to promote their metabolism
and growth [38], while the volatile chemicals from Artemisia ordosica stems and leaves may
affect the metabolism of soil microorganisms, thereby promoting microbial activities [39].
On the other hand, the composition of carbon in the litter, which is provided by different
plants, may vary, such as the types and proportions of active and inert carbon, which can
affect the metabolic processes of soil microorganisms [40], thereby affecting enzyme activity
and microbial biomass. Therefore, the input of litter and root exudates from different shrub
species may also cause differences in soil microbial activity.

Importantly, we demonstrated that afforestation of bare sandy land can significantly
improve the diversity of soil bacterial communities in this study. The diversity of above-
ground plant species increased after afforestation, which further improved the nutrient
conditions of the soil, creating a better growth and breeding environment for soil mi-
croorganisms and increasing the number and communities of bacteria. The diversity of
soil bacteria was significantly different among the soils of the three forestlands, with the
highest diversity found in Salix psammophila. The diversity of the bacterial community
was closely related to the sand grain content and soil physicochemical properties. Recent
research has also shown that the composition of soil microorganisms changes with the SOC
content [41,42]. Particularly, the active SOC content is the main driving force affecting the
diversity of bacterial communities [43]. Because of the soil texture of the research area,
plant leaves and withering roots were decomposed by microorganisms and stored more
active SOC [44]. Studies have shown that the relative abundance of certain soil bacteria
is significantly positively or negatively correlated with SOC [45]. Similarly, the results
of the RDA analysis also showed a close correlation between SOC content and bacterial
community structure. Bacteroidetes are eutrophic bacteria [45], which have a higher relative
abundance in Artemisia ordosica forests with better nutrient conditions. However, the higher
relative abundance in the soil of Caragana korshinskii forests with poorer nutrient conditions
indicates that the relative abundance of some groups of Bacteroidetes is not only affected by
SOC content; it may also be influenced by other factors, such as soil texture [46]. This study
found that sand content is also an important factor affecting microbial composition. In
contrast, in drought and semi-arid areas, water availability is a key factor that limits plant
diversity and productivity and indirectly affects the quantity and quality of proclaimed
substances in the soil input, thereby affecting the diversity of soil microorganisms. In this
study, the high water content in the shrub-covered soil may also have been a reason for the
high diversity of the bacterial community.

Based on our results, Ascomycota and Basidiomycota were the most abundant fungal
phyla, accounting for 90% of the fungi detected in the soils of the three forestry lands
and bare sandy land. This result may be attributed to the proportion of approximately
98% of fungi belonging to Ascomycota and Basidiomycota [47–49]. Second, because of the
desert ecosystem and lack of soil nutrients, Ascomycota has strong compression under
harsh environmental conditions, owing to its faster evolutionary speed and rich species.
Therefore, in dry sand and harsh survival conditions, Ascomycota fungi are more suited
for survival than those from Basidiomycota. Our results showed that there are significant
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differences in the soil fungal community structure among the three types of forests. There is
a significant correlation between SOC, fungal community structure, and soil physicochemi-
cal properties. Previous studies have also shown that SOC content determines changes in
fungal community composition [50]. The research results showed that there are significant
differences in SOC content among the three types of forests, which may lead to differences
in fungal composition. In addition, unlike bacteria, which are more susceptible to soil
properties, the composition of fungal communities is more closely related to plants. After
vegetation restoration using different shrub species, the improvement of microclimate
and soil nutrient conditions under shrubs will promote the growth of herbaceous plants,
thereby affecting the composition of fungal communities. With the introduction of plants,
the composition of soil fungal communities will change, and their changes often depend
on the species of dominant plants.

5. Conclusions

There were significant differences among the three forestlands (Artemisia ordosica,
Caragana korshinskii, and Salix psammophila) and bare sandy land regarding soil microorgan-
isms and community compositions. Our results showed that the afforestation of bare sandy
land can significantly improve its soil physicochemical properties and increase microbial
enzyme activity and biomass. We found that the alpha diversity of the soil bacteria signifi-
cantly improved; however, that of the soil fungi was unchanged. The bacterial and fungal
community structures were affected by the SOC, sand particle content, soil pH, TN, and
TP. This study’s results can aid in a better understanding of plant-microbe interactions and
therefore aid in vegetation protection and management on sandy lands.
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