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Abstract: Timber extraction is a vital process in forest harvesting, particularly in areas with high slopes
where timber harvesting methods are not feasible. In such cases, logging towers employing extraction
cables are often the most effective solution. This intricate task involves several phases, with the
installation of the tower being one of the most critical. It significantly influences the performance and
feasibility of timber extraction. Another crucial phase involves strategically positioning logging lines
to minimize the installation time while maximizing the load capacity efficiency. This article presents
an integer programming mathematical model for determining the optimal positioning of yarders
conditioned to logging lines, the timber logging time, and the logging cycle time. Furthermore,
a two-phase heuristic algorithm is introduced to address the problem. Both approaches offer a
preliminary proposal for the location of logging towers and the arrangement of logging lines within
a two-dimensional spatial plane, thereby streamlining the timber extraction process in challenging
terrains. Finally, we compare manually generated approximate planning (referred to as the manual
planning approach, MPA) with our presented approaches. Our methods outperform the MPA, and
notably, our two-phase approach surpasses solvers commonly used in the industry by up to 38% in
real case studies.

Keywords: cable-yarding; discrete location; heuristics; integer programming; genetic algorithm

1. Introduction

Forest harvesting is a critical operation within the forestry industry’s production
cycle that has garnered significant attention. The choice of the harvesting method depends
primarily on factors such as the forest type, species, desired products, and terrain conditions,
with the slope of the land being the most crucial variable in determining the machinery
employed. In areas with slopes exceeding 60%, forestry harvesting strategies are mainly
limited to logging towers or equipment secured with cable supports. Concerns arise
regarding internal extraction processes on properties and transportation for raw material
processing. Various research approaches address timber extraction on properties, ranging
from manual collection processes to sophisticated planning techniques [1]. Trees can be
extracted using land-based or aerial methods [2].

Skyline tower harvesting is a logging method that employs mechanized towers to
access trees on steep or challenging terrain. Utilizing extraction cables attached to each
tree, this technique is typically employed in areas with high slopes where traditional access
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to timber is not feasible. Equipped with a lifting platform and cable system, these tow-
ers enable operators to safely cut trees from above, resulting in a more efficient and less
environmentally damaging approach than conventional logging methods. However, this
method also presents drawbacks, such as the high cost of machinery, specialized training
requirements, and increased workplace accident risks. Trees must be felled, prepared
for extraction using specialized slope techniques, and arranged for rapid removal (see
Figure 1a,b). The cables are installed via a tower or logging cable that necessitates interme-
diate and final supports to ensure its stability, load support, and process continuity as the
load is raised to the unloading area at the top of the slope (see Figure 1c). Installation of the
extraction cable should be conducted from the yarder tower to the anchor point, typically
by specialized technicians (see Figure 1d,e).

Figure 1. Elementary processes for cable logging.

Upon completing the cable installation, the extraction process, known as “Full Tree,”
begins. A carriage is installed on the skyline (see Figure 1f), and trees are secured to the
cable in a process called bracing, which attaches them to the cart running along the logging
cable (see Figure 1g). The cart is then retracted, and trees are dragged over the slope to
the landing site or logging yard. At this location, trees are unloaded, cut, sorted, and
transported to industrial facilities (see Figure 1h,i). Notably, a single cable can extract
multiple trees per cycle, often between two and eight trees, depending on factors such
as the machinery power and resistance, slope, cable tension, tree size, and other terrain
aspects. A tree recovery round is referred to as a logging cycle, and minimizing the number
of cycles is essential for reducing labor costs.

The environmental impact of aerial timber extraction is significantly lower than that
of land-based methods. Ground-based extraction often leads to soil erosion as timber is
moved down slopes, negatively affecting the soil quality. Consequently, the employment
of aerial extraction methods with reduced operating times is crucial for mitigating the
environmental challenges of this type of harvest.

The economic dimension of the extraction process warrants a mention. Specifically,
the cost associated with setting up skylines plays a pivotal role in the planning phase, as it
directly impacts the process’ economic feasibility. Should the installation expenses surpass
the returns from the harvest, cable extraction will become nonviable.

A crucial aspect of the timber extraction process is the installation and removal times
for the entire operation. As mentioned earlier, using a skyline system for “clean” extraction
requires the installation of one or more towers on a given property. The position of the
tower’s “foothold” must also be strategically determined to maximize tree extraction.
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Additionally, each cable has a specific timber capacity per logging cycle, resulting in
combinatorial challenges that are often intractable [3]. Consequently, an optimization
problem must be defined to minimize installation times for the cable extraction problem,
considering both geometric and capacity constraints.

Numerous studies have addressed cable tree extraction and optimization. In [3],
the facility location theory is employed to assign lines to different properties. In [4], the
extraction costs of timbers are minimized using Geographic Information Systems (GIS)
data and a heuristic that minimizes harvest costs is introduced. The work described in [5]
proposes a tabu search that tackles two forest harvesting problems: machinery location
selection and access network design for extraction. The authors compare their approach
with a mixed programming mathematical model using CPLEX, demonstrating that the tabu
search achieves better results with less computational time. In [6], various mathematical
models based on [3] are presented for steep terrain with different cable lengths, demonstrat-
ing their applicability in 18 plans. A metaheuristic for the European Cableway Location
Problem is introduced in [7], where a heuristic and a greedy metaheuristic are tested with
test instances and a real case. The authors argue that both approaches are equally effective
and could potentially minimize costs in the planning process. In [2], a mixed-integer linear
programming approach is presented to minimize road design costs for vehicles and cable
design. The results are compared to [1], with computation times ranging between 4 min
and 8 h. In [8], two new formulations for the cable tree removal problem are introduced
based on a model presented in [6]. The approaches yield favorable results depending on
the specific parameters used for the problem.

Several scientific studies focused on the monitoring of extraction cables have been
published recently. A notable one is the article from [9], which details a monitoring
system that uses the Geographical Navigation Satellite System (GNSS). With this system,
the authors manage to identify 98% of the measured cycles, providing valuable data for
the analysis of cables and their operations. In a different approach, the study presented
in [10] concentrates on the physical state of the cables, comparing tensile forces to static
calculations. To address the inherent limitation of static data, a simulation based on finite
elements (FEN) was employed. The researchers suggest that the FEN simulation is useful
for analyzing the tensile forces of the horizon. Going a step further in complexity, the
article presented in [11] examines the forces affecting the extraction cables by adopting a
nonlinear approach. This method provides a comprehensive solution, allowing adaptations
based on specific configurations by adding equations to the existing system. Lastly, the
article [12] proposes a predictive method for the cable trajectory using software called
Seilaplan, which is specifically designed for cable extraction technologies in Central Europe.
The accuracy of the predictions is based on the Zweifel approach and was validated with
real data, demonstrating reliable results, as measured by RMSE values. In this way, the
importance of the study of extraction cables for forestry harvesting is evident, and the
study is very important for different aspects of the forestry field.

One of the primary factors that determines the efficiency and yield of forest harvesting
with Skyline Towers is the placement of logging lines, which depends heavily on the forest
conditions and tree positions on the slope. Accurate information about tree locations and
sizes is crucial during the harvest planning phase. Typically, highly experienced operators
make decisions based on their expertise, as this information is not readily available before a
harvesting operation. Having precise tree locations would facilitate the definition of logging
cable directions, the determination of intermediate and final support trees, the estimation of
the number of logging cycles for each line, and the calculation of harvest yields, times, and
costs more accurately. Moreover, it would help to minimize environmental costs by reduc-
ing soil compaction caused by logging lines. Improved harvest planning can be achieved
with high-quality cartography and aerial images, which most harvesting companies pos-
sess. However, this requires a pre-processing phase for information. Deep Learning, a
branch of Artificial Intelligence, can identify and segment objects within an image, making
it possible to locate individual trees in a forest. The authors of this research are developing a
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Deep-Learning-based platform to identify and locate trees in Skyline Tower harvest sectors,
which can then serve as the input for mathematical optimization processes to solve the
problem of optimal logging cable allocation. This approach enhances the precision and
efficiency of forest harvesting operations while minimizing environmental impacts.

Although the presented results are competitive, it is essential to introduce metaheuris-
tics that minimize installation and operation times for large-scale planning with manageable
durations. This article defines a binary mathematical programming model to optimize
the installation and removal of timbers in cable logging operations. The model considers
the tree allocation to cables, optimal cable selection based on the tower and stringer, cable
intersections, and the extraction cable capacity. Furthermore, a hybrid approach is intro-
duced to address the problem: a genetic algorithm assigns trees to lines and minimizes their
number, followed by a mathematical model that utilizes the best individual to solve the
logging cycle problem concerning the cable capacity. Lastly, comprehensive computational
results are showcased, in which the manual planning approach (MPA) is compared with
those generated using mathematical models. Additionally, a comparison is drawn with our
two-phase algorithm. All discussed approaches are tested under real-world scenarios.

The rest of this article is organized as follows: in Section 2, we present the problem
modeling related to the issue at hand. Section 3 introduces the integer mathematical
programming formulation for the problem. Section 4 describes the two-phase approach,
which employs a genetic algorithm and a mathematical model based on Section 3 to
generate logging cycles. Section 5 provides details of the computational experiments, while
Section 6 concludes our article with a summary of the findings.

2. Related Work—Modeling of the Cable Extraction Problem

The tree extraction process begins in a predetermined sector where each tree’s location,
weight, and extraction time—the duration it takes to move the tree from the ground to a
cable—have been meticulously cataloged. These trees are then transported to a specific area
for stacking in anticipation of their subsequent removal by trucks. The primary aim of this
model is to streamline the sequence of tree extraction from the ground to the landing area
while optimizing the selection of extraction cables. This strategy is designed to decrease the
overall operational times, including those required for installing a tower, setting up cables,
tree extraction, and the complete logging cycle.

2.1. Yarder Installation Time

The installation time for a yarder varies based on its location and the specific model of
the tower being used. We maintain the installation time in the tower model for our model,
allowing only the installation site to vary. This site is typically located within the landing
area, where the trees are gathered for stacking. The extraction operation’s specific location
fundamentally determines the tower’s quantity and positioning.

2.2. Cable Installation Time and Tree Removal

An array of cables stemming from various yarders is crucial for tree extraction. It is
essential to judiciously select the appropriate cables to ensure an efficient extraction process.
Every cable corresponds to a potential extraction area that takes the shape of a cone, as
illustrated in Figure 2. This cone-shaped area signifies the space within which the cable can
operate effectively, thereby delineating its range of extraction. The design of this cone is
crucial, as it governs the cable’s extraction capacity and operational efficiency.

Given the unique extraction area associated with each cable, every tree within the
property under study must be extracted using a single cable. As such, each tree must be
systematically aligned with a specific extraction cable dictated by the spatial limitations of
the defined cone-shaped logging. This constraint mandates a strategic mapping of trees to
cables, ensuring that each tree falls within the operational boundaries of its assigned cable.
This careful coordination maximizes the extraction efficiency and minimizes the potential
damage to the surrounding forested area during the extraction process.
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Figure 2. Simple example of a logging cone.

2.3. Logging Cycles

Every extraction line in a logging operation features an unique characteristic called
logging cycles. These cycles are quantitatively defined by the number of trees a single cable
can haul during a single procedure or turn. The cable’s reach and strength, the size of
the trees, and the terrain all factor into this calculation, which is pivotal for efficiency and
productivity. Each logging cycle is further associated with a set of variables that require
careful optimization. Firstly, there is the cycle time—the duration it takes to complete one
extraction cycle. The aim is to minimize this time without compromising safety or efficacy,
as it directly impacts the overall productivity of the logging operation. Faster cycle times
mean that more trees can be extracted per unit of time, thereby enhancing the throughput
and efficiency of the logging process. Secondly, there is the concept of cycle capacity. This
term relates to the maximum effort or forces that the extraction line can exert in a single
cycle, which in turn depend on the weight of the tree to be extracted and the distance
between the tree and the logging line. This capacity must be sufficient to haul the tree from
its original position to the extraction point. Factors such as the size and weight of the tree,
the cable type and condition, the land gradient, and the distance to be covered all play roles
in determining the cycle capacity.

In essence, these two parameters—cycle time and cycle capacity—are critical for
logging operations. They must be carefully balanced and optimized, as they directly
influence the extraction process’ efficiency, safety, and productivity. By understanding and
improving these aspects, logging operations can significantly increase their performance
and sustainability.

The capacity of a logging cycle is a critical threshold that an extraction line must
respect. Figure 3 illustrates the various states of an extraction line. In Figure 3A, the
blue area represents potential extraction, but the line capacity restricts extraction to trees
within the yellow cone. Figure 3B depicts a saturated line with a red cone, where assigning
all trees from the potential area is impossible. Figure 3C presents a scenario with three
extraction cables; the central wire is unsaturated due to the allocation of trees to the
surrounding cables.

Figure 3. State of the extraction cables.
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Each extraction cable possesses a capacity specific to its respective logging cycle.
Figure 4a shows the timber cycle concept by defining a simple area notation: green trian-
gles represent trees that are accessible to the cable but not assigned to it. In contrast, light
blue triangles signify trees that are assigned to the cable and hence to a logging cycle. The ex-
traction cable can execute three logging cycles (R = 3) with a maximum capacity of 36 units
per cycle. Trees depicted as light blue triangles consume three units of cable capacity, while
the blue triangles utilize ten units. In the first logging cycle, r1, shown in Figure 4b, three
blue triangles (3 × 10 = 30 capacity units) and two light blue triangles (2 × 3 = 6 capacity
units) are extracted. This results in the feasible cycle capacity of 36 units being fully utilized.
The extracted triangles are marked in red. The second logging cycle, r2, represented in
Figure 4c, extracts two blue triangles (2× 10 = 20 capacity units) and two light blue triangles
(2× 3 = 6 capacity units), yielding a feasible capacity utilization of 26 units. Finally, the third
and last logging cycle, r3, shown in Figure 4d, extracts three blue triangles (3 × 10 = 30
capacity units) and one light blue triangle (1 × 3 = 3 capacity units), thereby utilizing a
feasible capacity of 33 units.

Figure 4. Example of logging cycles for an extraction cone (in yellow).

2.4. Description of the Problem

Every tree in a designated sector must be fully extracted, as illustrated by Figure 5,
which presents a typical example for this process. The example scenario presented was
artificially generated to better explain the completeness of the problem. The depicted stage
features five towers, each equipped with an extraction cable. As Figure 2 demonstrates,
every cable possesses a corresponding extraction logging cone. These cones can overlap
with adjacent logging cones, creating areas of intersection. However, a tree falling within
this intersection must be exclusively associated with a single line to avoid conflicts and
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ensure efficient extraction. The example also reveals intersections between different cables,
a situation that should be avoided when selecting cables for this task. Overlapping lines
could lead to confusion in the assignment of trees and reduce the overall efficiency of the
logging process.

Figure 5. Final scenario of extraction cable assignment.

In the following section, a mathematical model is introduced. This model effectively
addresses the challenge of assigning trees to individual lines and selecting the optimal lines
to ensure the most efficient extraction process is produced.

3. Problem Description and Mathematical Formulation

A mathematical model can be defined to solve the tree assignment problem. For
this reason, the indices, sets, variables, and parameters are defined. First, the indices are
determined: for the tree selection t ∈ T, for the yarder selection y ∈ Y, for the extraction
cable selection l ∈ L, and indices for a single revolution of a single cable r ∈ R. Second,
previously defined sets of cables are determined depending on the geometry: I(l) ∈ L
corresponding to a set of cables that intersects cable l and L(y) ∈ L corresponding to a
set of cables that starts from the yarder Y. The parameters are shown in Table 1. In this
way, the cables allow all of the trees of the problem with the following decision variables to
be extracted:

Table 1. Parameters of the mathematical model.

Parameter Description

Dy Time needed to install the yarder y ∈ Y.
Pyl Time needed to install the cable l ∈ L(y) .
Hlt Time needed to extract t ∈ T for the cable l ∈ L.
Zlr Time needed to generate a single revolution r by the cable l.
Wlt Effort performed by the cable l to extract the tree t.
Crl Maximum number of trees that a single cable l can extract in a revolution r.

• wy =

{
1 i f the yarder y is used

0 otherwise

• cl =

{
1 i f cable l is used

0 otherwise

• xltr =

{
1 i f the tree t is extracted with the cables l in the revolution r

0 otherwise
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• zlr =

{
1 i f theline l uses thelogging cycle r.

0 otherwise

The mathematical model minimizes the extraction and installation time of the problem
subject to different constraints. The objective function in Equation (1) has four main
components: minimizing the installation time of the selected yarder y, minimizing the
installation time of the cable l that starts from the yarder y, minimizing the extraction of
each tree t by cable l in revolution r, and minimizing the time that the logging cycle r
belongs to the cable l. Constraint (2) ensures that every tree is associated with a single cable
during a single revolution. Constraint (3) ensures that there is no infeasible selection of
extraction cables for the problem considering intersections. To achieve this, it is essential to
ensure that each cable k ∈ I(l) does not intersect with the cable l ∈ L. Constraint (4) makes
sure that the yarder y is selected if a cable l ∈ L(y) is also selected. Constraint (5) makes
sure that the cable l is selected if a tree t associated with the variable xltr is selected. Finally,
the model variables are defined in the Constraint (7).

min ∑
y∈Y

Dywy + ∑
y∈Y

∑
l∈Ly

Pylcl + ∑
l∈L

∑
t∈T

∑
r∈R

Hltxltr + ∑
l∈L

∑
r∈R

Zlrzlr (1)

s.t
∑
r∈R

∑
l∈L

xltr = 1 ∀t ∈ T (2)

cl −M ∑
k∈I(l)

(1− ck) ≤ 0 ∀l ∈ L, (3)

∑
l∈L(y)

cl ≤ Mwy ∀y ∈ Y (4)

∑
r∈R

∑
t∈T

xltr ≤ Mcl ∀l ∈ L, (5)

∑
t∈T

Wltxltr ≤ Crlzlr ∀l ∈ L, ∀r ∈ R (6)

wy ∈ {0, 1}; clp ∈ {0, 1}; xltr ∈ {0, 1}; zlr ∈ {0, 1} (7)

The following section defines a two-phase algorithm to solve the proposed problem: a
genetic algorithm that solves the allocation of the trees for a single line and a mathematical
model that performs the logging cycles for the best solution from the genetic algorithm.

4. Two-Phase Approach to Solve Cable Logging

The problem formulated above can be described in two fundamental processes
(phases): assigning trees to lines and generating logging cycles. Tree assignment can
be performed in a (meta)heuristic way with a genetic algorithm (GA). Subsequently, the
solution developed by GA can be used by a mathematical model that will generate the
logging cycles for each logging line (phase 2).

Genetic algorithms were proposed by Holland [13] and are the most representative
technique of evolutionary computation. The method follows a process based on the
evolution of the species where the best individual survives in subsequent generations [14].
Generally, an individual of the genetic algorithm is represented in an array (chromosomes)
with numbers in each of their positions (known as genes). The details of this metaheuristic
can be seen in Algorithm 1: first, individuals are randomly generated (line 1) with a defined
population size npop. Subsequently, the generated population is subjected to a number
of generations ngen (line 4) with different fundamental processes: the evaluation of each
individual through a fitness function (line 5), the selection of the best individuals in a
random way (line 6), a crossover of individuals with the probability cx (line 7), and the
mutation of individuals with a probability of occurrence mx (line 8). Finally, a mathematical



Forests 2023, 14, 2133 9 of 26

model is applied to the allocation generated by the GA to generate the log cycles. The
details of each process are described in the following subsections.

Algorithm 1 GA for Cable Logging.

Require: Parameters: ngen, npop, cx, mx
Ensure: Solution: S∗

1: InitialPopulation = RandomProcedure(npop) . Phase 1
2: P∗ = InitialPopulation
3: gen = 0
4: while gen < ngen do
5: P f = FitnessProcedure(P∗)
6: Ps = Selection(P f )
7: Pc = Crossover(Ps, cx)
8: P∗ = Mutation(Pc, mx)
9: gen = gen + 1

10: end while
11: bestIndividual = BestIndividual(P∗)
12: S∗ = GenerationO f LoggingCycles(bestIndividual) . Phase 2
13: return S∗

4.1. Representation of an Individual

First, a data structure for the extraction problem must be defined. Figure 6 represents
a small example of the representation of a problem: on the left side of the image, the
problem is displayed geometrically, i.e., the trees that must be extracted are presented in
green triangles numbered from 1 to 12 and the potentials of the cable (orange) that must be
selected are numbered from 1 to 6. On the right of the image, the data structure is presented:
each of the trees has potential extraction lines to which it can be assigned. The logging
lines are sorted by distance, so the structure always keeps the nearest (cheapest) lines in
first place. For example, tree 11 can be extracted by cable 6 (nearest), cable 5, and cable 3
(farthest, but feasible).

Figure 6. Information structure example.

The representation of an individual in the GA involves mapping a tree to a valid
cable within the data structure. Each gene represents the assignment of a tree to a (single)
cable; thus, the length of the chromosome is proportional to the number of trees on the
farm. Figure 7 shows an example of a chromosome and the selection of lines for each tree.
For this example, the first three alleles (trees) contain position 0 of their draw lines in the
ordered structure, so they are assigned to their closest lines, alleles 4 and 5 are assigned to
the second nearest lines, and so on.

Initially, for each gene, a uniformly distributed random number is generated with the
range [0, M[ with M defined as the maximum number of trees between the logging lines of
the plot (for this example, cones 7 and 11 are the largest with M = 3). Thus, the GA must
define a feasibility process (i.e., converting an individual from infeasible to feasible). For
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it, the modulo function is used with the size of the lines of each tree. Figure 8 shows a
structure that contains the number of lines for each tree according to the problem’s structure.
The new valid chromosome is obtained by applying the modulo operator to the original
chromosome with the correct size for each gene. Note that the modulo operation effect
replaces only invalid genes; therefore, genes 3, 5, and 9 were changed.

Figure 7. Representation of an individual.

4.2. Fitness Function

The fitness function must evaluate an individual’s qualification within the evolution-
ary process. For the cable extraction problem, it is necessary to quantitatively evaluate
whether the cable selection is good. The function must carry out three fundamental pro-
cesses: a ranking process, where lines that intersect each other must be eliminated; a cable
minimization process, where a heuristic seeks to minimize the number of selected lines;
and reassignment, where trees that were assigned to lines that were removed in previous
processes must be reassigned to new final lines. Figure 9 shows the summary of the process.

4.2.1. Ranking Process

The first process within the fitness function is cable intersection removal. Let Gl be a
set of trees that are extracted by the cable l according to the chromosome to be evaluated,
and let Vl be a set of cables that intersect with the l line. The formula used for the ranking
to evaluate each cable is described in Equation (8).

f (l) = ω(
Gl −MinG

MaxG−MinG
) + θ(1− Vl −MinV

MaxV −MinV
) (8)

Normalized values are considered in the ranking process. For this, the following
values are calculated from the chromosome: MinG corresponds to the cable that contains
the least number of assigned trees; MaxG corresponds to the cable that includes the largest
number of assigned trees; MinV corresponds to the least number of intersection cables; and
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MaxV corresponds to the largest number of intersection lines. To consider both features
(tree assignment and cable intersection), two factors are defined, such that ω + θ = 1.

Figure 8. Feasibility process for a GA individual.

The lines are removed until the solution generated from the chromosome has no inter-
section. First, the lines are sorted according to the value of the Equation (8) in descending
way. Subsequently, lines are removed until the solution does not present intercepted lines.
Figure 9 shows that the original individual contains three intersecting lines (yellow, green,
and red lines). According to Equation (8), the cable with the lowest score is presented
in yellow, the next in green, and the next in red. Finally, the yellow and green lines are
removed (in the order described above). Note that the red line is not removed since the
solution does not have cable intersections. Trees that had been assigned to deleted lines are
shown in light blue.
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4.2.2. Cable Number Minimization Process

The solution presented for this process uses a large number of lines. In this way, the lines
considered from the previous process are subjected to elimination with a greedy heuristic
based on the Set Covering problem [15]. The heuristics can be seen in Algorithm 2.

Algorithm 2 Greedy Heuristic Delete.

Require: Trees T, Lines Cost o f lines C (∀l ∈ Chromosome), Subset S (∀l ∈ Chromo-
some)

Ensure: F FinalLines
1: cost = 0
2: covered = ∅
3: NotCovered = T
4: F = ∅
5: while covered ! = T do
6: (tset, l) = set of tree with highest: ( |Sl\covered|

cl
)∀l ∈ Chromosome and l /∈ F

7: cost = cost + Cl
8: covered = covered ∪ tset
9: NotCovered = T \ covered

10: F = F ∪ {l,}
11: end while
12: return F

The final lines are selected using the cost of each of them. Algorithm 2 iteratively
considers the best lines according to the number of trees that l extracts (trees that other
lines in previous iterations have not evaluated) and the cost of the cable l (line 7). The
highest value is listed in F, and the algorithm continues until all problem trees have been
considered. Note that the number of trees in the operation |Sl \ covered| considers the total
number of trees that a cable can extract. Figure 9 shows the output of the minimization
process. For this case, the orange and the plumb cable are removed. Again, trees that had
been assigned to deleted lines are shown in light blue.

4.2.3. Tree Assignment

Finally, the trees deallocated in previous processes are assigned to non-deleted lines
(set F from the greedy algorithm). Trees are assigned to the nearest valid cable from F.
Figure 9 shows the cyan trees of previous processes assigned to the lines belonging to F
(purple, blue, and red).

4.2.4. Final Formula

The fitness function must assign a quantitative value to the solution generated from
the chromosome. Once the final individual is obtained from the previous processes,
Equation (9) is used, which can be divided into three parts: the installation time of the
yarders, the installation time of the lines, and the extraction time of each tree according to
the associated line. This value will be used for the genetic algorithm selection process.

f (Chrom) = ∑
y∈Y(Chrom)

Dywy + ∑
y∈Y

∑
l∈Chrom

Pylcl + ∑
l∈Chrom

∑
t∈T

Hltxlt (9)

4.3. Selection

Roulette selection was used. This method assigns a proportional adjustment value to
a roulette using its fitness value. In this way, the best individuals receive a more significant
proportion in the roulette, having a better chance of being selected. Individuals are selected
without replacement until the overall GA process is complete [16].
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4.4. Crossover

Crossover selects two individuals (called parents) with a given probability cx from
the subpopulation generated by the selection. A random number γ between zero and one
(without considering one) is chosen to select the number of genes to cross n = |T| ∗ γ.
The integer part of the result obtained is considered for n. Subsequently, two genes are
randomly selected n times and swapped. Finally, the two new individuals are returned.
Figure 10 considers an example of the operator.

Figure 9. Flowchart for the fitness function.
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Figure 10. Crossover Process.

4.5. Mutation

Two mutation operators are defined for this evolutionary process. The first operator
randomly changes half of the genes to valid cones, while the second operator applies a
local search on half of the genes, selecting the best cable from the chosen tree. The first
and second operators are applied with probabilities α and β, respectively. A flowchart in
Figure 11 is shown, using the ordered structure proposed in Section 4.1.

Figure 11. Crossover Process.

4.6. Generation of Logging Cycles

A mathematical model is developed to generate a feasible solution from the GA
solution. The model aims to minimize the time cost of the logging cycles, as shown by the
objective function (10). The original model includes restrictions (11)–(14) defined below.
However, the model only considers the lines selected from the best individual (variable
Chrom in the model).

min ∑
r∈R

Zlrzlr (10)

s.t
∑
r∈R

∑
l∈Chrom

xltr = 1 ∀t ∈ T (11)
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∑
r∈R

∑
t∈T

xltr ≤ Mcl ∀l ∈ Chrom, (12)

∑
t∈T

Wltxltr ≤ Crlzlr ∀l ∈ Chrom, ∀r ∈ R (13)

cl ∈ {0, 1}; xltr ∈ {0, 1}; zlr ∈ {0, 1} (14)

5. Experimental Evaluation
5.1. Benchmark Instances

To measure the performance of the mathematical model and the genetic algorithm, we
must define a set of instances. In this way, we generate two groups of instances: instances
generated randomly and instances generated from a real scenario.

5.1.1. Random Instances

We used artificial areas with characteristics similar to a real scenario for the cable
extraction problem. For this, nine instances were generated by positioning the trees with a
uniform distribution. All instances were grouped into three groups according to the number
of trees {1800, 3000, 5000}. In this way, three instance types were generated according to
their groups (Figure 12).

Figure 12. Random scenario example.

5.1.2. Real World Instances

Our approaches were also tested on a set of instances derived from real-world sce-
narios. For an accurate study, we utilized data captured from UAVs, specifically aerial
photographs (refer to Figure 13A). After obtaining these photos, Deep Learning models
were employed to identify tree canopies, which enabled us to pinpoint their locations on a
Cartesian map (as illustrated by Figure 13B). The images were processed using two fully
convolutional neural network architectures: YOLO [17] and Mask [18]. The details of the
classification can be found in [19]. Concluding this process, we positioned the candidate
lines using the yarders and anchor points, which served as the input optimization problem
for our delineated approaches (refer to Figure 13C).

5.1.3. Instance Parameters

Instance parameters are derived from physical attributes and the average speed at which
a cable can haul timber within its logging cone. Accordingly, for each set of instances—whether
artificial or rooted in real-world scenarios—distinct parameters are outlined in Table 1,
encapsulating the essence of the problem. Installation times (for cables and yarders) were
sourced in consultation with forestry harvesting specialists. Meanwhile, extraction times
were determined by the perpendicular distance between the timber and the cable extraction
point and the extraction speed from the timber collection point to the landing site. The
extraction speed decreases as the distance from the logging tower to the timber increases.
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Figure 13. Utilizing Deep Learning for Forest Monitoring and Optimal Logging Path Determination.
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5.2. Experimental Protocol

The mathematical model was tested on Gurobi 9.5.2 and CPLEX 20.0 with Python 3.7
with Threads = 1. We generated the GA implementation in Python 3.7. The experiments
were carried out in a cluster with Intel Xeon Cascade Lake CPU 3.10 GHz with eight cores
and 32 GB RAM using Ubuntu 19.04.

5.3. Parameter Calibration for the GA

We used the iterated racing for automatic algorithm configurations (IRACE) method (pro-
posed in [20]). The framework applies an elitist procedure, which iteratively samples param-
eter combinations according to a certain probability, selecting the best ones and discarding
those that lead to low-quality results. In each iteration, samples are updated, and the
parameter values with the best performances increase their probabilities of being selected.
We used the three smallest size instances for the calibration process. The search space pa-
rameters of the GA are as follows: number of generations = {10, 15, 20, 50}, number of pop-
ulation = {50, 100, 150, 200}, and probability of crossing = cx = {0.8, 0.85, 0.9, 0.95}. The mu-
tation was defined as mx = 1− cx with α = 0.5 and β = 0.5. Parameter θ = {0.3, 0.5, 0.8}
with ω = 1− θ was defined for the ranking function. Finally, γ = {0.5, 0.6, 0.7}was defined
for the internal crossing process.

The details of the instance groups are presented in Table 2.

Table 2. Parameters obtained from IRACE.

ID N° Gen N° Pop cx θ γ

Set1 10 100 0.8 0.5 0.6
Set2 15 100 0.7 0.5 0.6
Set3 10 150 0.9 0.5 0.6

As a concluding step in our study, we implemented the GA under the Set 1 configura-
tion. The choice to highlight this particular configuration arose from comparing various
algorithm configurations. The Set 1 configuration, as it turned out, consistently outper-
formed others in the tests. It delivered superior results in most instances and demonstrated
improved stability and effectiveness.

5.4. Computational Results

The results of the computational experiments are divided into two sections: “Results
for Random Instances”, which details the time required to achieve effective scheduling with
the instances generated for the research, and “Results for Real Cases”, where the outcomes
obtained through the use of Deep-Learning-processed images are presented.

5.4.1. Results for Random Instances

Table 3 presents the experimental results derived from the random instances. Compar-
isons were made between different schedules using three different approaches:

• Manual Planning Approach (MPA): This method assigns the first line from left to
right and performs the extraction. The extraction time simulates a plan’s outcomes
without a smart optimization approach. In other words, the time obtained in this
schedule is similar to the time that would be achieved with a manual plan.

• Gurobi 9.5 and CPLEX 20.0: The results from these approaches are obtained from the
solvers most commonly used in the academic literature. The mathematical model
used is the one proposed in Section 3.

• GA + Model: This result is achieved through a two-phase approach.

We used metrics commonly used in operations research to compare the solvers uti-
lized in the experiments. Initially, each solver determines a feasible solution value (VS),
a lower bound (LB) for the searching process, and the computational time required. Sub-
sequently, the %gap is calculated to assess the quality of the solution using the formula:
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%gap = ((VS − LB)/VS) × 100. When the upper bound matches the feasible solution value,
the %gap becomes zero, signaling the end of the search. At this juncture, the solvers have
identified the solutions to the problems under study.

Each column in the table represents the final outcome of the extraction and installation
process according to the objective function, expressed in minutes (value); the corresponding
upper bound (bound), if applicable; the internal gap percentage between the value and
the upper bound (%gap); the computation time; the standard deviation obtained with
the two-phase approach; the gap percentage relative to the solvers (%gap GRB, %gap
CLPX); and, finally, the average time taken for the different executions performed with the
two-phase approach.

The planning performed using a MPA process tends to be longer than with any other
approach. As can be seen in Table 3, regardless of the type of instance, the times are
consistently longer when the MPA process is used. In particular, for the first group, this
approach requires an average of 65,130 min. Consequently, the idea of obtaining schedules
through a mathematical model emerges as a viable and efficient alternative.

The computation times for the different solvers and the two-phase approach fluctuate
as the number of trees increases. Table 3 displays the execution times of each method used
in this study. It is important to note that traditional solvers fail to find optimal solutions
in most proposed cases with a time limit of TL = 500 s. Indeed, only for case type 1 with
ID = 3 is the gap percentage between the feasible solution and the upper bound small:
approximately 1% in Gurobi 9.5. In the other proposed instances, both solvers fail to
converge toward an efficient solution compared to the two-phase algorithm.

On the other hand, the two-phase algorithm finds better solutions in less time com-
pared to traditional solvers. On average, the two-phase approach takes 150.06 s for type
1 cases, while for type 2 and 3 cases, the average times are similar, 333.76 s and 357.56 s,
respectively.

The two-phase approach outperforms the traditional solvers. Table 3 shows two gap
columns concerning CPLEX (%gap CLPX) and Gurobi (%gap GRB). In the case of type 1
instances, the Gurobi solver produces slightly superior results to the two-phase approach,
with a %gap of 1.49. However, the two-phase approach is notably more effective for the
remaining types of instances (types 2 and 3). On the other hand, CPLEX fails to produce
superior solutions for the proposed instances compared to Gurobi and the two-phase
approach, showing deviations reaching −8.16% in the largest instances.

The results obtained with the two-phase approach are stochastic. Figures 14–16 display
box plots for each instance used in the computational experiment. In general, the runs do
not show significant outliers, except those corresponding to type 3. The box plots exhibit an
appropriate scale, considering that the two-phase approach was executed 20 times.

Figure 14. Boxplots for the performance of the two-phase approach: type 1 instances.
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Figure 15. Boxplots for the performance of the two-phase approach: type 2 instances.

Figure 16. Boxplots for the performance of the two-phase approach: type 3 instances.

Figure 17 shows the results of an extraction plan generated by the two-phase approach
for an instance of type 2. Figure 17a presents the original scenario of the problem, showing
the complete set of extraction lines and the trees that need to be extracted. Meanwhile,
Figure 17b reveals the lines selected to solve the problem and the line/tree assignment
evidenced by the different colors. Figures 17c–e represent the three extraction cycles
generated for each line. It is worth noting that the first extraction cycle removes almost all
trees. Furthermore, not all lines are used in the extraction process.

The implementation of a two-phase strategy was proven to be notably superior to the
approaches of traditional solvers, such as Gurobi and CPLEX, in terms of the efficiency
and computation time. Although these solvers are widely used, our two-phase approach
achieves better results in less time, especially in larger and more complex instances. In the
following section, the results for real instances of the problem are presented.
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Figure 17. The land before and after the split.
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Table 3. Results from Random Instances.

Type ID
MPA Gurobi 9.5 CPLEX 20 GA + Model

Value Time (s) Value Bound % Gap Time (s) Value Bound % Gap Time (s) Min Average Stdev % Gap GRB % Gap CLPX Avg, Time (s)

1 1 22,158.15 1.70 17,966.88 16,848.81 6.22 500.52 18,160.08 16,870.29 7.10 500.65 18,052.54 18,252.15 369.86 0.48 −0.59 105.97
1 2 19,592.29 4.36 17,552.17 16,188.59 7.77 500.03 17,803.75 16,242.15 8.77 500.65 17,493.17 17,776.86 364.05 −0.34 −1.74 83.91
1 3 238,650.30 1.49 16,441.73 16,178.73 1.60 500.04 17,195.66 16,099.76 6.37 500.62 17,111.66 17,912.59 432.03 4.07 −0.49 97.88
1 4 20,579.87 1.51 18,630.30 17,190.83 7.73 500.04 20,584.23 17,217.00 16.36 500.75 18,393.62 19,180.16 486.58 −1.27 −10.64 250.30
1 5 24,676.71 1.56 18,090.01 16,976.40 6.16 500.05 18,088.39 16,963.45 6.22 500.82 18,908.15 19,298.59 262.76 4.52 4.53 212.23

Average 65,131.46 2.12 17,736.22 16,676.67 5.89 500.14 18,366.42 16,678.53 8.96 500.70 17,991.83 18,484.07 383.06 1.49 −1.79 150.06

2 1 28,509.12 6.02 21,124.22 16,470.86 22.03 500.06 20,812.62 16,769.83 19.42 500.49 19,758.39 19,942.10 269.37 −6.47 −5.07 326.84
2 2 25,443.90 7.15 20,884.90 17,354.36 16.90 500.06 21,739.64 17,370.32 20.10 500.61 19,045.32 19,384.69 334.45 −8.81 −12.39 347.67
2 3 22,040.33 7.66 19,465.47 16,889.59 13.23 500.06 19,476.64 16,864.49 13.41 500.84 19,027.99 19,635.88 408.00 −2.25 −2.30 322.53
2 4 21,870.38 6.56 19,718.86 16,360.85 17.03 500.06 20,211.75 16,436.03 18.68 500.62 18,157.08 19,000.20 586.92 −7.92 −10.17 337.71
2 5 23,500.14 8.40 19,746.28 16,481.55 16.53 500.06 19,859.69 16,733.74 15.74 501.05 19,546.61 19,717.03 109.22 −1.01 −1.58 334.04

Average 24,272.77 7.16 20,187.94 16,711.44 17.15 500.06 20,420.07 16,834.88 17.47 500.72 19,107.08 19,535.98 341.59 −5.29 −6.30 333.76

3 1 26,323.81 5.69 19,792.43 16,506.18 16.60 500.18 19,586.41 17,039.96 13.00 501.68 19,675.85 19,904.70 114.49 −0.59 0.46 360.80
3 2 23,528.93 6.03 19,665.36 17,180.61 12.64 500.08 22,326.64 17,245.17 22.76 500.80 19,787.48 20,296.25 274.98 0.62 −11.37 355.28
3 3 25,039.41 4.35 20,635.61 16,217.32 21.41 500.08 22,995.42 16,745.47 27.18 500.76 20,362.93 20,998.38 223.29 −1.32 −11.45 350.29
3 4 26,381.36 10.03 19,366.54 16,310.69 15.78 500.07 23,842.00 16,824.51 29.43 500.51 19,298.99 19,510.32 340.02 −0.35 −19.05 367.10
3 5 26,772.86 5.03 22,568.41 16,588.80 26.50 500.08 19,897.66 17,031.13 14.41 500.91 20,024.01 20,486.10 256.26 −11.27 0.63 354.34

Average 25,609.27 6.23 20,405.67 16,560.72 18.58 500.10 21,729.63 16,977.25 21.36 500.93 19,829.85 20,239.15 241.81 −2.58 −8.16 357.56
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5.4.2. Results for Real Cases

As illustrated in Figure 13, there are three types of scenarios used to test optimiza-
tion approaches. The geometric composition characterizes each of them according to the
locations of the trees and the intractable number of extraction lines that can be installed.
Table 4 displays the results for five random attempts for each type of instance. Note that
for this results table, the same approaches are presented as for the results with random
instances. However, CPLEX is not used due to its performance in the previous instances.

The MPA process does not show good performances in real instances. In fact, this
approach does not surpass any of the tested optimization methods (it does not exceed
the Gurobi 9.5 solver or our two-phase approach). For type 3 instances, the results are
delivered quickly but with poor solution quality. Planning for a type 3 instance can take up
to 166,371 min.

The Gurobi 9.5 solver does not find high-quality solutions for the proposed instances
with a time limit of TL = 500. Indeed, in the best case, the solver finds a %gap error of 9.89%
for type 1 instances and 42.20% for type 3 instances. The results of this experiment suggest,
both empirically and quantitatively, the solution using a metaheuristic approach.

The two-phase approach achieves better results than a traditional solver. Indeed, for
each type 2 and 3 instance, the two-phase algorithm is superior in terms of both the solution
quality and execution times, finding solutions of −14.11%, on average, for type 2 instances
and −38.20% for type 3 instances. Finally, the two-phase approach is better for type 1
instances, on average by −2.80%. Only in two cases does our approach fail to surpass
Gurobi 9.5.

The two-phase algorithm effectively generates schedules. Figures 18–20 show the
schedules for the different types of properties. In this experiment, smaller logging cones
were used than in previous cases due to the type of territory studied. The number of lines
is reduced by more than 50% in all cases, and feasible trees are assigned to each line.

Figure 18. Solution for a Type 1 Instance.

The two-phase approach consistently outperforms traditional solvers such as Gurobi 9.5
and CPLEX in terms of the efficiency and computation time, especially for larger and more
complex instances. In contrast, the MPA does not perform well for real-world instances,
delivering results quickly but with a poor solution quality. The Gurobi 9.5 solver struggles
to find high-quality solutions within a set time limit, even under optimal circumstances.
On the other hand, the two-phase approach excels in terms of both the solution quality and
execution times, only failing to surpass Gurobi 9.5 in two cases.
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Table 4. Results from Real Instances.

Type ID
MPA Gurobi 9.5 GA + Model

Value Time (s) Value Bound % Gap Time (s) Best Average % Gap Time (s)

1 1 36,529.56 4.08 20,519.89 19,046.37 7.18 500.14 20,838.25 20,921.60 1.55 221.19
1 2 27,217.01 6.45 22,682.32 19,288.02 14.96 500.49 20,835.91 20,919.82 −8.14 204.98
1 3 27,316.10 5.49 21,177.59 19,332.11 8.71 500.22 20,821.94 20,905.70 −1.68 200.62
1 4 27,250.31 7.26 20,523.35 19,469.41 5.14 500.97 20,839.01 20,932.04 1.54 223.42
1 5 30,301.99 2.93 22,461.76 19,441.54 13.45 500.78 20,827.21 20,910.37 −7.28 199.33

Average 29,722.99 5.24 21,472.98 19,315.49 9.89 500.12 20,832.46 20,917.91 −2.80 209.91

2 1 11,727.71 7.01 10,736.81 6,918.86 35.56 500.97 8,191.79 8,246.59 −23.70 174.20
2 2 11,939.27 6.01 8,443.26 6,664.99 21.06 500.29 8,193.53 8,196.96 −2.96 160.55
2 3 11,123.58 6.01 10,141.75 6,900.40 31.96 500.23 8,185.78 8,239.70 −19.29 178.70
2 4 11,315.92 6.01 9,527.74 6,957.09 26.98 500.84 8,178.98 8,181.75 −14.16 204.61
2 5 11,932.09 5.01 9,152.98 6,653.46 27.31 500.98 8,195.31 8,224.43 −10.46 226.33

Average 11,607.72 6.01 9,600.51 6,818.96 28.57 500.66 8,189.08 8,217.89 −14.11 188.88

3 1 193,781.52 13.05 41,809.24 23,043.25 44.88 500.40 24,666.11 25,058.78 −41.00 472.86
3 2 56,747.15 14.05 39,406.98 23,401.29 40.62 500.12 24,688.05 25,098.24 −37.35 442.03
3 3 193,799.29 15.06 37,569.53 22,782.64 39.36 500.99 24,689.02 25,087.44 −34.28 432.92
3 4 193,772.19 9.06 39,266.10 22,782.85 41.98 500.18 24,651.65 24,992.24 −37.22 426.34
3 5 193,761.88 14.05 41,898.38 23,403.25 44.14 500.89 24,666.66 25,061.02 −41.13 432.82

Average 166,372.41 13.05 39,990.04 23,082.66 42.20 500.92 24,672.30 25,059.54 −38.20 441.40
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Figure 19. Solution for a Type 2 Instance.

Figure 20. Solution for a Type 3 Instance.

6. Conclusions

In this paper, we developed a model for an optimization problem associated with
forest harvesting. The model addresses three crucial aspects: the implementation time of
extraction cables and corresponding yarders, the time required to extract timber based
on its distance from the line, and the generation of logging cones. We provided a binary
integer linear model and a two-phase approach employing a genetic algorithm. Finally, we
compared our different approaches with a manual planning approach (MPA).

The genetic algorithm is implemented through a two-phase procedure. In the first
phase, the evolutionary process identifies candidate lines for extraction, and the fitness
function leads to a repair process for the chromosomes of the population. In the second
phase, a mathematical model generates the logging cones for each line associated with the
best individual selected by the metaheuristic.

Our findings suggest that the two-phase algorithm offers promising results with a
shorter computational time than those provided by a traditional mathematical model. In
the cases examined (both randomly generated for this study and real cases from the forestry
industry), optimal results were not achieved within an established threshold of 500 s using
Gurobi 9.5 and CPLEX 20.0. However, our two-phase approach managed to optimize
feasible solutions.

Concerning the topologies addressed in the article, we wish to emphasize that our
proposed methodologies are versatile enough to adapt to any given configuration. When
observed geometrically, there is a distinct difference between artificial topologies and those
derived from real scenarios using drones and Deep Learning. In both situations, our strate-
gies (model and heuristic) have consistently yielded efficient planning times. For future
endeavors, we are open to exploring different topological variations and incorporating
additional influential factors.

Implementing this approach within companies is entirely feasible. If the focus is on
considering extraction and installation times, both the mathematical model and the genetic
algorithm approach can be tailored to suit any topology. However, when integrating factors
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such as fixed expenses, variable expenses, or other input data, the core problem evolves.
This necessitates the formulation of new strategies, which could be explored in future
research, incorporating insights from existing publications on the topic.

There are several possibilities for future research based on this study. For instance,
reducing the problem’s solution space may facilitate obtaining solutions more efficiently.
First, a heuristic approach based on Machine Learning could be employed to predict poten-
tial lines for harvesting, using various images for training. A second approach is to enhance
the proposed genetic algorithm, including a local search after mutation. This process could
intensify the chromosomes and allow for better line selection, avoiding local optima. Lastly,
it is feasible to consider the application of Lagrangian relaxations to the mathematical
model, which could improve bounds during the search process within solvers.

The results of this research are experimental, but they provide a first approach to the
integration between Deep Learning and optimization algorithms for the positioning of
logging lines. In a first instance, this research addressed the problem in two dimensions, but
further experiments should incorporate the topography of the terrain, dasometric variables
of the forest, and the operational constraints that this produces in harvesting operations
with logging towers.
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